Appears in Machine Learning: Proceedings of the Eleventh International Conference,
W. Cohen & H. Hirsh, eds, Morgan Kaufmann, San Francisco, CA, 1994

Using Genetic Search to Refine Knowledge-Based Neural Networks

David W. Opitz and Jude W. Shavlik
1210 W. Dayton St.

Computer Sciences Department
University of Wisconsin — Madison
Madison, WI 53706
{opitz, shavlik}@cs.wisc.edu

Abstract

An ideal inductive-learning algorithm should
exploit all available resources, such as com-
puting power and domain-specific knowledge,
to improve its ability to generalize. Con-
nectionist theory-refinement systems have
proven to be effective at utilizing domain-
specific knowledge; however, most are unable
to exploit available computing power. This
weakness occurs because they lack the abil-
ity to refine the topology of the networks
they produce, thereby limiting generaliza-
tion, especially when given impoverished do-
main theories. We present the REGENT al-
gorithm, which uses genetic algorithms to
broaden the type of networks seen during
its search. It does this by using (a) the do-
main theory to help create an initial pop-
ulation and (b) crossover and mutation op-
erators specifically designed for knowledge-
based networks. Experiments on three real-
world domains indicate that our new algo-
rithm is able to significantly increase general-
ization compared to a standard connectionist
theory-refinement system, as well as our pre-
vious algorithm for growing knowledge-based
networks.

1 INTRODUCTION

The task of inductive learning is to infer a con-
cept given a set of training examples. An ideal
inductive-learning algorithm should exploit all avail-
able resources, such as computing power and domain-
specific knowledge, to improve its ability to general-
ize. Using domain-specific knowledge is desirable be-
cause inductive learners that start with an approxi-
mately correct theory can achieve high generalization®

'We use generalization to mean accuracy on examples
not seen during training.

with significantly fewer examples (Ginsberg, 1990;
Pazzani & Kibler, 1992; Ourston & Mooney, 1994;
Towell & Shavlik, in press). Effectively using all
available computing power is desirable because, for
many applications, it is more important to obtain con-
cepts that generalize well than it is to induce con-
cepts quickly. In this paper, we present an algorithm,
called REGENT (REfining, with Genetic Evolution,
Network Topologies), that utilizes available computer
time to extensively search for a neural-network topol-
ogy that best explains the training data while mini-
mizing changes to a domain-specific theory.

Inductive learning systems that utilize a set of
approximately-correct, domain-specific inference rules
(called a domain theory), which describe what is cur-
rently known about the domain, are called theory-
refinement systems. For most domains, an expert who
created the theory is willing to wait for weeks, or even
months, if a learning system can produce an improved
theory. Thus, given the rapid growth in computing
power, we believe it is important to develop techniques
that tradeoff the expense of large numbers of com-
puting cycles for gains in predictive accuracy. Analo-
gous to anytime planning techniques (Dean & Boddy,
1988), we believe machine learning researchers should
create anytime learning algorithms.? Such learning al-
gorithms should produce a good concept quickly, then
continue to search concept space, reporting the new
“best” concept whenever one is found.

We concentrate on connectionist theory-refinement
systems, since they have been shown to frequently gen-
eralize better than many other inductive-learning and
theory-refinement systems (Fu, 1989; Towell, 1991;
Lacher et al., 1992; Tresp et al., 1992; Opitz & Shav-
lik, 1993). KBANN (Towell & Shavlik, in press) is an
example of such a connectionist system; it translates
the provided domain theory into a neural network,
thereby determining the network’s topology, and then
refines the reformulated rules using backpropagation.

2Qur use of the term anytime learning differs from
Grefenstette & Ramsey (1992); they use it to mean con-
tinuous learning in a changing environment.

a:—b, notc.
b:-d, note,i.

b :—d, not f, not k.
c:-notg, h,j.

@

Figure 1: Translation of a knowledge base into a neural network. See Section 2 for details.

However, KBANN, and other connectionist theory-
refinement systems that do not alter their network
topologies, suffer when given impoverished domain the-
ories — ones that are missing rules needed to ade-
quately learn the true concept (Opitz & Shavlik, 1993;
Towell & Shavlik, in press). TopGen (Opitz & Shavlik,
1993) is an improvement over these systems; it heuris-
tically searches through the space of possible network
topologies by adding hidden nodes to the neural rep-
resentation of the domain theory. TopGen showed
statistically-significant improvements over KBANN in
several real-world domains (Opitz & Shavlik, 1993);
however, in this paper we empirically show that Top-
Gen suffers because it only considers simple expansions
of the KBANN network.

To address this limitation, we broaden the type of
topologies that TopGen considers by using genetic al-
gorithms (GAs). GAs have been shown to be effective
optimization techniques because of their efficient use
of global information (Holland, 1975; Goldberg, 1989;
Koza, 1992). Our algorithm, REGENT, proceeds by
first trying to generate, from the domain theory, a di-
versified initial population. It then produces new can-
didate networks via the genetic operators of crossover
and mutation. REGENT’s crossover operator tries to
maintain the rule structure of the network, while its
mutation operator adds nodes to a network by us-
ing the TopGen algorithm. Hence, our genetic op-
erators are specialized for connectionist theory refine-
ment. Experiments reported herein show that RE-
GENT is able to better search for network topologies
than is TopGen.

The rest of the paper is organized as follows. In the
next section, we briefly review the KBANN and TopGen
algorithms. We present the details of our REGENT
algorithm in Section 3. This is followed by results from
three Human Genome Project domains. In Section 5,
we discuss these results, as well as future work. We
then review related work, before concluding.

2 REVIEW OF KBANN & TOPGEN

The goal of this research is to exploit both prior knowl-
edge and available computing cycles to search for the
neural network that is most likely to generalize the
best to future examples. We proceed by choosing, as
an initial guess, the network defined by the KBANN
algorithm. KBANN translates a set of propositional
rules, representing what is initially known about a do-
main, into a neural network.

Figure 1 illustrates this translation process. Figure 1a
shows a Prolog-like rule set that defines membership
in category a. Figure 1b represents the hierarchi-
cal structure of these rules, with solid lines repre-
senting necessary dependencies and dotted lines rep-
resenting prohibitory dependencies. Figure lc repre-
sents the resulting network created from this transla-
tion. KBANN creates nodes bl and b2 in Figure lc to
handle the two rules defining b in the rule set. Bi-
ases are set to represent the appropriate AND or OR
structure of each corresponding node. The thin lines
in Figure 1c are lightly-weighted links that KBANN
adds to allow refinement of these rules during back-
propagation training. This training alters the an-
tecedents of existing rules; however, KBANN does
not have the capability of inducing new rules. For
example, KBANN is unable to add a third rule for
inferring b. Thus KBANN suffers when given do-
main theories that are missing rules needed to ade-
quately learn the true concept (Opitz & Shavlik, 1993;
Towell & Shavlik, in press).

TopGen addresses this limitation by heuristically
searching through the space of possible expansions to
the KBANN network. TopGen proceeds by first train-
ing the KBANN network, then placing it on a search
queue. In each cycle, TopGen takes the best network
from the search queue, estimates where errors are in
the network, adds new nodes in response to these es-
timates, trains these new networks, then places them
back on the queue. TopGen judges where errors are
in a network by using training examples to increment
two counters for each node, one for false negatives and
one for false positives.

Existing Node | | Decrease False Negatives | | Decrease False Positives

(/\\I{A\
B C B C New
Node
OR Node
@)
Ne
\\/A No‘(live
New
Node
B C
AND Node

Figure 2: How TopGen adds new nodes to knowledge-
based networks. Arcs indicate AND nodes.

Figure 2 shows the possible ways TopGen adds nodes
to a TopGen network, based on these counter values.
In a symbolic rulebase that uses negation-by-failure,
we can decrease false negatives by either dropping an-
tecedents from existing rules or adding new rules to
the rulebase. Since KBANN is effective at removing
antecedents from existing rules, TopGen adds nodes,
intended to decrease false negatives, in a fashion that
is analogous to adding a new rule to the rulebase
(see Figure 2a,c). REGENT decreases false positives
by constructively-inducing new antecedents (see Fig-
ure 2b,d). In doing so, TopGen is able to add rules,
whose consequents were previously undefined, to the
rulebase (something KBANN is incapable of doing).

TopGen showed statistically-significant improvements
over KBANN in several real-world domains, and com-
parative experiments with a simple approach to adding
nodes verified that new nodes must be added in an in-
telligent manner (Opitz & Shavlik, 1993). Despite this
success, TopGen suffers in that it only considers larger
networks that contain the original KBANN network as
subgraphs. In this paper, we increase the number of
networks TopGen considers during its search and show
that its increase in generalization is primarily limited
to the first few networks considered. Thus when Top-
Gen has time to consider many candidate networks, it
is unable to effectively utilize all of this time to effi-
ciently explore topology space. Broadening the range
of networks considered during the search through topol-
ogy space is the major focus of this paper.

3 THE REGENT ALGORITHM

Our new algorithm, REGENT, tries to broaden the
types of networks considered with the use of GAs. We
view REGENT as having two phases: (1) genetically
searching through topology space, and (2) training
each network using backpropagation. REGENT utilizes

Table 1: The REGENT algorithm.

GOAL: Search for the best network topology describ-
ing the domain theory and data.

1. Set aside a validation set from the training in-
stances.

2. Perturb the KBANN-produced network in multiple
ways to create initial networks, then train these
networks and place them into the population.

3. Loop forever:

(a) Create new networks using the crossover or
mutation operator.

(b) Train these networks with backpropagation,
score with the validation set, and place into
the population.

(c) If anew network is the smallest network with
the lowest validation-set error seen so far, re-
port it as the current best concept.

the domain theory to aid in both phases. It uses the
theory to help guide its search through topology space
and to give a good starting point in weight space.

Table 1 summarizes the REGENT algorithm. REGENT
first sets aside a validation set (from part of the train-
ing instances) for use in scoring the different net-
works. It then perturbs the KBANN-produced network
to create an initial set of candidate networks. Next,
REGENT trains these networks using backpropagation
and places them into the population. In each cycle,
REGENT creates new networks by crossing over and
mutating networks from the current population that
are randomly picked proportional to their fitness (i.e.,
validation-set correctness). It then trains these new
networks and places them into the population. As it
searches, REGENT keeps the network that has the low-
est validation-set error as the best concept seen so far,
breaking ties by choosing the smaller network in an ap-
plication of Occam’s Razor. A parallel version trains
many candidate networks at the same time using the
Condor system (Litzkow et al., 1988), which runs jobs
on idle workstations.

A diverse initial population will broaden the types of
networks REGENT considers during its search; how-
ever, we still need to utilize the domain theory when
generating this population. REGENT does this by
randomly perturbing the KBANN network at various
nodes. A node is perturbed by either deleting it, or by
adding new nodes to it in a manner analogous to one
of TopGen’s four methods for adding nodes. (If there
are multiple theories about a domain, all of them can
be used to seed the population.)

REGENT crosses over two networks by first dividing
the nodes in each parent network into two sets, A and

Original | Output Output
Networks
Crossed
Over Input Input
p
Output Output
Resulting \
Networks
Input Input

Figure 3: REGENT’s method for crossing over two networks. The hidden nodes in each original network are
divided into the sets A and B; the nodes in the two A sets form one new network, while the nodes in the two B
sets form another. Grey lines represent low-weighted links that are added to fully-connect neighboring levels.

Table 2: REGENT’s method for crossing over networks.

Crossover Two Networks:
GOAL: Crossover two networks to generate two new
network topologies.

1. Divide each network’s hidden nodes into sets A
and B using DivideNodes.

2. Set A forms one network, while set B forms an-
other. Each new network is created as follows:

(a) A network inherits weight w;; from its parent
if nodes 7 and j either are also inherited or
are input or output nodes.

(b) Link unconnected nodes between levels with
near-zero weights.

(¢) Adjust node biases to keep original AND or
OR function of each node.

DivideNodes:
GOAL: Divide the hidden nodes into sets A and B,
while keeping each network’s rule structure.

While some hidden node is not assigned to set A or B:

(i) Collect the unassigned hidden nodes whose
output is linked only to either previously-
assigned nodes or outputs nodes.

(ii) Ifset A or set B is empty:

For each node collected in part (i),
randomly assign it to set A or set B.

Else
Probabilistically add the nodes collected
in part (i) to set A or set B. Equation
(1) shows the probability of being assigned
to set A. The probability of being assigned
to set B is one minus this value.

B, then combining the nodes in each set to form two
new networks (i.e., the nodes in the two A sets form
one network, while the nodes in the two B sets form
another). Table 2 summarizes REGENT’s method for
crossover and Figure 3 gives an example. REGENT
divides nodes, one level at a time, starting at the level
nearest the output nodes. When considering a level,
if either set A or set B is empty, it cycles through each
node in that level and randomly assigns it to either
set. If neither set is empty, nodes are probabilistically
placed into a set. The following equation calculates
the probability of a given node being assigned to set
A:

ZjEA |wjil
2jea lwiil + 22 e p lwjil

where j € A means node j is a member of set A and wj;
is the weight value from node ¢ to node 5. The proba-
bility of belonging to set B is one minus this probabil-
ity. With these probabilities, REGENT tends to assign
to the same set those nodes that are heavily-linked to-
gether. This helps to minimize the destruction of the
rule structure of the crossed-over networks, since nodes
belonging to the same syntactic rule are connected by
heavily-linked weights. Thus, REGENT’s crossover op-
erator produces new networks by crossing-over rules,
rather than just crossing-over nodes.

Prob(node i € setA) = (1)

REGENT must then decide how to connect the nodes
of the newly created networks. First, a new network
inherits all weight values from its parents that connect
two nodes that either it inherited, or are input or out-
put nodes. It then adds low-weighted links between
unconnected nodes on consecutive levels.®> Finally, it

3 A node’s level is defined as the longest path from it to
an output node.

adjusts the bias of all AND or OR nodes to help main-
tain their original function.*

REGENT mutates networks by applying a variant of
TopGen. REGENT uses TopGen’s method for incre-
menting the false-negatives and false-positives coun-
ters for each node. REGENT then adds nodes, based
on the values of these counters, the same way TopGen
does. This mutation operator adds diversity to a pop-
ulation, while still maintaining a directed, heuristic-
search technique for choosing where to add nodes; this
directedness is important because we currently are un-
able to consider more than a few thousand possible
networks per day.

REGENT adds newly trained networks to the popula-
tion only if their validation-set correctness is better
than or equal to an existing member of the popula-
tion. When REGENT replaces a member, it chooses
the member having the lowest correctness (ties are
broken by choosing the oldest member). Other tech-
niques (Goldberg, 1989), such as replacing the mem-
ber nearest the new candidate network, can promote
diverse populations; however, we do not want to pro-
mote diversity at the expense of decreased general-
ization. Once we are able to consider tens of thou-
sands of networks, we plan to investigate incorporating
diversity-promoting techniques.

REGENT can be considered a Lamarckian®, genetic-
hillclimbing algorithm (Ackley, 1987), since it per-
forms local optimizations on individuals, then passes
the successful optimizations on to offspring. Lamar-
ckian learning can lead to a large increase in learn-
ing speed and solution quality (Farmer & Belin, 1992;
Ackley & Littman, 1994).

4 EXPERIMENTAL RESULTS

We ran REGENT on three problems from the Human
Genome Project. Each of these problems aid in locat-
ing genes in DNA sequences. The first domain, pro-
moter recognition, contains 234 positive examples, 702
negative examples, and 17 rules. The second domain,
splice-junction determination, contains 1,200 examples
distributed equally among three classes, and 23 rules.
Finally, the ribosome binding sites (RBS) domain, con-
tains 366 positive examples, 1,098 negative examples,
and 17 rules. (Note that these data sets and domain
theories are different versions of the ones that appear
in Towell, 1991, and Opitz & Shavlik, 1993.)

Our experiments address the test-set accuracy of RE-

“If a positive incoming link for an AND node is removed,
the node’s bias is decremented by subtracting the product
of the link’s magnitude times the average activation enter-
ing that link. The bias for an OR node is incremented by a
similar amount when negative incoming links are removed.

®Lamarckian evolution is a theory based on the inheri-
tance of characteristics acquired during a lifetime.

GENT on these domains. Figure 4 shows the test-set
error of KBANN, TopGen, and REGENT as they search
through the space of network topologies. The results
are from a ten-fold cross validation; in each fold, RE-
GENT is run with a population size of 20. The hori-
zontal line in each graph results from the KBANN al-
gorithm. Even though KBANN considers only one net-
work, we drew a horizontal line for the sake of visual
comparison. The first point of each graph, after one
network is considered, is nearly the same for all three
algorithms, since they all start with the KBANN net-
work; however, TopGen and REGENT differ slightly
from KBANN since they must set aside part of the
training set to score the candidate networks. Notice
that TopGen stops improving after considering 10 to
30 networks and that the generalization ability of RE-
GENT is better than TopGen after this point.

Figure 5 shows the test-set error after TopGen and
REGENT consider 500 candidate topologies. The stan-
dard neural network results are from a fully-connected,
single-layer, feed-forward neural network, where, for
each fold, we trained various networks containing up
to 100 hidden nodes and used a validation set to choose
the best network. Our results show KBANN generalizes
much better than the best of these standard networks,
thus confirming KBANN’s effectiveness in generating
good network topologies. While TopGen is able to
improve on the KBANN network, REGENT is able to
significantly decrease the error rate over both KBANN
and TopGen.

5 DISCUSSION & FUTURE WORK

Towell (1991) has shown that KBANN generalizes bet-
ter than many other machine learning algorithms, in-
cluding purely symbolic approaches to theory refine-
ment, on the promoter and splice-junction domains
(the RBS dataset did not exist then). Despite this
success, REGENT is able to significantly improve gen-
eralization over both KBANN and an improvement
to KBANN, the TopGen algorithm. REGENT reduces
KBANN’s test-set error by 12% for the RBS domain,
22% for the splice-junction domain, and 33% for the
promoter domain; it reduces TopGen’s test-set er-
ror by 10% for the RBS domain, 17% for the splice-
junction domain, and 21% for the promoter domain.
Also, REGENT’s ability to utilize available computing
time is further aided by its being inherently parallel,
since we can train many networks simultaneously.

Since REGENT considers many networks, it can select
a subset of the final population of networks and then
use a collective decision strategy at minimal extra cost.
Hansen and Salamon (1990), among many others, have
shown that combining the output of several neural net-
works improves generalization over a single network.
As an initial test, we combined the predictions of all
the networks belonging to the final population by tak-

10%

8% -
Ribosome Binding Sites
6% -
KBANN
4% o TopGen
REGENT
2% -

p -
o
-
S
L
b
(0]))
wn N Splice Junctions
] 2%
(7] _
(¢)]
l_ I I I I I
6 %
4%
— Promoters
2%
I I I I 1
0 100 200 300 400 500
Networks Considered
Figure 4: Error rates on three Human Genome problems.
10.70
10% 7 9'409.15
o 8%
S i
TR 626 standard NN [l
D _ KBANN H]]]]]]]
%) 4% — TopGen
b
g . REGENT [|
|_ 2%

RBS Splice Junctions Promoters

Figure 5: Error rates after TopGen and REGENT consider 500 networks. Two-sample one-tailed #tests indicate
that REGENT differs from both KBANN and TopGen at the 90.0% confidence level on all three domains.

ing the weighted-average of each network (as deter-
mined by its fitness). Simply combining the networks
in this fashion produced test-set errors of 7.91% on
the RBS domain, 3.42% on the splice-junction domain,
and 3.49% on the promoter domain.

When combining multiple networks, Hansen and Sala-
mon (1990) showed that an increase in generalization is
likely if the individual networks tend to be independent
in their errors. To help promote this independence, we
plan to investigate incorporating diversity-promoting
techniques (Goldberg, 1989), thus minimizing the sim-
ilarity of the networks in our final population. Instead
of replacing the network with the lowest validation-set
error, we will replace the network that has both a poor
validation-set performance and classifies examples sim-
ilarly to other networks in the population. We plan to
estimate the classification similarity between two net-
works with the examples in the validation set; hence,
networks that classify the validation set in a similar
fashion will have a low chance of survival. Another
diversity-promoting alternative we plan to investigate
is to create subpopulations (Deb & Goldberg, 1989),
and then combine a network from each subpopulation.

Since we are searching through many candidate net-
works, it is important to be able to recognize the net-
works that are likely to generalize the best. We cur-
rently use a validation set; however, MacKay (1992)
has shown that a validation set can be a noisy esti-
mate of the true error. Also, as we increase the num-
ber of networks searched, REGENT may start selecting
networks that overfit the validation set. In fact, this
may be a possible explanation for the occasional up-
ward trends in test-set error, from both TopGen and
REGENT, in Figure 4. Future work, then, is to inves-
tigate selection methods that do not use a validation
set, which would also allow us to use all the training
instances to train the networks. Such techniques in-
clude minimum description length methods (Rissanen,
1983), Generalized Prediction Error (Moody, 1991),
and Bayesian methods (MacKay, 1992).

Since the correct theory may be quite different from
the initial domain theory, we plan to evaluate includ-
ing, in the initial population of networks, a variety
of networks not obtained directly from the domain
theory. Currently, we create our initial population
by always perturbing the KBANN network using Top-
Gen’s four methods for adding nodes. To include net-
works that are not obtained from the domain theory,
we plan to use TopGen’s node-addition techniques to
randomly create all of the hidden nodes in a network.
Adding nodes in this manner creates networks whose
node structure is analogous to dependencies found in
symbolic rule-bases, thus creating networks suitable
for REGENT’s crossover and mutation operators.

Finally, our future plans include using a rule-
extraction algorithm to test the interpretability of
a REGENT-refined network. Obtaining human-

understandable rules would allow an expert to under-
stand what has been learned. REGENT adds nodes,
during its mutation, in a fashion that does not vio-
late the two assumptions made in Towell and Shav-
lik’s rule-extraction algorithm (1993), and during its
crossover, REGENT tries to retain the rule structure of
the network; therefore, we hypothesize that the net-
works generated by REGENT should be interpretable.

6 RELATED WORK

The most obvious related work is the KBANN and Top-
Gen algorithms, which we described earlier.® Fletcher
and Obradovic (1993) present an approach that also
adds nodes to a KBANN network. Their approach con-
structs a single-layer of nodes, fully connected between
the input and output units, “off to the side” of KBANN.
Their approach does not change the weights of the
KBANN portion of the network, so modifications to
the initial rule base are left to the constructed hidden
nodes. Also, this approach adds nodes until training
set, error is sufficiently small, thus producing only one
possible network. TopGen compared favorably to a
similar technique that also added nodes off to the side
of KBANN (Opitz & Shavlik, 1993).

Other related work includes applications of GAs to
neural networks. GAs have been applied in two dif-
ferent ways: (1) to optimize the connection weights
in a fixed topology and (2) to optimize the topol-
ogy of the network. Techniques that use only GAs
to optimize weights (Whitley & Hanson, 1989; Mon-
tana & Davis, 1989) have compared competitively
with gradient-based training algorithms; however, one
problem with GAs is their inefficiency in fine-tuned
local search, thus the scalability of these methods are
in question (Yao, 1993). Kitano (1990b) presents a
method that combines GAs with backpropagation. He
does this by using the GA to determine the starting
weights for a network, which is then refined by back-
propagation. REGENT differs from this method in that
it uses a domain theory to help determine each net-
work’s starting weights and genetically searches, in-
stead, for an appropriate network topology.

Most methods that use GAs to optimize a network
topology use backpropagation to train each network’s
weights. Of these methods, many directly encode
each connection in the network (Miller et al., 1989;
Oliker et al., 1992; Schiffmann et al., 1992). These
methods are relatively straightforward to implement,
and are good at fine tuning small networks (Miller
et al., 1989); however, they do not scale well since they
require very large matrices to represent large networks
(Yao, 1993). Other techniques (Harp et al., 1989;

5The relationship between connectionist theory-
refinement systems and purely symbolic ones has been ex-
tensively covered (Towell, 1991; Baffes & Mooney, 1993);
thus we do not discuss it here.

Kitano, 1990a; Dodd, 1990) only encode the most im-
portant features of the network. These indirect en-
coding schemes can evolve different sets of parame-
ters along with the network’s topology and have been
shown to have good scalability (Yao, 1993). REGENT
differs from both the direct and indirect methods in
that it does not explicitly encode its networks. Some
techniques (Koza & Rice, 1991; Oliker et al., 1992)
evolve both the architecture and connection weights
at the same time; however, the combination of the two
levels of evolution greatly increases the search space.

REGENT differs mainly from both GA and non-GA
(Fahlman & Lebiere, 1989; Mezard & Nadal, 1989;
Frean, 1990) network-growing algorithms in that RE-
GENT is designed for knowledge-based neural net-
works. Thus REGENT uses domain-specific knowledge
and symbolic rule-refinement techniques to aid in de-
termining the network’s topology and initial weight
setting. A second difference is that most of these other
algorithms restructure their network based solely on
training set error, while REGENT minimizes valida-
tion set error. Also, REGENT differs from the non-GA
methods in that REGENT performs a different search
than hill-climbing.

7 CONCLUSION

An ideal inductive-learning algorithm should be able
to exploit the available resources of computing power
and domain-specific knowledge to improve its ability
to generalize. KBANN (Towell & Shavlik, in press)
has been shown to be effective at translating a domain
theory into a neural network; however, KBANN suffers
in that it does not alter its topology. TopGen (Opitz
& Shavlik, 1993) improved the KBANN algorithm by
using available computer power to search for effective
places to add nodes to the KBANN network; however,
we show empirically that TopGen suffers from restrict-
ing its search to expansions of the KBANN network,
and is unable to improve its performance after search-
ing beyond a few topologies. Therefore TopGen is un-
able to exploit all available computing power to in-
crease the correctness of an induced concept.

We present a new algorithm, REGENT, that uses a
specialized genetic algorithm to broaden the types of
topologies considered during TopGen’s search. Exper-
iments indicate that REGENT is able to significantly
increase generalization over TopGen; hence, our new
algorithm is successful in overcoming TopGen’s limi-
tation of only searching a small portion of the space
of possible network topologies. In doing so, REGENT
is able to generate a good solution quickly, by using
KBANN, then is able to continually improve this solu-
tion as it searches concept space. Therefore, one can
view REGENT as an anytime learner, which makes ef-
fective use of problem-specific knowledge and available
computing cycles.

Acknowledgements

This work was supported by Department of Energy
grant DE-FG02-91ER61129, Office of Naval Research
grant N00014-93-1-0998, and National Science Foun-
dation grant IRI-9002413. We would also like to thank
Michiel Noordewier of Rutgers for creating the domain
theories and data sets we used in this paper.

References

Ackley, D. (1987). A Connectionist Machine for Ge-
netic Hillclimbing. Kluwer, Norwell, MA.

Ackley, D. & Littman, M. (1994). A case for lamarck-
ian evolution. In Langton, C., editor, Artificial Life
III, (pp. 3-10), Redwood City, CA. Addison-Wesley.

Baffes, P. & Mooney, R. (1993). Symbolic revision
of theories with M-of-N rules. In Proceedings of the
Thirteenth International Joint Conference on Artifi-
cial Intelligence, (pp- 1135-1140), Chambery, France.
Morgan Kaufmann.

Dean, T. & Boddy, M. (1988). An analysis of time-
dependent planning. In Proceedings of the Seventh
National Conference on Artificial Intelligence, (pp-
49-54), St. Paul, MN. Morgan Kaufmann.

Deb, K. & Goldberg, D. (1989). An investigation of
niche and species formation in genetic function opti-
mization. In Proceedings of the Third International
Conference on Genetic Algorithms, (pp. 42-50), Ar-
lington, VA. Morgan Kaufmann.

Dodd, N. (1990). Optimization of network structure
using genetic techniques. In Proceedings of the IEEE
International Joint Conference on Neural Networks
(volume III), (pp. 965-970), Paris.

Fahlman, S. & Lebiere, C. (1989). The cascade-
correlation learning architecture. In Touretzky, D.,
editor, Advances in Neural Information Processing

Systems (volume 2). Morgan Kaufmann, San Ma-
teo, CA.

Farmer, J. D. & Belin, A. (1992). Artificial life: The
coming evolution. In Langton, C., Taylor, C., Farmer,
J.D., & Rasmussen, S., editors, Artificial Life II, (pp.
815-840), Redwood City, CA. Addison-Wesley.

Fletcher, J. & Obradovic, Z. (1993). Combining prior
symbolic knowledge and constructive neural network
learning. Connection Science, 5:365-375.

Frean, M. (1990). The upstart algorithm: A method
for constructing and training feedforward neural net-
works. Neural Computation, 2:198-209.

Fu, L. (1989). Integration of neural heuristics
into knowledge-based inference. Connection Science,
1:325-340.

Ginsberg, A. (1990). Theory reduction, theory revi-
sion, and retranslation. In Proceedings of the Eighth

National Conference on Artificial Intelligence, (pp.
777-782), Boston, MA. AAAI/MIT Press.

Goldberg, D. (1989). Genetic Algorithms in Search,
Optimization, and Machine Learning. Addison-
Wesley, Reading, MA.

Hansen, L. & Salamon, P. (1990). Neural network
ensembles. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 12:993-1001.

Harp, S., Samad, T., & Guha, A. (1989). Designing
application-specific neural networks using the genetic
algorithm. In Touretzky, D., editor, Advances in Neu-

ral Information Processing Systems (volume 2), (pp.
447-454), San Mateo, CA. Morgan Kaufmann.

Holland, J. (1975). Adaptation in Natural and Ar-
tificial Systems. University of Michigan Press, Ann
Arbor, MI.

Kitano, H. (1990a). Designing neural networks us-
ing genetic algorithms with graph generation system.
Complex Systems, 4:461-476.

Kitano, H. (1990b). Empirical studies on the speed of
convergence of neural network training using genetic
algorithms. In Proceedings of the FEighth National
Conference on Artificial Intelligence, (pp. 789-795),
Boston, MA. AAAT/MIT Press.

Koza, J. (1992). Genetic Programming. MIT Press,
Cambridge, MA.

Koza, J. & Rice, J. (1991). Genetic generation of both
the weights and architectures for a neural network. In
International Joint Conference on Neural Networks
(volume 2), (pp. 397-404), Seattle, WA.

Lacher, R., Hruska, S., & Kuncicky, D. (1992).
Back-propagation learning in expert networks. IEEE
Transactions on Neural Networks, 3(1):62-72.

Litzkow, M., Livny, M., & Mutka, M. (1988). Condor
— a hunter of idle workstations. In Proceedings of
the Eighth International Conference on Distributed
Computing Systems. Computer Society Press.

MacKay, D. J. (1992). A practical Bayesian frame-
work for backpropagation networks. Neural Compu-
tation, 4:448-472.

Mezard, M. & Nadal, J.-P. (1989). Learning in feed-
forward layered networks: The tiling algorithm. Jour-
nal of Physics A, 22:2191-2204.

Miller, G., Todd, P., & Hegde, S. (1989). Designing
neural networks using genetic algorithms. In Proceed-
ings of the Third International Conference on Ge-
netic Algorithms, (pp. 379-384), Arlington, VA. Mor-
gan Kaufmann.

Montana, D. & Davis, L. (1989). Training feedfor-
ward networks using genetic algorithms. In Proceed-
ings of the Eleventh International Joint Conference
on Artificial Intelligence, (pp. 762-767), Detroit, MI.
Morgan Kaufmann.

Moody, J. (1991). The effective number of parame-
ters: An analysis of generalization and regularization
in nonlinear learning systems. In Moody, J., Han-
son, S., & Lippmann, R., editors, Advances in Neu-

ral Information Processing Systems (volume 4), (pp.
847-854), San Mateo, CA. Morgan Kaufmann.

Oliker, S., Furst, M., & Maimon, O. (1992). A dis-
tributed genetic algorithm for neural network design
and training. Complex Systems, 6:459-477.

Opitz, D. & Shavlik, J. (1993). Heuristically expand-
ing knowledge-based neural networks. In Proceedings
of the Thirteenth International Joint Conference on
Artificial Intelligence, (pp. 1360-1365), Chambery,
France. Morgan Kaufmann.

Ourston, D. & Mooney, R. (1994). Theory refinement
combining analytical and empirical methods. Artifi-
cial Intelligence, 66(2):273-309.

Pazzani, M. & Kibler, D. (1992). The utility of knowl-
edge in inductive learning. Machine Learning, 9:57—
94.

Rissanen, J. (1983). A universal prior for integers and
estimation by minimum description length. Annals of
Statistics, 11(2):416-431.

Schiffmann, W., Joost, M., & Werner, R. (1992). Syn-
thesis and performance analysis of multilayer neural
network architectures. Technical Report 16, Univer-
sity of Koblenz, Institute for Physics.

Towell, G. (1991). Symbolic Knowledge and Neu-
ral Networks: Insertion, Refinement, and Extraction.
PhD thesis, Computer Sciences Department, Univer-
sity of Wisconsin, Madison, WI.

Towell, G. & Shavlik, J. (1993). Extracting refined
rules from knowledge-based neural networks. Ma-
chine Learning, 13(1):71-101.

Towell, G. & Shavlik, J. (in press). Knowledge-based
artificial neural networks. Artificial Intelligence.

Tresp, V., Hollatz, J., & Ahmad, S. (1992). Network
structuring and training using rule-based knowledge.
In Moody, J., Hanson, S., & Lippmann, R., editors,
Advances in Neural Information Processing Systems
(volume 5), (pp. 871-878), San Mateo, CA. Morgan
Kaufmann.

Whitley, D. & Hanson, T. (1989). Optimizing neural
networks using faster, more accurate genetic search.
In Proceedings of the Third International Confer-
ence on Genetic Algorithms, (pp. 391-396), Arling-
ton, VA. Morgan Kaufmann.

Yao, X. (1993). Evolutionary artificial neural net-
works. International Journal of Neural Systems,
4(3):203-221.

