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ABSTRACT

A major bottleneck in high-throughput protein crystallogra-
phy is producing protein-structure models from an electron-
density map. In previous work, we developed ACMI, a prob-
abilistic framework for sampling all-atom protein-structure
models. AcMI uses a fully connected, pairwise Markov ran-
dom field to model the 3D location of each non-hydrogen
atom in a protein. Since exact inference in this model is in-
tractable, AcMI uses loopy belief propagation (BP) to calcu-
late marginal probability distributions. In cases of approx-
imation, BP’s message-passing protocol becomes a crucial
design decision. Previously, ACMI took a naive, round-robin
protocol to sequentially process messages. Others have pro-
posed informed methods for message scheduling by ranking
messages based on the amount of new information they con-
tain. These information-theoretic measures, however, fail in
the highly connected, large output space domain of protein-
structure inference. In this work, we develop a framework
for using domain knowledge as a criterion for prioritizing
messages in BP. Specifically, we show that using predictions
of protein-disorder regions effectively guides BP in our task.
Our results show that guiding BP using protein-disorder pre-
diction improves the accuracy of marginal probability distri-
butions and also produces more accurate, complete protein-
structure models.
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1. INTRODUCTION

The task of determining protein structures has been a cen-
tral one to the biological community for several decades.
While ab initio methods have received a great deal of re-
cent attention, X-ray crystallography remains the method
of choice for protein-structure determination, producing over
85% of models in the Protein Data Bank (PDB) [21]. Creat-
ing a high-throughput protein crystallography pipeline is a
key area of research in the field, and one major bottleneck in
need of automation is the last step in this pipeline — deter-
mining a protein-structure model from an electron-density
map. An electron-density map is a three-dimensional im-
age of a molecule and is an intermediate product of X-ray
crystallography.

Previously, DiMaio et al. [6] introduced AcMI (Automated
Crystallographic Map Interpretation), a three-phase, proba-
bilistic method for determining protein structures from elec-
tron-density maps (see Figure 3). Empirical results show
that AcMI outperforms other methods in the field on difficult
protein structures, producing complete and physically fea-
sible protein structures where other methods fail [4]. AcM1
models the probability of all possible configurations of a pro-
tein structure (i.e., full-joint probability of each amino acid’s
location) using a pairwise Markov random field (MRF) [11] -
a type of undirected graphical model where vertices rep-
resent random variables and edges imply dependencies be-
tween these variables. AcMI’'s MRF combines visual evi-
dence of protein fragments from the electron-density map
with biochemical constraints in order to effectively iden-
tify the most probable locations for each amino acid in the
electron-density map. Unfortunately, exact inference of the
optimal configuration is computationally infeasible in this
model. To overcome this, AcMmI employs belief propaga-
tion (BP) [19] to produce marginal probability distributions
for the three-dimensional location of each amino acid in the
electron-density map.

Belief propagation is an iterative, local message-passing al-
gorithm which distributes evidence between nodes in a graph-
ical model. Figure 1 gives a high-level view of belief propa-
gation on an MRF. A message is sent between two random
variables (i.e, nodes), conveying the sender’s belief in the re-
cipient’s state, with probability. In the case of asynchronous
message-passing, each iteration requires BP to choose a mes-
sage to be delivered, calculates that message, and updates
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Figure 1: A pairwise Markov random field. Each
node represents a random variable, z;. During belief
propagation, messages, m;;, are sent across edges to
convey x;’s belief in z;’s current state. A message
schedule defines the order these messages are sent.

the recipient’s current marginal probability estimate. In
graphs with loops (such as AcmMr), BP is not guaranteed
to arrive at the exact solution, or even converge to any so-
lution. While empirically successful in AcMmi, BP is often
abandoned in large, complex tasks due to the inability or
slowness to converge to a solution.

Elidan et al. [9] demonstrated that the manner in which mes-
sages are chosen to be processed (or message-passing sched-
ule) can dramatically affect the success of BP. They show
that a simple method (e.g., process messages in a round-
robin fashion) is suboptimal, slowing inference in the best
case and preventing convergence in the worst case. An ef-
ficient scheduler can require fewer message calculations as
well as produce better approximations to the true marginal
probability distributions. In Figure 1, we see the possible
messages that could be sent for a simple graph. The ques-
tion is: in what order should BP send these messages?

Elidan et al. suggested a residual-based method, where each
message is prioritized based on how much new information
it contains relative to the previous time it was sent. Intu-
itively, this reduces redundancies and allows BP to identify
areas of the graph furthest from convergence. However, we
will show this to be ineffective in the fully-connected graph
used for AcMI where it produces flat probability distribu-
tions that are insufficient for sampling protein structures.
We propose, instead, a new method for scheduling messages
in belief propagation using domain knowledge. We apply
this general framework to the task of performing inference
in AcMI, where a prediction of protein disorder [8] can func-
tion as a priority function for message passing. We show,
across a data set of difficult protein structures, using such a
function to prioritize messages in BP improves approximate
inference performance in ACMI relative to a naive scheduling
protocol. Additionally, informed scheduling results in more
complete and accurate protein structures.

Section 2 provides background information on interpreting
low-resolution electron-density maps, including an overview
of Acwmr and other methods for automating this task. Sec-
tion 3 explores belief propagation and discusses protocols for
guiding message-passing during the inference phase of AcwMI.
This section also presents our new method of using domain
knowledge to guide BP. Lastly, in Section 4, we compare our

Figure 2: The last step in the protein X-ray crystal-
lography pipeline takes a) the electron-density map
(a 3D image) of the protein and finds b) the most
likely protein structure that explains the map. Here,
the electron density is contoured and the chemi-
cal structure of the protein designated with a stick
model showing all of the non-hydrogen atoms.

new message-passing priority function against our previous
work and Elidan et al.’s residual-based protocol across a set
of difficult electron-density maps.

2. BACKGROUND
2.1 Automated Density Map Interpretation

The last step in the crystallographic process is interpret-
ing the electron-density map, whereby a crystallographer
fits a protein molecular model to the density map. This
phase is alternatively referred to as tracing the protein. A
crystallographer’s task is: given the sequence of the protein
and an electron-density map, trace the chain of amino acids
through the 3D map. This end goal is the same as in au-
tomated ab initio protein-structure prediction, with the dif-
ference being that a crystallographer also possesses a fuzzy
image of the protein structure. Figure 2 shows a sample
density map and the resulting interpretation. Figure 2a) is
a contoured electron-density map, similar to what a crys-
tallographer would see at the beginning of interpretation.
In b), we see the resulting protein structure with all non-
hydrogen atoms in a stick representation. The main chain
of atoms is known as the backbone of the protein and the
variably sized groups hanging off of the backbone are called
side chains. Amino acids (or residues) form the building
blocks of proteins, linking end-to-end to form the backbone.
Each amino-acid type has a unique side chain molecule, but
all connect to the backbone via the Ca atom — the central
atom in an amino acid’s structure.

Several factors make tracing the protein a difficult and time-
consuming process, mainly by affecting the quality of the
electron-density map. The first and most significant factor is
the crystallographic resolution of the density map. Crystal-
lographic resolution describes the highest spatial frequency
terms used to assemble the electron density map. Resolution
is measured in angstroms (A), with higher values indicating
poorer-quality maps. Another factor making automation
difficult is the phase problem; crystallographer’s can only
estimate the phases needed to calculate the electron-density
map, reducing the interpretability of the image.



2.2 Other Approaches

Many methods attempt to automate the interpretation of
low resolution density maps. The most commonly used
method is ARP/wARP [14, 17, 20], an algorithm which it-
eratively fits structure to a density map, followed by a step
of refinement (or improvement) of the map. The algorithm
begins by creating a free-atom model — a model containing
only unconnected, unlabeled atoms — to fill in the density
map of the protein. It then connects some of these atoms,
creating a partially-connected backbone. ARP/wARP re-
fines this model, producing a map with improved phase es-
timates. The process iterates, ending with rotamer search
to place side chains and a loop-building phase to connect the
chains of atoms [14]. ARP/wARP efficiently finds solutions
in maps with 2.7 A resolution or better, but fails in lower
resolution maps when fewer observations are available.

TEXTAL [13] uses pattern-recognition techniques in order to
interpret maps in the 2.2 to 3.0 A resolution range. First,
CAPRA [12], a trained neural-network classifier, identifies Ca
locations using a set of 19 rotation-invariant features from
grid points in the density map. LOOKUP then identifies side
chains by comparing regions of density around each pre-
dicted Ca to a database of known side chains and places the
best matching side-chain atoms in the trace. Finally, a set
of heuristic methods are run to align the structure to the
sequence and refine the structure.

While the two previous methods use a bottom-up approach,
RESOLVE [23] uses a top-down procedure in which secondary-
structure elements are located in the map with the best
model being chosen for refinement and extension. RESOLVE
begins by searching the map for a model a-helix and a model
B-strand. The next phase of the algorithm extends the best
matches using a much larger library of fragments represent-
ing helices, strands, and loops. After identifying the highest-
scoring, non-overlapping segments, RESOLVE has a backbone
trace of the protein. The final step matches each of the Ca
atoms in this backbone trace with a likely residue type based
on the original sequence and a rotamer library of amino-acid
side chains. RESOLVE has successfully interpreted density
maps from 1.1 to 3.2 A in quality.

A recent method, BUCCANEER [2], takes a similar approach
as TEXTAL by first finding likely Ca locations in the electron-
density map and then extending them into a chain. While
TEXTAL utilizes rotation-invariant features to infer Ca posi-
tions, BUCCANEER utilizes orientation-based features in or-
der to not only infer Ca positions, but the likely orientation
of the backbone. BUCCANEER currently only performs a
backbone trace, and thus does not provide a complete pro-
tein model. Results have shown promise on maps ranging
up to 3.2 A in resolution.

2.3 Overview of ACMI

In previous work, DiMaio et al. [4, 5, 6, 7] developed AcMI
(Automated Crystallographic Map Interpretation), an alter-
native approach to density-map interpretation which uses
a probabilistic model to trace a protein backbone in poor-
quality maps (~3 to 4 A resolution). Figure 3 provides an
overview of AcCMI and its three-phase process. ACMI main-
tains two properties that distinguish it from other meth-
ods in the field and allow it to perform inference on diffi-
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Figure 3: The three-phase ACMI pipeline. Given
an electron-density map and primary amino-acid se-
quence, ACMI-SH performs a local-match search in-
dependently for each amino acid. The resulting pri-
ors are fed to the second phase, ACMI-BP, which ap-
plies global constraints to create posterior marginal
probabilities of each amino acid’s location. Finally,
A CMI-PF uses these marginals to sample physically
feasible, all-atom protein structures.

cult maps. First, AcMI simultaneously ties local density in-
formation and global constraints to infer possible locations
of residues. Second, rather than represent each residue as
one or a set of possible locations in the map, ACMI repre-
sents each residue’s location as a distribution over the entire
electron-density map. This allows the algorithm to overcome
poor, early decisions while also allowing weaker evidence to
persist and possibly be utilized in later stages.

Given an electron-density map and the linear amino-acid
sequence of a protein, AcMI builds a pairwise Markov-field
model (MRF) [11] to model the location of each amino acid’s
Ca atom. A pairwise Markov field, a type of undirected
graphical model, defines a probability distribution on a graph.
Vertices (or nodes) are associated with random variables,
and edges enforce pairwise constraints on those variables.
MRF’s are a compact representation of a full-joint proba-
bility, allowing for the joint probability function to factorize
into smaller functions which can then undergo inference. In
AcwMmi, each vertex corresponds to an amino acid 4, and ran-
dom variables describe the location, ;, of each Ce;. Fig-
ure 4 shows the MRF associated with an example protein.

Formally, AcMI’s pairwise Markov-field model G = (V, E)
consists of vertices ¢ € V connected by undirected edges
(i,j) € E. The full-joint probability of all amino-acid con-
formations, U, is defined as

PUM) = [Twit@™M) x T s, a). (1)
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Figure 4: A portion of a pairwise Markov field for an
example protein sequence. Each node represents a
random variable for the configuration (location and
orientation) of a residue. Each edge represents a
pairwise constraint between the connected random
variables.

15 (u;]M), referred to as the observation potential function,
is the function associated with each vertex. It can be thought
of as prior probability on the location of an amino acid given
the map, M, and ignoring all other amino acids in the pro-
tein. AcMI calculates this prior probability in its first phase,
Acmi-SH, which performs a shape-matching search of amino
acid i at each location in the electron-density map. Briefly,
Acwui takes the 5-mer (5-amino-acid sequence) centered at
position 7 in the protein sequence, and searches for exemplar
fragments in a non-redundant subset of the Protein Data
Bank (PDB) [24]. Each returned fragment is compared to
the density map at each grid point, with the maximum corre-
lation coefficient across all rotations being stored. In DiMaio
et al. [7], we showed that this six-dimensional search prob-
lem can be performed efficiently using spherical-harmonic
decompositions [15].

Edge potential functions, denoted 1; ; (43, 1), represent one
of two conformation potentials which define global constraints
on the protein structure. Edges between neighboring amino
acids in the linear sequence are represented by the adjacency
potential function, which encodes the restraint that adja-
cent residues must maintain an approximate 3.8 A spacing
as well as proper angles. Since amino acids distant in the
linear sequence can still neighbor each other in the three-
dimensional conformation, edges between non-neighboring
amino acids contain an occupancy potential. This function
reflects the chemical constraint that no two residues can oc-
cupy the same space. ACMI, in practice, uses an aggregator
function to collect and disseminate occupancy messages ef-
ficiently [5].

The model in Equation 1 represents the full-joint proba-
bility distribution over all possible configurations (location
and orientation) for all residues in the target protein. Cal-
culating this probability exactly, however, is intractable in
large graphs with loops. AcwMi, instead, employs loopy belief
propagation [19], a fast approximate-inference algorithm, to
calculate an approximate marginal probability distribution
for the location of each amino acid’s Ca atom. This algo-
rithm, AcMI-BP, is the second phase of AcMI and is the crux
of this paper. We explore ACMI-BP in Section 3.

The original AcMI model in Equation 1 represents just one
atom for each residue — the Ca atom. This alone allows
for the modeling of a protein’s backbone, but falls short
of a complete protein model since it does not model the
side-chain atoms. In DiMaio et al. [4], we introduced a

third phase to Acmi, AcMI-PF, which utilizes a sequential
sampling algorithm known as particle filtering [1] to pro-
duce physically feasible, all-atom, protein structures from
the marginal probability distributions resulting from AcmMi-
BP. Our previous results show that the structures produced
by the AcMI package are more complete and accurate than
all other approaches in the field, across a diverse set of low-
resolution electron-density maps [4].

3. METHODS

Belief propagation is an inference algorithm that calculates
marginal probabilities by utilizing a local message-passing
scheme to propagate information across a graphical model [19].
A marginal probability represents the posterior probability
of a single variable. The terms arises from calculating the
full-joint probability and then summing out (or marginal-
izing) all other variables. In tree-structured graphs, this
inference is exact and efficient. In cyclical graphs, such as
the model for AcMI, convergence to the exact solution is
not guaranteed. In practice, belief propagation in graphs
with cycles (loopy belief propagation) tends to produce good
approximations, particularly under certain conditions [18].
This section first introduces belief propagation, and the par-
ticular notation used for AcMI. Section 3.2 introduces the
topic of message scheduling and discusses its impact on the
quality of BP’s approximate marginal probabilities. Sec-
tions 3.3 and 3.4 discuss informed message-passing proto-
cols for producing improved marginals, including our new
domain-knowledge based priority function.

3.1 Belief Propagation Overview

While implementations vary, this section introduces the gen-
eral outline and notation for belief propagation in AcwMi-
BP. At each iteration, a vertex computes an estimate of
its marginal probability distribution as a product over all
associated potential functions, marginalizing out other ran-
dom variables. The vertex then calculates outgoing mes-
sages to each of its connected neighbors by combining its
marginal probability estimate with the edge potential func-
tion shared with that particular neighbor. AcMmI-BP, at it-
eration n for each vertex (i.e., amino acid) 4, computes an
estimate, p; (u3), of amino acid ¢’s marginal distribution (or
belief) over locations in the unit cell by combining its local
probability and incoming messages:

Py () = i (Ui M) x mji(4i) (2)
JET ()

where I'(7) is the set of vertices connected to vertex i. Fig-
ure 5 shows a sample message being sent between two amino
acids in Acwmi, and the resulting update to the receiving
node’s belief. Messages from amino acid 7 to amino acid j are
calculated by convoluting the edge potential ¥; ; (a3, uj) (i.e.,
adjacency potential or occupancy potential) with amino acid
i’s belief

o
oy (3 7) x —LLCE)
EDM my 2 (W)

di;. (3)
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This convolution occurs over the entire distribution, denoted
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Figure 5: A sample message being sent in ACMI’s
belief propagation algorithm. In a) we show the
portion of interest in the protein’s MRF. Here, ly-
sine (node 31) is sending a message to leucine (node
32). In b), we show the current state of beliefs and
the calculated message to be sent. Finally, c) shows
leucine’s updated belief after receiving the message.
The sent message has boosted the confidence in one
of the original four peaks.

EDM (for Electron-Density Map). The denominator inside
the integral removes the influence of the previous message
sent across the edge. In essence, a message from vertex i
to j is amino acid ¢ stating, “Based on my current belief, I
would expect you to be located (with probability) here.”

3.2 Message Schedulingin ACMI-BP

An important design decision for belief propagation is to
define a protocol for ordering the passing and receiving of
messages. In exact inference, the ordering of messages only
affects the rate of convergence, not the final solution. In
graph models with loops, however, the message-passing pro-
tocol can affect the speed and accuracy of inference [9, 22].

Message-passing protocols fall into two categories: synchronous

or asynchronous. Synchronous message passing is where
all outgoing messages are calculated at the same time fol-
lowed by a synchronous reception of messages by all nodes
in the graph. Asynchronous message passing, instead, pri-
oritizes messages, sending and updating one at a time. El-
idan et al. [9] showed that asynchronous message passing
demonstrates faster convergence tendencies and lower error
bounds.

As shown in Algorithm 1, AcMI-BP utilizes an asynchronous
message-passing protocol. In particular, nodes are treated
in a simple round-robin fashion where a pass begins at one
end of the protein’s primary sequence and works toward the
other. At each step along the way, amino acid ¢ first updates
its belief based on Equation 2 and then updates its outgoing
messages using Equation 3; this sequence is then repeated
by amino acid ¢ + 1, and so on. Once all amino acids are
processed, the next pass works in the reverse direction. One
disadvantage to this protocol is that it does not prioritize

Algorithm 1: Round-Robin AcMI-BP
input

: amino-acid sequence Seq of length IV, vertex
potentials 9;(u;) fori =1... N
output: marginal probabilities p;(u;) for i =1... N
iter <— 1
while Stop Criteria Not Met do
if isOdd(iter) then
startRes < 1;endRes < N
else
startRes < N;endRes + 1
end

for i < startRes to endRes do
// Accept messages from all neighbors
Pi(wi) = ¥i(wi) x HjeF(i) i (1)
// Calculate messages to all neighbors
foreach j € I'(7) do

mi—j(uj) = fEDM i (Wi, ;) X mf;(?(%z) di;

end

end

end

nodes based on any metric of evidence or information gain.
Even in the best case, this leads to a waste of resources on
passing low-information messages along the chain. A more
worrying problem arises when the ordering of nodes gives
high priority to nodes with poor prior information — that is,
false positives in the match search from AcwmI-SH. The rest
of this section explores alternative scheduling approaches
which attempt to identify important messages during the
inference process.

3.3 Guiding ACMI-BP using Domain
Knowledge

The primary motivation for this work is that well-structured
regions of the protein sequence are likely to contain better
information in their local match probabilities than disor-
dered regions of the protein. In fact, crystallographers often
use such heuristics to decide which portions of the protein
molecule to begin placing in the density map [G.N. Phillips
and C.A. Bingman, personal communication, 2009]. Por-
tions of the protein structure that are well-structured or
ordered have a unique or nearly unique conformation [8].
Disordered regions of structure, conversely, adopt many dif-
ferent conformations under the conditions of the experiment.
This often results in smeared density in the protein image
since an electron-density map is an average over millions
of copies of the protein, each of which takes one of many
possible conformations. Thus, the local match search (i.e.,
Acwmi-SH) is unlikely to produce accurate results for disor-
dered amino acids since there is little evidence in the map.
To capture this intuition, belief propagation should guide
messages based on some domain-knowledge based priority
function — that is, some expert determined function of a
message’s relevance. If this function is accurate, random
variables deemed more influential or a priori more accurate
should push belief propagation toward quicker convergence
and/or more accurate approximations.



Algorithm 2: Domain-Knowledge Guided AcmI-BP
input

: amino-acid sequence Seq of length N, vertex
potentials ;(u;) for ¢ = 1... N, priority function
Pord(i) for i =1... N, decay factor A > 0
output: marginal probabilities p;(u;) for i =1... N
// Priority queue based on function value, paired with node
foreach residue i do
PQ.push(< pora(i),i >)

end

while Stop Criteria Not Met do
// Pop top value and identify target node, i
< wal,i >+ PQ.pop()

/] Accept messages from all neighbors, T'(7)
Pi(di) = $i(Wi) X [T;ere) mi—i(w)

// Calculate messages to all neighbors, T'(1)
foreach j € I'(i) do

Minsj (05) = [igpg i (05, 05) X 200 da
end
// Add node i back to queue with decayed priority
PQ.push(< val — A,i >)
end

Algorithm 2 shows an overview of our new inference algo-
rithm for guiding AcMI-BP. The main difference from the
description in Algorithm 1 is the introduction of a priority
measure porq4. This probability function is given to AcCMI-
BP by a user. While specifically built for our task, this
formulation applies to any instance of belief propagation.
The function p,rq should describe the relative importance
of node ¢ in influencing the network. For our task, it mea-
sures the probability that amino acid ¢ in a protein’s pri-
mary sequence will be well-structured in the final 3D solu-
tion. Guided AcMI-BP uses this information to decide, for
a given iteration, which residue to next perform inference
on. Intuitively, AcMI-BP now focuses the initial iterations
on passing information along regions of the sequence likely
to produce stable structure. This probability measure is
steadily decayed to allow other amino acids to move to the
top of the queue. This will allow the (predicted) ordered re-
gions to refine their probabilities, essentially locking in their
locations. When less reliable amino acids finally work up the
queue, the ordered amino acids should contain more confi-
dent messages and thus have a larger influence on the final
distributions.

3.4 Redated Work

Several methods exist that attempt to improve BP perfor-
mance by prioritizing nodes based on the amount of new
information they expect to receive from their neighbors. El-
idan et al. [9] formulated residual belief propagation (RBP),
a scheduling function based on the intuition that messages
which differ significantly from their previous value are more
likely to push BP toward convergence. Conversely, a mes-
sage whose new value is similar to the value the last time it
was sent is contributing relatively little new information to
the recipient node and should have low priority. RBP calcu-

lates a residual factor, r;, for each node'. When a neighbor
of i is updated, the residual factor is calculated, capturing
the amount of new information available. If that value is
larger than the current value for r;, it is updated. r; is
defined:

ri= sup [lmj; —mjl|), (4)
IEY0)

where I'(4) is the set of neighbors for node i. At each step of
message passing, the node with highest priority is popped off
the queue and all of its messages are sent out. This node’s
residual value is set to 0, while all neighboring nodes update
their beliefs and messages as well as their residual factors
if necessary. Further work by Sutton and McCallum [22]
approximated these residuals to eliminate unnecessary cal-
culations of new messages that were never sent.

3.5 Experimental Methodology

In Section 4, we compare several variations of belief propa-
gation to determine the effect of a message-passing protocol
on AcMI’s ability to produce accurate protein structures.
First is the original version of AcMI-BP [6], which uses the
round-robin scheduling algorithm in Algorithm 1. In the re-
sults in Section 4, this method is designated as BP. We also
consider a scheduler based on residual belief propagation [9]
from Section 3.4. Algorithm 3 shows the details for apply-
ing residual belief propagation to ACMI, where we prioritize
nodes according to Equation 4. AcMI-BP scheduled with
this function is designated RBP in the results below. Last,
we consider a method based on Algorithm 2, utilizing do-
main knowledge to guide ACMI-BP. In the results below, we
denote this heuristic as DOBP (for DisOrder Belief Propa-
gation).

Not specified in Algorithm 2 is the source for the input
Pord(i). This measure would ideally measure the amount
of order for amino acid ¢ in the final protein-structure solu-
tion. Since we do not know this a priori, we approximate
the concept using protein-disorder prediction [8]. Specifi-
cally, we use DisSEMBL [16], a computational method for
disorder prediction using a concept known as “hot loops”
— residues without secondary structure (i.e., not a helix or
strand) and with high temperature factors. Temperature
factors are a term in PDB entries describing the variance of
the atom’s location. A higher temperature factor indicates
either low confidence by the crystallographer or the existence
of multiple conformations. DisEMBL provides reasonable
predictions, identifying 60-70% of disordered residues while
predicting about 80% of ordered residues [10]. DisEMBL
prediction scores are probabilities measuring the likelihood
that an amino acid is in a “hot loop” region. In our exper-
iments, the complement of this score is taken to formulate

pord(i)‘

For each of the tests in Section 4, all methods use the same
AcMi pipeline with the only differences coming in the second
phase. First, AcMI-SH is run for each map in the test set

!"While the original formulation maintains a residual for each
message, the symmetrical nature of Acmr’'s MRF allows us
to generalize the method to prioritize nodes.



Algorithm 3: Residual AcMmI-BP
input

: amino-acid sequence Seq of length N, vertex
potentials 9;(u;) fori =1... N
output: marginal probabilities p;(u;) for i =1... N

// Initialize priority queue

foreach residue i do
PQ.push(< 0,7 >)

end

while Stop Criteria Not Met do
// Pop top value and identify target node, i
< wal,i >+ PQ.pop()

/] Accept messages from all neighbors, I'(7)
Pi(ui) = i(ui) x Hjel“(i) m;—i (i)

// Calculate messages and priorities
foreach j € I'(7) do
Mol < M (1)) o
Mo (1)) < fEDM s, (Wi, ) X % du;
T [Imis; — Mol
if r > PQ.getVal(j) then
PQ.remove(j)
PQ.push(< r,j >)
end
end
// Add node i back to queue
PQ.push(< 0,7 >)
end

to produce the vertex potentials, according to the protocol
in DiMaio et al. [7]. Then, AcMI-BP is run with each of the
message-protocols above (i.e., BP, RBP, DOBP) using the
same vertex potentials as an input. Each algorithm was run
for the equivalent of forty passes across the sequence (i.e.,
40 * N nodes were processed). While ACMI-BP could run
until convergence, previous results found 40 iterations to be
a good stopping point beyond which performance usually
did not improve, and sometimes degraded [6]. For results
in Section 4.2, AcMI-PF sampled protein structures from
the final marginal probability distributions of the respective
AcMmI-BP methods using the protocol in DiMaio et al. [4].
Each map was run ten times producing a set of ten unique
structures, of which the average solution is reported.

In our experiments, we use a set of ten experimentally-phased
electron-density maps described in DiMaio et al. [4] for val-
idation. This data was provided by the Center for Eukary-
otic Structural Genomics (CESG) at UW-Madison. The
maps were initially phased using either the SOLVE [23] or
SHARP [3] packages, with non-crystallographic symmetry av-
eraging used to improve the map quality where possible.
Based on the electron density quality and quantitative esti-
mate of phase error, expert crystallographers selected these
maps as the “most difficult” from a larger data set of twenty
maps. These structures have been previously solved and de-
posited to the PDB, enabling a direct comparison with the
correct model?. However, all ten required a great deal of
human effort to build the final atomic model.

2Test-set solutions were removed from AcMI’s fragment li-
brary to blind all methods from the true result.

4. RESULTS

To evaluate the different methods for scheduling message
passing in belief propagation, we ran each (i.e., BP, RBP,
DOBP) in the AcMI framework as described in Section 3.5.
We compare the results across the same set of ten difficult
protein structures used in DiMaio et al. [4] to show AcwMI
outperforms all other automated methods in the field. Sec-
tion 4.1 first details the quality of approximate marginal
probability distributions produced using each of the differ-
ent message-passing protocols. Then, Section 4.2 reports
the results of using these marginals in ACMI-PF to produce
all-atom protein structures.

4.1 Approximate Marginal Probabilities

As described in Section 2.3, AcMI-BP produces a marginal
probability distribution for each amino acid, describing the
probability of that amino acid’s location at each point in the
electron-density map. Figure 6 shows the log-likelihood of
the true solution for each message protocol’s results. This
is the probability for the true (i.e., manually traced, PDB
deposited) (x,y,z) coordinates for each residue, according to
the AcMI-BP produced marginals. The higher this value, the
more likely a final trace will place the residue in its correct lo-
cation. Each point in this figure represents one protein struc-
ture, and is an average of log-likelihoods over all residues in
that structure. Figure 6a) compares BP to DOBP, with
the diagonal line designating equal performance. All points
above the line represent maps where DOBP produced higher
average-log-likelihoods than BP. In all but two maps, DOBP
improved the accuracy of ACMI-BP’s marginal probabilities.
In Figure 6b) we see a similar comparison with RBP on the
y-axis and BP on x-axis. Here, RBP outperforms BP in 7
of the maps. Figure 6¢) shows a mixed picture with RBP
and DOBP splitting on the performance across the test set.
The overall average-log-likelihood across all maps was -14.5
for BP, -12.0 for DOBP and -12.2 for RBP. In terms of like-
lihood of the true solution, on average, ACMI-BP benefits
from using either informed message-passing protocol.

One difficulty in comparing average log-likelihood values
among different proteins comes from the fact that the size
of the probability space for each protein varies. That is, a
residue from a protein in a small unit cell has fewer possible
outcomes than a protein in a large unit cell. Instead of log-
likelihood, we can look at the rank of the true solution since
this can be normalized and compared between maps. Fig-
ure 7 examines the normalized rank for the true solution of a
residue, averaged over all residues in the protein. The rank
of the true solution of one residue is the fraction of points in
that residue’s marginal probability above the probability of
the true solution’s location. Values range from (0, 1] with a
rank closest to 0 being the best. The plot in Figure 7 com-
pares BP to DOBP in a), BP to RBP in b), and RBP to
DOBP in c¢). Again, both RBP and DOBP perform better
than BP with a relative decrease in rank by 18 and 10 per-
centage points respectively. That is, BP on average ranks
the true residue solution at the 33% mark across all maps
while DOBP ranks at the 23% level and RBP at 15%. Ac-
cording to this metric, RBP tends to produce better ranks
than DOBP.

From these previous results, we can see an improvement
in marginal probability accuracy by the RBP and DOBP
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Figure 8: Accuracy of predicted protein structures.

Plot a) shows the correctness of predictions — the

percent of predicted amino acids within 2 A of a corresponding residue in the true solution. In b), we plot
the completeness of the predictions — the percent of residues from the true solution with a corresponding
prediction within 2 A. The shaded region indicates better performance for DOBP.



message-passing schemes. Biologists, however, are more in-
terested in seeing if this translates into better protein struc-
tures at the end of the AcwMmI pipeline. The final phase
of Acwmi, AcMI-PF [4], samples all-atom structures from
the marginal probabilities produced by AcmI-BP. Unfortu-
nately, this phase of AcMI revealed a shortcoming of RBP.
While BP (and DOBP) tend to concentrate probabilities
in a few peaks, RBP produced smoother distributions with
smaller and more numerous peaks. This is seen in the en-
tropy levels, where the average entropy for an RBP pro-
duced marginal was 28.48, over five times higher than the
5.16 and 5.31 averages for DOBP and BP marginals, re-
spectively. The prime culprit is that RBP is susceptible to
non-convergent oscillations. That is, a small group of nodes
cannot arrive at a stable probability state after a series of
messages are passed within this cluster. In this case, the
residual stays high in this cluster without resolution, thus
choking resources for the other nodes. In fact, for each pro-
tein in our set, the median value for the number of times a
message was popped off the queue and updated in RBP was
either 5 or 6, while the mean was forty.

This is problematic for AcMmI-PF. To find a good solution,
AcMmI-PF’s sequential sampling must adequately explore the
conformation space of an amino acid. With limited samples,
this requires a restricted space of non-negligible locations to
search, which is what BP and DOBP provide. RBP, how-
ever, contains more locations of non-negligible probability
than ACMI-PF can sample in an efficient manner, causing
the algorithm to fail. In fact, across all ten proteins, nine
failed to produce any portion of the protein structure when
using RBP marginals, and the tenth only extended 5% of
the total protein. The results in Figure 7 and a histogram
of the distributions reflect that RBP excelled at prevent-
ing the true solution from having neglible probability (i.e., a
rank of 1) and thus looked better on average. RBP, however,
did not eliminate enough portions of the density map from
consideration for ACMI-PF to succeed. This explains why
the rank was much better for RBP, but the log-likelihoods
were slightly better for DOBP.

4.2 Protein Structures

After AcMI-BP produces a set of marginal probabilities,
AcMI-PF is run to sample physically-feasible protein struc-
tures. We compare the accuracy of these protein structures
in both completeness and accuracy of the final model for
each test-set protein. We compare how AcCMI-PF performs
with DOBP produced marginals relative to BP produced
marginals. As mentioned, RBP did not produce the sharp
distributions needed to sample protein structures and thus
the results for RBP are not shown below.

Figure 8 shows the results of our experiments, with the orig-
inal AcMmI protocol being shown on the x-axis (BP) and the
method using domain knowledge for guidance as in Algo-
rithm 2 on the y-axis (DOBP). Each point in the plot refers
to one of the test-set proteins. Figure 8a) shows the percent
of the predicted protein structure correctly identified. This
is akin to the precision of the predicted structures. Precision
is a measure of fidelity — that is, of all predictions by algo-
rithm, how many are actually valid? Here, we are describing
the percentage of residues predicted that were within 2 A of
their corresponding true solution location. Conversely, Fig-

ure 8b) shows the completeness of the predictions. These
are akin to recall — of all possible positive results, how many
did the algorithm actually return? For this experiment, we
are measuring the percent of residues available in the true
(i.e, PDB) solution that were accurately predicted (within
2 A) Anything above the diagonal indicates DOBP pro-
duced better structures. In general, DOBP produced more
complete and correct protein structures, particularly in the
hardest maps. DOBP did worse on 2 proteins in terms of
recall (completeness) and once in terms of precision (cor-
rectness). The underperformance in correctness occurs on a
structure AcMI was already doing well; in fact, most of the
proteins with high correctness did not change one way or the
other based on the different marginals. Of the three hardest
proteins, however, the correctness was dramatically higher
when using DOBP, and in two of these the completeness also
improved.

5. CONCLUSION AND FUTURE WORK

AcM1 was previously shown to outperform other methods in
the literature in building all-atom protein structures in low
quality electron-density maps [4]. The success of AcMI is
due to its three-phase probabilistic framework. In this work,
we improved the middle phase, AcMI-BP, which combines lo-
cal match information from the first phase (AcMI-SH) with
global constraints to produce a marginal probability of each
amino acid’s location in the density map. While AcMI is a
successful method, AcMI-BP’s results are only approxima-
tions, leaving room to improve the resulting marginal prob-
abilities. The accuracy of these probabilities are crucial for
AcwMr’s ultimate success as they define the sampling search
space for ACMI-PF (the last phase). Results from Elidan
et al. [9] indicate that AcMI-BP’s original message-passing
protocol was suboptimal and an intelligent protocol could
improve BP’s convergence properties.

We introduced a general message-passing protocol utilizing
domain knowledge to guide belief propagation. We applied
this to AcMI-BP by using protein-disorder prediction [§]
to favor message passing between amino acids predicted
to be well-structured, particularly in the early iterations of
BP. Our results indicate that guiding AcMI-BP using this
function improves AcMI’s overall performance. Across most
maps, the rank and log-likelihood of the true locations of
each residue improve. In addition, Acwmt is able to build pro-
tein structures with improved completeness and correctness
from these more accurate approximate marginal probabili-
ties, with the greatest improvement coming in the most diffi-
cult test cases. The method proposed by Elidan et al., resid-
ual belief propagation [9], fails to produce adequate marginal
probabilities for use in AcMI-PF, primarily due to its inabil-
ity to sufficiently refine the large state space for each amino
acid.

One avenue of future work is to apply a similar domain
knowledge function to AcMI-PF, which utilizes particle fil-
tering — an approximate inference algorithm in which each
iteration also requires a choice of what amino acid to next
sample in the electron-density map. In addition, we would
like to investigate the use of domain-specific heuristics to
guide loopy belief propagation when applied to other tasks,
particularly other large-state space problems in the com-
puter vision field. Many of these tasks could benefit from our



domain-knowledge message-passing protocol, where rule-of-
thumb heuristics can be encoded into a priority function to
guide BP.
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