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ABSTRACT

Recent research at the University of Wisconsin on knowledge-based neural networks
is surveyed. This work has focused on (a) using symbolically represented background
knowledge to improve neural-network learning and (b) extracting comprehensible sym-
bolic representations from trained networks. Important open issues are discussed.

1. Introduction

We have been developing algorithms that integrate symbolic and neural-network approaches to
supervised learning [15]. Our research program has had two main thrusts: using symbolically
represented background knowledge to improve neural-network learning, and extracting compre-
hensible symbolic representations from trained networks. In this report, we summarize our
research program since 1989, provide references to our more detailed articles, then close with
a brief discussion of some important open issues.

2. Inserting Prior Knowledge into Neural Networks

Our research is focused on the machine-learning paradigm known as supervised concept learning,
which can be summarized as follows: infer some unknown function f(Z) given a set of instances
of f, where an instance is an input-output pair (Z, f(Z)). For many tasks, much is known about
the function f in addition to the training instances. How to best use these additional sources of
information is a central open question in machine learning. One major focus of our research has
been to investigate how to make effective use of some types of prior knowledge about f.

The first significant results of our research program were the EBL-ANN[16] and KBANN [17,
19, 20] algorithms. KBANN enables a neural network to be initialized with a domain theory (i.e.,
a task-specific collection of inference rules), which need not be correct nor complete. It maps the
domain theory into a neural network, determining its topology and initial weights. The set of
inference rules that constitutes KBANN’s input can be viewed as f’, an approximation to f. The
network created by KBANN initially computes f’, and we use the training instances to refine the
network, which leads to a better approximation of f. The refinement process simply runs the
backpropagation algorithm on the network created by KBANN.
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Fig. 1: Sample of the KBANN algorithm: (a) propositional rule set; (b) the rules viewed as an AND-OR dependency
graph; (c) each proposition is represented as a unit (extra units are also added to represent disjunctive definitions,
e.g., B), and their weights and biases are set so that they implement AND or OR gates, e.g, the weights B—A and
C—A are set to 4 and the bias (threshold) of A to 6 (the bias of an OR node is 2); (d) low-weighted links are added
between layers as a basis for future learning (e.g., an antecedent can be added to a rule by increasing one of these
weights).

In one of KBANN’s knowledge-based neural networks, the units represent Boolean concepts.
A concept is assumed to be true if the unit representing the concept is highly active (near 1)
and false if the unit is inactive (near 0). To represent the meaning of a set of rules, KBANN
connects units with highly-weighted links and sets unit biases (thresholds) in such a manner that
the (non-input) units emulate AND or OR gates, as appropriate. Figure 1 shows an example of
the KBANN process for a set of simple propositional rules.

We have tested KBANN on a number of difficult, real-world tasks, including four DNA prob-
lems, the diagnosis of telephone-line faults, and a chess-like game [10, 13, 19]. KBANN was
compared to other learning algorithms by measuring generalization performance. Generalization
refers to how well a learning system is able to correctly classify previously unseen instances.
In these empirical studies, the generalization performance of KBANN was superior to ordinary
neural networks and to more than a half dozen other learning algorithms, and the differences
were statistically significant.

Our initial KBANN algorithm required that existing knowledge be expressed in the form of non-
recursive, propositional rules. Subsequent work extended the types of representations supported
by KBANN. Our FSKBANN algorithm allows domain knowledge expressed as generalized finite-
state automata to be mapped into recurrent neural networks [6]. This representation enabled
us to consider state-dependent domain theories. We tested FSKBANN by using it to refine the
Chou-Fasman algorithm for predicting how proteins fold. The resulting networks outperformed
both the Chou-Fasman algorithm (a standard in the biological community), as well as previous
neural-network approaches.

We also extended KBANN to handle numeric knowledge pertaining to the control of a chemical
plant [14]. Again, the KBANN network outperformed the standard algorithm from the chemical
engineering literature and an ordinary neural-network approach.

The basic KBANN algorithm determines the initial network topology, then only alters the
network’s weights. However, if the domain theory is sparse, the network KBANN produces can
be too small [9, 10]. To overcome this limitation, we developed a heuristic-search technique that
suggested where additional hidden units should be added to a KBANN-produced network [10, 12].
The basic approach is: train the initial KBANN-produced network, use a set of “tuning” examples
to locate poorly performing hidden units, add additional hidden units to the weak portions of
the network, then repeat as long as improvement is detected. We successfully extended this
idea by using genetic operators (specialized versions of crossover and mutation) to create new
networks from the current population of candidate network topologies [11]. Finally, we found it
useful to create a set of knowledge-based networks whose outputs are averaged (weighted) when



categorizing new examples [13]; we search for a set of highly accurate networks whose errors are
not highly correlated.

Recently, we extended our approach to the reinforcement learning paradigm [5, 7, 8].! The
approach we developed allows a connectionist reinforcement learner to accept advice, provided at
any time during the learning process, by an external observer. In this approach, the advice-giver
watches the learner and occasionally makes suggestions, expressed as instructions in a simple
programming language. These instructions are then incorporated into the neural network and
refined during learning. Effectively, this approach allows a domain theory to be provided piecemeal
during learning. Our experiments demonstrated that this approach results in better performance
from fewer training examples.

3. Understanding what a Neural Network Learned

The second major focus of our research program has been to develop algorithms for extracting
comprehensible, symbolic knowledge from trained neural networks [1, 2, 3, 4, 18]. A current
limitation of neural networks is that their concept representations are extremely difficult for
humans to understand because they are represented using large numbers of real-valued parameters.
The goal of this research is to enable comprehensible concept descriptions to be extracted from
trained networks. Our network-extracted rules are more accurate than the rules produced by a
decision-tree induction algorithm (called C4.5), and are comparable in terms of comprehensibility.
We initially designed rule-extraction techniques tailored for knowledge-based networks [18] and,
more recently, for “standard” neural networks [1, 2, 4].
The rule-extraction task can be summarized as follows:

Given: a trained network, the network’s training set of labeled examples, and a desired
level of fidelity between the extracted rule set and the network

Do: output a comprehensible set of symbolic rules that models the network to the
specified degree of fidelity.

We initially developed the MOFN algorithm [18] that extracts m-of-n rules from trained
KBANN networks. An m-of-n rule is satisfied when at least m of its n antecedents are true.
Our studies showed that we can extract comprehensible rules while still maintaining the accuracy
of the trained network. Recall that networks created by KBANN are based on the rules that
constitute a domain theory about the task at hand. This initial structuring greatly facilitates rule
extraction, since KBANN essentially refines the rules rather than learning them from scratch.

Recently, we turned our attention to the problem of extracting comprehensible rules from
ordinary neural networks. Because the MOFN algorithm was designed to extract rules from
knowledge-based networks, it makes several assumptions that are generally not valid for ordinary
networks. For example, the MOFN algorithm assumes that, after training, the weights of a network
can be grouped into clusters, so that weights with similar magnitudes fall into the same cluster.
This is a fair assumption for knowledge-based networks since their weights are initially clustered
(because they implement a set of symbolic inference rules), and empirical results indicate that
their weights remain clustered after training. We demonstrated that the MOrN algorithm could

In reinforcement learning, the learner is not provided with the correct answer for each training instance. Instead,
the learning system periodically gets rewards (or penalties) from its environment and it must decide how to allocate
credit/blame to previous actions that it took.



also be successfully applied to ordinary networks by using a training procedure that encourageé
the weights to cluster during training [1]. This training procedure is a variant of Nowlan and
Hinton’s soft weight-sharing technique. Although their method was motivated by the desire for
better generalization, we employed it to facilitate rule extraction.

We next developed a new rule-extraction approach that does not require a special training
procedure [2]. It uses a rule-learning algorithm to find a set of rules that is approximately
equivalent to the concept represented by a trained network. The target concept, in this learning
task, is the function computed by the network. In addition to learning from training examples,
our method exploits the property that networks can be efficiently queried.

Our most recent algorithm, TREPAN [4], uses queries to induce a decision tree that approxi-
mates the concept represented by a given network. Experiments demonstrate that TREPAN is able
to produce decision trees that maintain a high level of fidelity to their respective networks, while
being comprehensible and accurate. Unlike previous work in this area, the TREPAN algorithm is
both general in its applicability and scalable to problems with high-dimensional input spaces.

4. Conclusion

The value of using prior, symbolic knowledge in combination with neural training methods has
been demonstrated on a variety of tasks involving comparison to alternate learning methods.
The set of knowledge representations mappable into networks is growing (see [15] for a review),
though an open issue is the use of prior knowledge expressed in first-order predicate calculus, a
topic addressed in the field of inductive logic programming.

While knowledge-based neural networks have been applied to several real-world tasks, these
have generally involved small amounts of prior knowledge. It would be valuable to apply this
approach to increasingly large domain theories and data sets, in order to demonstrate scalability
and to determine the limitations of the current algorithms.

Another important future direction in knowledge-based networks is to allow the human user
to provide symbolic knowledge at anytime during the network’s lifetime. That is, the user should
observe the network make its decisions, and whenever any potentially useful advice occurs to
the user, he or she should simply be able to provide these “rules” to the network. The network
should absorb this advice, refining it as necessary based on subsequent experience. There are
several advantages to this view, including: (1) for large problems it may be infeasible to restart
network training from “scratch” whenever the user thinks of some useful “prior” knowledge; (2) by
observing the network’s behavior the user may be more likely to think of good advice; (3) user-
provided advice might be able to help a network get out of a local minima. In general, we should
think of a continual dialog between the human user and the machine learner. Maclin’s thesis work
[5] provides an initial approach to this task.

Finally, in most domains it is important to understand what a trained network has learned.
Rule-extraction algorithms produce concept descriptions that now rival the readability of induced
decision trees on many problems, though often both approaches produce representations that
opaquely describe the concept represented by a set of data. Producing more comprehensible
concept descriptions is an important open issue that spans the full space of learning algorithms.
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