

Appears in the Proceedings of the 1991 DARPA Workshop on Case-Based Reasoning, Morgan-Kaufmann.

Finding Genes by Case-Based Reasoning
in the Presence of Noisy Case Boundaries *

Jude W. Shavlik
Computer Sciences Department

University of Wisconsin
Madison, WI 53706 USA

shavlik@cs.wisc.edu

Abstract

Effectively using previous cases requires that a reasoner first match, in some fashion, the current
problem against a large library of stored cases. One largely unaddressed task in case-based
reasoning is the process of parsing continuous input into discrete cases. If this parsing is not
done accurately, the relevant previous cases may not be found and the advantages of case-based
problem solving will be lost. Parsing the data into cases is further complicated when the input
data is noisy. This paper presents an approach to applying the case-based paradigm in the
presence of noisy case boundaries. The approach has been fully implemented and applied in the
domain of molecular biology; specifically, a successful case-based approach to gene finding is
described. An empirical study demonstrates that the method is robust even with high error rates.
This system is being used in conjunction with a Human Genome project in the Wisconsin
Department of Genetics that is sequencing the DNA of the bacterium E. coli.

1. Introduction

Given a new problem to solve, the initial step a case-based reasoner takes is to recall relevant
cases from its memory. Since it is unlikely the current situation is completely identical to a
previous one, some sort of partial matching is needed. Often this involves selecting some cues
and using these to index into memory [Kolodner84]. However, partial matching presupposes
that the case-based reasoner is somehow given a well-defined current situation — one where the
"boundaries" of the current case are cleanly defined. Unfortunately, the real-world is often
"continuous", and the problem of accurately parsing experience into discrete cases is extremely
challenging. This largely unaddressed task (one exception is [Redmond89]) is made even more
complicated when one’s sensors for measuring the world are noisy. Even if one had a good idea
of what constitutes the boundaries of a case, noise may easily blur these signals.

This paper presents a method for performing case-based reasoning in the presence of noisy case
boundaries. The task domain is molecular biology, and we have successfully used our technique
to find genes in noisy DNA sequences. The following sections provide a brief introduction to
molecular biology and describe our algorithm. For now note that genes are subsequences in a
lengthy string. Due to the nature of the genetic code, certain types of noise in this string cause
current partial-matching algorithms for gene finding to fail.
���

* This research was partially supported by Office of Naval Research Grant N00014-90-J-1941, National Science
Foundation Grant IRI-9002413, and Department of Energy Grant DE-FG02-91ER61129.

1

Gene finding is a task highly amenable to AI solutions: there are rapidly-growing computer
databases (described below), most of the information is "discrete" (as opposed to involving, say,
partial differential equations as do most other forms of computational science), and much of the
domain-specific knowledge is heuristic. Several basic approaches are being investigated within
the AI and related communities:

(1) Development of algorithms that perform similarity matches to known genes (i.e., case-
based reasoning) [Lipman85, Myers90, this paper].

(2) Using machine learning to learn the general characteristics of genes [Lapedes89,
Noordewier90, Stormo82, Towell90].

(3) Creating grammars that can be used to recognize genes [Searls88, Searls89].

This remainder of this article presents an approach that falls into the first category.

2. A Brief Introduction to Molecular Biology

Since this paper describes an AI application in molecular biology, a brief introduction to genes
and proteins appears in this section. Sufficient detail is included so that the non-biologist can
understand the rest of the paper; further information can be found in textbooks such as
[Watson87].

DNA is a linear sequence from the alphabet {A, G, T, C}; each of these four letters is called a
nucleotide (or base). Human DNA is estimated to contain 3×109 nucleotides, while the common
intestinal bacterium E. coli contains about 5×106 bases. A DNA molecule usually involves two,
complementary sequences, organized as a double helix. An A in one sequence is paired with a T
on the other; G and C are similarly paired. This pairing forms the basis of cell replication, and
its discovery by Watson and Crick in 1953 revolutionized biology [Watson53]. However,
replication is not addressed in this paper, and the reader can think of DNA as a single, linear
sequence (whose complement — or reverse strand — can easily be calculated when needed).

The most important aspect of DNA, for the purposes of this paper, is that subsequences in it
encode proteins; these subsequences are called genes. Proteins are the "work horses" of the cell;
for example, enzymes are proteins, as are cell membranes. Proteins, too, are linear sequences.
They come from a 20-character alphabet; each of these letters is called an amino acid. In a
process called translation, a gene is read and a protein produced.1 Each consecutive three-letter
string in a gene encodes one of the 20 amino acids — this mapping from nucleotide triplets to
single amino acids is called the genetic code.2 Each three-letter string is called a codon. Three
are called STOP codons, because they tell the cell to stop translating the DNA. Table 1 contains a
hypothetical gene and shows the protein it would encode; bars (|’s) are used to group the bases
into codons. (This would be too short to be a real gene — most genes are several hundred
nucleotides long.)

Since the translation process involves grouping nucleotides into threes, the reading frame is of
extreme importance. There are three possible reading frames — one where nucleotide i is the
���

1 There actually is an intermediate step called transcription, where DNA is copied into a similar molecule called
RNA. This RNA is what is then translated into proteins. However, this level of detail is not necessary to
understand this paper; the reader can assume DNA directly maps to protein.
2 Since there are 43 = 64 distinct three-letter DNA strings, the genetic code is redundant.

2

first item in a codon, another where it is the second, and one more where it is the third. We will
return to the topic of reading frames later — they play a major role in this paper because they
determine case boundaries.

The Human Genome Project [Alberts88] is a massive, world-wide research project that has the
goal of determining the sequence of human DNA and locating all the genes within it. The
genomes of several other scientifically important species are also being sought. A genetics
project at the University of Wisconsin is sequencing the DNA of the common bacterium E. coli,
and the research reported in this paper is a result of collaboration with that project, headed by
Prof. F. Blattner of the genetics department. Blattner’s group has chopped up E. coli DNA into
roughly 500 pieces. Each of these pieces is called a contig (for contiguous sequence), and we
are computationally analyzing each contig as it is sequenced by Blattner’s laboratory.

Unfortunately, there is no absolute START codon; this makes gene finding a non-trivial task.
(See [Towell90] for a discussion on applying machine learning techniques to find a signal that
indicates the start of a gene.) The remainder of this paper describes a case-based approach to
gene finding, one that works in the presence of "noisy" DNA sequences. Sequencing is
estimated to have an error rate of 1% [Alberts88]; the wrong nucleotide can be recorded or, more
disastrously, an extra nucleotide can be inserted or an existing one can be missed. As further
explained later, these insertions and deletions greatly affect the translation process, due to the
triplet nature of the genetic code.

3. Finding Genes in Noisy Data

In any project to map and sequence an organism’s genome, the interpretation of the final
sequence is an undertaking of great magnitude. The inherent potential for errors in the recorded
sequence further complicates such analyses. The Wisconsin E. coli sequencing project is
producing large amounts of "anonymous" DNA; we are computationally analyzing this data.
There are two closely-related, main goals of this research. First, we wish to correct sequencing
errors by noting inconsistencies with other biological data. Second, we wish to locate and
identify those regions of the sequence that encode proteins — both known and heretofore
unknown.

We are undertaking two complementary approaches. One involves performing robust similarity
matches with known protein sequences (this paper), while the second involves detecting DNA
segments that have the general characteristics of genes (see [Towell90]). Our long-term aim is
to assign a function to all regions of the "anonymous" DNA produced by the Wisconsin
sequencing project.

Our primary concern, with respect to error correction, is to locate frameshift errors (the mistaken
insertion or deletion of a nucleotide, which can cause a gene to "shift" into an improper reading

���

Table 1. A hypothetical gene and its translation into a protein.

Gene: |AGC|ATG|CAA|TAG|
Protein: | S | M | Q | STOP

���

3

frame). Due to the triplet nature of the genetic code, such errors can be disastrous if they occur
inside a putative gene. Once the translation process is "out of frame", the remainder of a
predicted protein bears no resemblance to the correct protein and partial matching will fail. The
computational methods this paper presents are designed to locate genes and be robust in the
presence of frameshift errors.

It is important that the reader understand that frameshift errors greatly affect what protein is
predicted by translating a gene. Perhaps this can best be seen by considering the process of
translating from a string of bits to alphabetic characters, using the ASCII code. If a bit is dropped
or inserted, the resulting translation will bear little resemblance to the correct text.

There are several international databases that store biological sequence data, most notably
Genbank [Bilofsky88] and Protein Information Resource (PIR) [George86]. These databases
store "cases": complete genes (GenBank) and complete proteins (PIR). A number of researchers
have developed "case-based" algorithms that partially match DNA subsequences (or the
corresponding amino-acid sequences) to these databases (e.g., [Lipman85, Myers90]); however,
their methods all suffer from being extremely sensitive to frameshift errors.

These previous approaches do an excellent job of matching in the presence of substitution errors
— mistaking an A for a C, say. In fact, one of their primary strengths is that they can find
homologous matches. A homologous protein is one from another species that is similar in terms
of its amino-acid sequence (and biological functionality); due to the process of evolution,
homologous proteins abound and locating them is of major importance. When genes are
sequenced on a case-by-case basis, frameshift errors are much less frequent and the primary
biological task is to find similar matches to known proteins. The previous algorithms were
designed for this problem and have been rather successful. However, with the advent of massive
sequencing projects, noisy DNA with unknown functionality and unknown codon boundaries is
rapidly being produced. For these conditions, a new case-matching algorithm is needed.

3.1. A Case-Based Gene Finding Algorithm

We have developed a case-based algorithm for gene finding that is robust in the presence of
frameshift errors. Our FIND-IT algorithm builds on the BLAST similarity-search program
[Myers90]. BLAST efficiently produces approximate matches, but these matches do not extend
across frameshift errors. The FIND-IT method described below coherently combines partial
matches (to a given protein) in different reading frames, thereby overcoming missing and extra
nucleotides in sequenced DNA.

Table 2 describes our algorithm. Given a sequence of DNA, the algorithm collects all open-
reading frames (ORFs)3 in the sequence and its complement. Next, the algorithm translates
these ORFs to proteins and uses a variation of BLAST to match each protein against the PIR
database. We convert to proteins, rather than directly matching DNA to GenBank entries,
because only partial matches to amino acids are biologically well-defined; BLAST uses the PAM
120 matrix [Dayhoff78] to define the similarity between two amino acids. Also, due to the
genetic code’s degeneracy and the different codon-usage patterns of various species, vastly
different DNA sequences may lead to quite similar protein sequences. Finally, matches to
GenBank can be easily effected by translating the genes in that database to proteins, and then
���

3 An ORF is the DNA between two successive STOP codons; not all ORFs contain genes, but, if there are no
sequencing errors, all genes lie within some ORF.

4

���

Table 2. The FIND-IT algorithm for matching known proteins to
new DNA sequences in the presence of frameshift errors.

Given a sequence of DNA:

(1) Collect all of the open-reading frames (ORFs), in each of the three possible reading
frames on the DNA and on its complementary strand (for a total of six frames). No
minimal length is required to be considered an ORF; because sequencing errors may
have introduced false STOP codons, no stretch of DNA is discarded.

(2) Translate each ORF into a amino-acid sequence and apply BLAST [Myers90] to produce
partial matches (with gaps) to the Protein Information Resource (PIR) database. Note
that all of the DNA in a sequence, in all six frames, is translated and matched.

(3) Collect all of the matches to each PIR protein encountered.

(4) By piecing together matches, look for consistent coverings of each protein (see text for
details).

(5) Score the combined protein matches, sort, and report the best matches.
���

applying Table 2’s algorithm. In summary, translating sequenced DNA to proteins and
matching to the PIR protein database requires one to address the problem of frameshift errors,
but the advantage is that partial matches are better defined biologically.

A useful feature of BLAST is that a protein need not match in its entirety; rather, it reports
matching subsequences. A match may terminate within a protein due to a frameshift error; in
this case the remainder of the protein will match another ORF (examples of this follow).

A match returned by BLAST maps a portion of the DNA sequence to a segment of a protein.
Figure 1 schematically shows three matches; the numbers following the matches indicate their
reading frame. Note that matches A and C provide a consistent "covering" of the protein, while
match B is inconsistent with the other two. Also note that by combining matches A and C, an
extra nucleotide in the DNA can be identified (the one marked with an X). Below we define
what it means to be a consistent collection of matches to a given protein (which we call a
"covering").

Assume match i maps the DNA segment [A, B] to the protein segment [P, Q], while match j
maps the DNA segment [C, D] to the protein segment [R, S]. If matches i and j both belong to a
consistent covering, then the following constraints hold:

(1) If C >A then R >P. That is, the left-to-right order on the DNA is the same as that on the
protein sequence. Also, they must be on the same DNA strand (i.e., forward or reverse).

(2) If matches i and j intersect on one sequence (DNA or protein), they also intersect in the
corresponding locations on the other. (Since there may be extra or missing nucleotides
in the DNA sequence, "small" discrepancies are ignored.)

5

���

DNA Sequence
......

BLAST Matches

Protein

1

1
2B

C
A

Figure 1. Combining BLAST matches to overcome frameshift errors.
���

(3) This distance between DNA locations B and C is approximately three times the distance
between protein locations Q and R. That is, the amount of DNA between the end of one
match and the beginning of the next roughly corresponds to the number of amino acids
between the two matches. (This constraint can be relaxed if FIND-IT is applied to
eukaryotic DNA from advanced species, where genes are not necessarily contiguous
pieces of DNA. Hence, the approach elegantly extends to the recognition of "exons"
among intervening sequences.)

In our current experience, FIND-IT generally looks for consistent coverings for a given protein
from a set of about 100 matches (a given DNA contig partially matches several thousand
different proteins); successful coverings usually contain from one to five matches. There are on
the order of 2100 possible combinations when given 100 matches, but we are able to use the
constraints on a consistent covering to greatly prune the number considered. In addition, we
require that at least half the protein sequence be matched; the protein coverage of a collection of
N matches can be determined in O(N log N) time, and many proteins can be discarded before
performing the inefficient step of finding consistent coverings. However, our program still
spends a considerable amount of time searching for consistent covers. One of the major open
issues is to understand the computational complexity of this task and devise efficient algorithms
for it; a later section further discusses this topic.

3.2. Sample Results from Two E. coli Contigs

We have applied our algorithm to two E. coli contigs already sequenced: EC17-115 and EC21-76.
On the first of these, 14 matches to E. coli proteins were found, and 27 "strong" matches to
proteins of other species were found. (A "strong" match is defined to be one where at least half
the protein sequence is matched. When several homologous proteins match the same stretch of
DNA, FIND-IT retains the strongest-matching one.) Overall, these matches accounted for 47.6%
of the contig’s DNA. On contig EC21-76, four E. coli proteins were encountered and 32
homologous matches were detected; 36.4% of this contig was covered. In our current research,
we are trying to increase these numbers.

6

Figure 2 contains all those matches to contig EC17-115 that were combined into one of the 41
protein coverings; each arrow-headed segment represents one match produced by BLAST.

We have also tested FIND-IT on the DNA sequence of the completely-sequenced bacteriophage
called λ; all of the λ proteins in PIR were found, as well as several matches to non-λ proteins.
Some, but not all, of these homologies are noted in the PIR annotation; these previously-
unknown homologies are of substantial biological interest.

3.3. Using Multiple Matches to Detect Sequencing Errors

This section presents two actual composite matches produced by FIND-IT. One (Figure 3)
involves matching an E. coli protein, while the other (Figure 4) is a match to a human protein.
These matches illustrate how sequencing errors can be detected and show that both known E.
coli and homologous genes can be located.

���

0K 18K

Figure 2. Consistent matches to contig EC17-115.
� ���

���

Protein: PAECS (Phosphoserine phosphatase - Escherichia coli #EC-number 3.1.3.3 || 286.0)
Protein Length=322; Protein Coverage=100.00%; Forward Strand

DNA[691]: 8176 [MPNI]TWCDLPEDVSLWPGLPLSLSGDEVMPLDYHAGRSGWLLYGRGLDKQRLTQYQSK 8349
frame=1 [MPNI]TWCDLPEDVSLWPGLPLSLSGDEVMPLDYHAGRSGWLLYGRGLDKQRLTQYQSK
Protein: 1 [MPNI]TWCDLPEDVSLWPGLPLSLSGDEVMPLDYHAGRSGWLLYGRGLDKQRLTQYQSK 58

8350 LGAAMVIVAAWCVEDYQVIRLAGSLTARATRLAHEAHL-MSPRWKIPHLRTPGLLVMDMD 8526
LGAAMVIVAAWCVEDYQVIRLAGSLTARATRLAHEA+L-++P KIPHLRTPGLLVMDMD

59 LGAAMVIVAAWCVEDYQVIRLAGSLTARATRLAHEAQLDVAPLGKIPHLRTPGLLVMDMD 118

8527 STAIQIECIDEIAKLAGTA 8583
STAIQIECIDEIAKLAGT+

119 STAIQIECIDEIAKLAGTG 137

DNA[163]: 8568 tgr[ngEM]VAEVTERAMRGELDFTASLRTRVATLKGADA-IF 8687
frame=3 +g-[.gEM]VAEVTERAMRGELDFTASLR+RVATLKGADA-I.
Protein: 134 ag-[tgEM]VAEVTERAMRGELDFTASLRSRVATLKGADANIL 173

DNA[182]: 8681 [NILQ]QVRENLPLMPGLTQLVLKLETLGWKVAIAPGAL 8791
frame=2 [NILQ]QVRENLPLMPGLTQLVLKLETLGWKVAIA+G+.
Protein: 171 [NILQ]QVRENLPLMPGLTQLVLKLETLGWKVAIASGGF 207

DNA[603]: 8779 S[AGFT]FFAEYLRDKVRLTAVVANELEIMDGKFTGNVIGDIVDAQYKAKTLTRLAQEYE 8952
frame=1 S[+GFT]FFAEYLRDK+RLTAVVANELEIMDGKFTGNVIGDIVDAQYKAKTLTRLAQEYE
Protein: 204 S[GGFT]FFAEYLRDKLRLTAVVANELEIMDGKFTGNVIGDIVDAQYKAKTLTRLAQEYE 261

8953 IPLAQTVAIGDGANDLPMIKAAGLGIAYHAKPKVNEKAEVTIRHADLMGVFCILSGSLNQK 9135
IPLAQTVAIGDGANDLPMIKAAGLGIAYHAKPKVNEKAEVTIRHADLMGVFCILSGSLNQK

262 IPLAQTVAIGDGANDLPMIKAAGLGIAYHAKPKVNEKAEVTIRHADLMGVFCILSGSLNQK 322

Figure 3. Sample match to an E. coli gene (in contig EC17-115).
���

7

Figure 3’s covering of the entire protein sequence of phosphoserine phosphatase involves four
BLAST matches. Each match begins with DNA[#], reports the frame it appears in, and contains
three protein sequences; # is the matching score reported by BLAST and represents the sum of the
PAM 120 matrix scores for the aligned amino acids. The top line in a match is the translated
DNA, while the bottom is the protein sequence. Numbers at the end of lines represent
nucleotide positions in the entire DNA contig and amino-acid positions in the protein,
respectively. The middle line presents the alignment; letters represent identical matches, +’s
represent positive-scoring partial matches, periods represent matches that score zero, and blanks
represent negative-scoring matches. Dashes (-’s) represent gaps4 introduced by BLAST during its
matching process. The reason for lower-case letters appears below. Finally, braces ([]’s)
indicate the "seed" match in the BLAST algorithm (see [Myers90] for details).

Note that in addition to characterizing a portion of a contig, a covering suggests frameshift
errors. In Figure 3, there were three frame transitions; careful inspection of the boundaries
between successive matches leads to the prediction of missing or extra nucleotides. Also, other
sequencing errors and ambiguities can be located by noting the discrepancies between the
protein sequence and the translated DNA. Finally, gaps indicate nucleotide insertions and
deletions whose length is a multiple of three. These hypotheses can then be checked by
reviewing the original sequencing gels in the genetics laboratory; sequencing errors or database
(PIR or GenBank) errors can be corrected as appropriate.

To illustrate the error-correction process, consider the top two matches in Figure 3. The last four
protein elements in the first match are repeated in the second. The matches at the end of the first
match are stronger, so we can discard the first five matches (due to the insertion of the gap) in
the second match. These deleted matches appear in lower case in the figure. Since five amino
acids are dropped from the second match, its new beginning on the DNA sequence is
8568 +15 = 8583. Note that this is the last nucleotide in the first match. Hence, one nucleotide is
used twice — as the last item in one codon and the first item in the next. Clearly, the sequencing
process missed one nucleotide. Inspection of the genetic code (the map between codons and
amino acids) shows that an A nucleotide needs to be inserted after position 8583, which will shift
the second match to the first reading frame in accordance with the first match’s reading frame.
Similar analyses can be applied to the other matches in the figure.

���

4 Allowing gaps permits, for example, the sequences SQLL and SQMLL to match; the alignment is SQ_LL. Some
amino acids in a protein may have only an insignificant function and during evolution these amino acids may
disappear without effect; matching with gaps accommodates this phenomenon.

8

���

Protein: S04092 (Acetyl-CoA acyltransferase precursor - Human #EC-number 2.3.1.16)
Protein Length=424; Protein Coverage=74.29%; Forward Strand

DNA[109]: 6199 SAPLDDIYWGCVQQTLEQGFN-I-ARNAALLAEVPHSVPAV[TVNR]LCGSSMQALHDAA 6366
frame=1 +..L.DI---CV ..L+.G .-I-AR A .L+++P +VP [TVNR] C+S++QA+ . A
Protein: 80 PEQLGDI---CVGNVLQPGAGAIMARIAQFLSDIPETVPLS[TVNR]QCSSGLQAVASIA 134

6367 RMIMTG--D-AQACLVGGVEHMG 6426
I .G--D-+ AC---GVE M+

135 GGIRNGSYDIGMAC---GVESMS 154

DNA[486]: 6498 [MGLT]AEMLARMHGISREMQDAFA-GAHARAWAATQSAA-FKNEIIP--TGGHDPDGVL 6659
frame=3 [MG+T]+E +A GISRE.QD+FA-+++ +A-A +QS +-F..EI+P--T HD G.
Protein: 181 [MGIT]SENVAERFGISREKQDTFALASQQKA-ARAQSKGCFQAEIVPVTTTVHDDKGTK 237

6660 KQFNY--DEVIRPETTVEALATLRPAFDPVNGMVTAGTSSALSDGAAAMLVMSESRAHEL 6833
+ .. --DE IRP TT+E+LA L+PAF -+G .TAG.SS +SDGAAA+L+ S+A EL

238 RSITVTQDEGIRPSTTMEGLAKLKPAFKK-DGSTTAGNSSQVSDGAAAILLARRSKAEEL 296

6834 GLKPR-ARVRSMAVVGCDPSIMGYGPVPASKLALKKAGLSASDIGVFEMNEAFAAQILPC 7010
GL-P -+ +RS AVVG P.IMG GP. A +AL.KAGL+.SD+.+FE+NEAFA+Q C

297 GL-PILGVLRSYAVVGVPPDIMGIGPAYAIPVALQKAGLTVSDVDIFEINEAFASQAAYC 355

7011 IKDLGLIEQIDEKIN-LNGGAIVGHPLGCSGARISTTLLNLMERKDVQ-FGLATMCIGLG 7184
+ L L- .--EK+N-L.G+. +GHPLGC+GAR .TLLN + R+. +-+G+.+MCIG G

356 VEKLRL-PP--EKVNPLGGAVALGHPLGCTGARQVITLLNELKRRGKRAYGVVSMCIGTG 412

7185 QGIATVFE 7208
G A+VFE

413 MGAAAVFE 420

Figure 4. Sample match to a non-E. coli gene (in contig EC21-76).
���

3.4. An Experiment: Evaluating FIND-IT’s Noise Sensitivity

This section contains an experimental evaluation of our gene-finding method; noise sensitivity of
the algorithm is studied. The experimental method is as follows: a known gene (of length 999)
was extracted from the GenBank database (the gene for replication protein O in bacteriophage
λ) and various amounts of noise added to it in each of twenty-five experimental runs. Following
this, we applied FIND-IT and counted the times it found the initial gene. We investigated three
simple noise models and one composite model:

Replacement
With probability p, a given nucleotide is replaced with another one.

Deletion
With probability p, a given nucleotide is deleted.

Insertion
With probability p, a nucleotide is inserted after a given nucleotide.

Combination
With probability p, one of the above three changes occurs at a given nucleotide. All three
possibilities are equally likely.

These noise models are somewhat simplistic — due to the nature of the sequencing process,
insertions and deletions are most likely to occur within runs of the same nucleotide (e.g.,
. . . AAAAA . . .). Nevertheless, these models are sufficient for our present purposes.

9

Figure 5 contains the results of this experiment. This experiment indicates that, under all four
noise models, FIND-IT is unaffected until the noise rate exceeds 3%. Recall that the estimated
error rate in sequencing is 1%; thus, the FIND-IT approach should robustly find genes in the
sequences biological laboratories are producing.

4. Current Research Issues

We are improving and extending the FIND-IT method. Current activities include improving the
algorithm’s efficiency, tuning its parameters, and adding the ability to locate good, "dense"
matches that do not cover a sizable portion of a protein. The last of these will prove useful for
finding matches to protein "domains"5; unfortunately, in the present implementation, locating
such matches is unacceptably expensive computationally.

We are studying the computational complexity of the "covering" problem defined in a previous
section and devising efficient (possibly heuristic) algorithms for it. The problem of constructing
consistent covers (defined above) can be modeled by a combinatorial optimization problem
known as maximum weight matching in an interval graph. A restricted version of this problem,
where all the weights are one, can be solved in O(N log N) steps [Golumbic88, Masuda88], and
preliminary work by Wisconsin computer science graduate student J. Meidanis has shown that
an O(N log N) algorithm is also possible for the general case. This algorithm shows promise as a
tool for rapidly finding consistent coverings; we plan to implement it, and to decide which edge-
weighting scheme leads to the most useful overall covers.

When no similarity matches to known proteins are possible, we need alternative methods for
recognizing genes. We are investigating some complementary approaches, some of which
involve neural-network learning, that either (1) identify regions of DNA that have the same
general, "global" statistics of known genes or (2) locate stretches of DNA that are known to

���

replacements only
deletions only

insertions only
all three equally likely

1% 3% 5% 10% 15% 20% 25%

20%

40%

60%

80%

100%

Chances
of

Finding
Original Gene

Amount of Noise Added

Figure 5. FIND-IT’s chances of finding a gene as a function of sequence noise.
(Results averaged over 25 experimental runs.)

���

���

5 A domain is a portion of a protein that possesses some "stand-alone" function.

10

"signal" some biological activity (e.g. promoter regions bind the protein that initiates
transcription, which is followed by translation [Towell90]). Research along the lines of the first
approach includes [Gribskov84, Staden90]. Approach two has also been investigated
[Lapedes89, Noordewier90, Stormo82, Towell90].

5. Conclusion

We have presented a case-based approach to gene finding that is robust in the presence of errors
— both in the input data and in the case libraries. These errors, particularly frameshift errors,
greatly complicate the task of determining the boundaries of cases, due to the triplet nature of the
genetic code. This research addresses the important general question of what makes a case;
more specifically, how do we parse the "noisy" world into discrete cases for matching against a
case library? If the current case is improperly delimited, partial matching with previous cases
will fail. Our algorithm addresses the problem by producing multiple, partial matches to many
cases and then combining some subset of them into a consistent whole. This leads to error
detection and correction. Our general idea for robust case matching promises to be applicable in
other domains involving "continuous" data, such as speech recognition and vision. We are
successfully applying the FIND-IT method in support of a Human Genome project in a Wisconsin
genetics laboratory, and have already found several previously unknown E. coli genes.

ACKNOWLEDGMENTS

Discussions with Fred Blattner, Donna Daniels, Guy Plunkett, Eric Bach, Debby Joseph,
Prasoon Tiwari, Mick Noordewier, and Joao Meidanis greatly improved this research. Special
thanks go to Fred Blattner, director of the E. coli sequencing project, for providing the sample
“contigs” and for pointing out the problem of matching DNA that contains frame-shift
sequencing errors.

REFERENCES

[Alberts88]
B. M. Alberts, Mapping and Sequencing the Human Genome, National Academy Press, Washington,
D.C., 1988.

[Bilofsky88]
H. S. Bilofsky and C. Burks, "The GenBank Genetic Sequence Data Bank," Nucleic Acids Research
16, (1988), pp. 1861-1864 .

[Dayhoff78]
M. O. Dayhoff, Atlas of Protein Sequence and Structure, National Biomedical Research Foundation,
Wash., D. C., 1978.

[George86]
D. G. George, W. C. Barker and L. T. Hunt, "The Protein Identification Resource," Nucleic Acids
Research 14, (1986), pp. 11-15.

[Golumbic88]
M. C. Golumbic and P. L. Hammer, "Stability in Circular Arc Graphs," Journal of Algorithms 9,
(1988), pp. 314-330.

[Gribskov84]
M. Gribskov, J. Devereux and R. R. Burgess, "The Codon Preference Plot: Graphical Analysis of
Protein Coding Sequences and Prediction of Gene Expression," Nucleic Acids Research 12, (1984),
pp. 539-549.

11

[Kolodner84]
J. L. Kolodner, Retrieval and Organizational Strategies in Conceptual Memory, Lawrence Erlbaum
& Assoc., Hillsdale, NJ, 1984.

[Lapedes89]
A. Lapedes, C. Barnes, C. Burks, R. Farber and K. Sirotkin, "Application of Neural Networks and
Other Machine Learning Algorithms to DNA Sequence Analysis," Computers and DNA, SFI Studies
in the Sciences of Complexity VII, (1989), Addison-Wesley.

[Lipman85]
D. J. Lipman and W. R. Pearson, "Rapid and Sensitive Protein Similarity Searches," Science 227,
(1985), pp. 1435-1441.

[Masuda88]
S. Masuda and K. Nakajima, "An Optimal Algorithm for Finding a Maximum Independent Set of a
Circular Arc Graph," Society for Industrial and Applied Mathematics Journal of Computing 17,
(1988), pp. 41-52.

[Myers90]
E. W. Myers, W. Miller, S. F. Altschul, W. Gish and D. Lipman, "Basic Local Alignment Search
Tool," Journal Molecular Biology 214, (1990).

[Noordewier90]
M. O. Noordewier, G. G. Towell and J. W. Shavlik, "Training Knowledge-Based Neural Networks to
Recognize Genes in DNA Sequences," IEEE Conf. on Neural Information Processing Systems,
Denver, CO, 1990.

[Redmond89]
M. Redmond, "Learning from Others’ Experience: Creating Cases from Examples," Proc. of the
Second Case-Based Reasoning Workshop, Pensacola Beach, FL, May 1989, pp. 309-312.

[Searls88]
D. B. Searls, "Representing Genetic Information with Formal Grammars," Proc. of the 7th Nat. Conf.
on AI, St. Paul, Aug. 1988, pp. 386-391.

[Searls89]
D. B. Searls, "Investigating the Linguistics of DNA with Definite Clause Grammars," Proc. of the
North American Conf. on Logic Programming, 1989, pp. 189-208.

[Staden90]
R. Staden, "Finding Protein Coding Regions in Genomic Sequences," in Methods in Enzymology,
Vol. 183, R. F. Doolittle (ed.), Academic Press, New York, 1990.

[Stormo82]
G. D. Stormo, T. D. Schneider, L. M. Gold and A. Ehrenfeucht, "Use of the ’Perceptron’ Algorithm
to Distinguish Translational Initiation Sites," Nucleic Acids Research 10, (1982), pp. 2997-3010.

[Towell90]
G. G. Towell, J. W. Shavlik and M. O. Noordewier, "Refinement of Approximate Domain Theories
by Knowledge-Based Artificial Neural Networks," Proc. of the 8th Nat. Conf. on AI, Boston, July
1990.

[Watson53]
J. D. Watson and F. H. C. Crick, " "Molecular Structure in Nucleic Acids: A Structure for
Deoxyribose Nucleic Acid"," Nature 171, (1953), pp. 737-738.

[Watson87]
J. D. Watson, N. H. Hopkins, J. W. Roberts, J. A. Steitz and A. M. Weiner, The Molecular Biology of
the Gene, Benjamin-Cummings, Menlo Park, CA, 1987.

12

