
TECHNIQUES FOR IMPROVED PROBABILISTIC INFERENCE IN
PROTEIN-STRUCTURE DETERMINATION VIA X-RAY

CRYSTALLOGRAPHY

by

Ameet Bharat Soni

A dissertation submitted in partial fulfillment of
the requirements for the degree of

Doctor of Philosophy

(Computer Sciences)

at the

UNIVERSITY OF WISCONSIN–MADISON

2011

© Copyright by Ameet Bharat Soni 2011
All Rights Reserved

i

To Karen, Bharat, and Sharmistha.

ii

Acknowledgments

Borrowing from an old African proverb states which states, “It takes a village to
raise a child,” I believe it takes a village to raise a PhD dissertation. This document
is not only a culmination of my graduate career, but also the result of the support
and training I have received from those around me.

First, I would like to thank my advisor, Jude Shavlik, for being a supportive
mentor and teacher during my graduate career. Not only has he imparted a great deal
of knowledge upon me concerning the fields of machine learning and computational
biology, but he has also trained me to be an effective communicator and practitioner
of science in general.

I would also like to acknowledge my committee members: George Phillips,
Mark Craven, David Page, and Vikas Singh. Meeting and discussing my work
with George has taught me the importance of interdisciplinary research – not only
as an application for computational work, but as a framework for learning new
perspectives and approaches to difficult problems. Much of what I have learned
in my field has come from courses taken with Mark and David. Both have been
encouraging of my interests in becoming a teacher and have provided, along with
Vikas, great feedback on my research as well as career development. In addition,
it is important to recognize that all of my committee members have always been
friendly and encouraging, going out of their way to welcome me to their homes or
to have a friendly conversation during tea time.

Without my many collaborators, I probably would not have anything to say after
Chapter 2. First and foremost, I must thank Frank DiMaio for taking me under
his wings as a young graduate student and guiding me through the initial steps of
performing graduate research. Not only did our many conversations further my
understanding of the project, but his advice was very helpful for my graduate career.
My discussions with members of the Center for Eukaryotic Structural Genomics –
including Craig Bingman, Sethe Burgie, and Dmitry Kondrashov – always left me
learning something new and exciting about biochemistry. Sriraam Natarajan always
amazed me with his ability to grasp a concept instantly, and I truly thank him for
his friendship and support. In addition, I would like to thank other collaborators on
Acmi: Stuart Ballard, Tuo Wang, and Siddharth Puthur. I am also thankful for all of
the great people who I have come to know in the machine learning group here at
the University of Wisconsin.

I acknowledge the importance of my funding and training at the University of

iii

Wisconsin. My research has been supported by NLM training grant T15-LM007359,
and NLM grant R01- LM008796. In addition, support for my collaborators at the
University of Wisconsin Center for Eukaryotic Structural Genomics (CESG) has been
provided by NIH Protein Structure Initiative Grant GM074901. I am truly thankful
to CIBM, and in particular Louise Pape, for all of their support and the opportunity
to train in the field of computational biology.

Lastly, I would like to acknowledge my family. These few sentences do not do
justice to what you have provided me. To Bharat, Sharmistha, Asha, and Ankoor,
thank you for always being there with love and support. Thank you to all of the
additions to my family: Dale, Mary, Laura, and Emily. Thank you to my loving wife,
Karen, for being my best friend, and my constant through the ups and downs of my
graduate career.

The contributions of my research are part of the Acmi (Automated Crystallo-
graphic Map Interpretation) computer package. Acmi and the data set of exper-
imentally phased density maps used in my experiments are available online at
http://pages.cs.wisc.edu/∼dimaio/acmi/get_acmi.htm.

iv

Contents

Contents iv

List of Figures viii

List of Tables xi

List of Algorithms xii

Nomenclature xiii

Glossary xv

Abstract xix

1 Introduction 1
1.1 Protein-Structure Determination in Electron-Density Maps 2
1.2 Probabilistic Reasoning . 3
1.3 Thesis Statement . 4
1.4 Thesis Organization . 5

2 Background 8
2.1 Biochemical Background . 8

2.1.1 Protein Structures . 8
2.1.2 Protein X-Ray Crystallography 10
2.1.3 Related Work in Automated Density-Map Interpretation . 14

2.2 Algorithmic Background . 21
2.2.1 Probability . 22
2.2.2 Undirected Graphical Models 24
2.2.3 Ensemble Methods . 29
2.2.4 Spherical-Harmonic Decomposition and the Fast Rotation

Function . 30
2.2.5 Particle Filtering . 32

3 The Acmi System 35
3.1 Introduction . 35
3.2 Prior Work on Acmi . 35

v

3.2.1 Local Matching with Acmi-FF 37
3.2.2 Enforcing Global Constraints with Acmi-BP 40
3.2.3 Approximate Inference in Acmi-BP 42

3.3 Roadmap for Acmi and Thesis Contributions 46
3.4 Analogy to Face Detection . 50

4 Data Sets and Protein-Structure Validation Methods 54
4.1 Protein Sets for Algorithm Evaluation 54

4.1.1 Model-Phased Structures 54
4.1.2 Experimentally Phased Structures 55

4.2 Assessing Protein-Structure Quality 56
4.2.1 Correctness and Completeness 57
4.2.2 Root-Mean-Squared (RMS) Error 58
4.2.3 R-factor . 58

4.3 Assessing Accuracy of Probability Distributions 59
4.3.1 Log-Likelihood Probability 60
4.3.2 Percentile Rank . 61

5 Guiding Belief Propagation using Domain Knowledge for Protein-
Structure Determination 62
5.1 Introduction . 62
5.2 Message Scheduling in Phase 2 of Acmi (Belief Propagation) . . . 64
5.3 Guiding Phase 2 using Domain Knowledge 65
5.4 Related Work on Guided Belief Propagation 67
5.5 Experimental Methodology . 69
5.6 Results and Discussion . 70

5.6.1 Approximate Marginal Probabilities 71
5.6.2 Protein Structures . 75

5.7 Summary . 76

6 Probabilistic Ensembles for Improved Inference in Protein-Structure
Determination 78
6.1 Introduction . 78
6.2 Probabilistic Ensembles in ACMI 79

6.2.1 Generating Ensemble Components 81
6.2.2 Aggregating Ensemble Components 82

6.3 Experimental Methodology . 84

vi

6.4 Results and Discussion . 86
6.4.1 Approximate Inference . 87
6.4.2 Protein Structures . 89
6.4.3 Ensemble Learning Curve 91

6.5 Summary . 92

7 Spherical-Harmonic Decomposition for Molecular Recognition in Electron-
Density Maps 94
7.1 Introduction . 94
7.2 Local Template Matching with Acmi-SH 96

7.2.1 Methods . 96
7.2.2 Results and Discussion . 99

7.3 Filtering Methods to Prune Acmi-SH Search Space 102
7.3.1 Methods . 103
7.3.2 Results and Discussion . 105

7.4 Structural Homology Search in Electron-Density Maps 109
7.4.1 Methods . 111
7.4.2 Results and Discussion . 113

7.5 Summary . 116

8 Statistical-Sampling Methods to Produce All-Atom Protein Models 118
8.1 Introduction . 118
8.2 Limitations of Acmi-BP . 120
8.3 Producing All-Atom Protein Structures using Acmi-PF 121

8.3.1 Sampling Cα’s Using Phase 2 Marginal Probabilities . . . 122
8.3.2 Sampling Side-Chain Atoms Using PDB Templates 125

8.4 Experiments and Results . 126
8.5 Incorporating Biochemical Domain Knowledge into Acmi-PF . . . 128

8.5.1 Motivation . 128
8.5.2 Methods . 133
8.5.3 Results and Discussion . 134

8.6 Summary . 136

9 Conclusion 139
9.1 Contributions . 140
9.2 Future Work . 144
9.3 Final Wrap-up . 146

vii

References 148

viii

List of Figures

Figure 1.1 Interpretation of an electron-density map. 2

Figure 2.1 Chemical structure of an amino acid. 9
Figure 2.2 Secondary structure in proteins. 10
Figure 2.3 An overview of the X-ray crystallography pipeline. 11
Figure 2.4 The quality of electron-density maps as resolution varies. . . . 13
Figure 2.5 An outline of ARP/wARP. 15
Figure 2.6 An outline of Textal. 17
Figure 2.7 An outline of Resolve. 20
Figure 2.8 A sample pairwise Markov random field. 25
Figure 2.9 Ensemble-learning methods for supervised learning. 29
Figure 2.10 The real and imaginary components of several low-order spher-

ical harmonics. 31

Figure 3.1 An outline of Acmi in prior work. 36
Figure 3.2 An outline of Acmi-FF. 39
Figure 3.3 An example pairwise Markov random field in Acmi. 41
Figure 3.4 A sample message being sent in ACMI’s belief-propagation

algorithm. 43
Figure 3.5 An example of occupancy messages passed from node 3 in a

graph. 44
Figure 3.6 A comparison of Acmi’s predicted structure to the actual struc-

ture for one test-set protein. 45
Figure 3.7 The three-phase ACMI pipeline. 47
Figure 3.8 An example image for face detection. 50
Figure 3.9 Phase 1 observation potentials for the face-detection task. . . . 51
Figure 3.10 Phase 2 posterior probabilities for the face-detection task. . . . 51
Figure 3.11 Phase 3 output of the most likely face estimate for the face-

detection task. 52

Figure 5.1 Message-passing on a simple Markov random field model. . . 63
Figure 5.2 Log-likelihood of Phase 2 marginal probabilities using various

message schedulers. 71

ix

Figure 5.3 Percentile rank of Phase 2 marginal probabilities using various
message schedulers. 72

Figure 5.4 Histogram of log-likelihood values for an example amino acid’s
marginal probability. 74

Figure 5.5 Accuracy of predicted protein structures for various Phase 2
message-passing protocols. 75

Figure 6.1 Overview of Probabilistic Ensembles in Acmi (Pea). 80
Figure 6.2 Acmi’s Phase 3 backbone sampling step for amino acid i. . . . 83
Figure 6.3 Accuracy of Pea’s and Acmi’s Phase 2 marginal probabilities. . 87
Figure 6.4 Protein-structure prediction accuracy for Pea versus Acmi. . . 89
Figure 6.5 Learning curve for Phase 2 of Pea. 91

Figure 7.1 Acmi Phase 1’s improved template-matching algorithm, Acmi-SH. 97
Figure 7.2 Accuracy of backbone traces produced by Acmi using Acmi-

SH and Acmi-FF for Phase 1. Related automated density-map
interpretation methods are also compared. 100

Figure 7.3 Illustration of a first-pass filter in Acmi-SH. 103
Figure 7.4 A comparison of four different simple filters for quickly elimi-

nating some portion of points in the density map. 106
Figure 7.5 A comparison of the point-density filter and the Svm filter. . . 108
Figure 7.6 Overview of Shed. 110
Figure 7.7 Results of homology detection using Shed, compared to Blast. 114

Figure 8.1 Interpretation of an electron-density map with a) only a back-
bone trace and b) all-atom trace of both backbone and side-
chain atoms. 119

Figure 8.2 Illustration of an infeasible backbone trace produced using
Equation 3.8. 121

Figure 8.3 An overview of the backbone forward-sampling step in Phase 3. 122
Figure 8.4 An overview of the side-chain sampling step in Phase 3. . . . 125
Figure 8.5 Accuracy of protein structures produced by Acmi, ARP/wARP,

Textal, and Resolve. 127
Figure 8.6 Rfree factor of structures produced by Acmi compared to other

automated-interpretation methods. 128
Figure 8.7 Components for sampling a new atom location. 129
Figure 8.8 The length of Cα–Cα bonds in the PDB. 130

x

Figure 8.9 The angle of Cα–Cα–Cα bonds in the PDB. 131
Figure 8.10 The torsion angle of Cα–Cα–Cα–Cα bonds in the PDB. 132
Figure 8.11 Accuracy of Phase 3 protein structures using secondary struc-

ture in the backbone sampling function. 135
Figure 8.12 Sampled candidate Cα locations for an amino acid from one of

the experimentally phased proteins. 136

xi

List of Tables

Table 3.1 Thesis contributions in the Acmi roadmap. 49

Table 4.1 Protein structures in the model-phased protein data set. 55
Table 4.2 Protein structures in the experimentally phased protein data set. 56

Table 5.1 Summary of message-passing methods evaluated in Section 5.6. 70

Table 6.1 Summary of protocols for ensemble components of Pea used in
Sections 6.4.1 and 6.4.2. 85

Table 6.2 Summary of Acmi protocols tested in Sections 6.4.1 and 6.4.2. . 86

Table 7.1 Results of homology detection using Shed, compared to Blast. 115

xii

List of Algorithms

2.1 Belief Propagation . 27

3.1 Local Template Matching with Acmi-FF 38

5.1 Round-Robin BP in Phase 2 . 64
5.2 Domain-Knowledge Guided BP in Phase 2 66
5.3 Residual BP in Phase 2 . 68

6.1 Probabilistic Ensembles in Acmi (Pea) 82

7.1 Local Template Matching with Acmi-SH 98
7.2 Structural Homology using Electron Density (Shed) 111

8.1 All-Atom Structure Sampling with Acmi-PF 123

xiii

Nomenclature

Å Angstroms

AA amino acid

ACMI Automated Crystallographic Map Interpretation

ACMI-BP Acmi’s Belief Propagation inference algorithm

ACMI-FF Acmi’s Fast Fourier local match algorithm

ACMI-PF Acmi’s Particle Filter sampling algorithm

ACMI-SH Acmi’s Spherical Harmonic local match algorithm

ARP Automated Refinement Procedure

ASU asymmetric unit

BLAST Basic Local Alignment Search Tool

BP (loopy) belief propagation

CESG Center for Eukaryotic Structural Genomics at the University of
Wisconsin-Madison

DSSP Dictionary of Protein Secondary Structure

EDM electron-density map

FFT fast Fourier transform

MCMC Markov Chain Monte Carlo

MRF Markov random field

PDB Protein Data Bank

PEA Probabilistic Ensembles in Acmi

RBP Residual Belief Propagation

Rfree free residual factor

RMSE root-mean-squared error

xiv

SHED Structural Homology using Electron Density

SIR Statistical Importance Resampling

SVM Support Vector Machine

xv

Glossary

alpha carbon (Cα) – the central atom in an amino acid structure, connecting the
backbone to the side chain.

amino acid – the building blocks of protein structures, 20 varieties in all. Each
amino-acid type contains the same backbone atoms, but a unique set of side-
chain atoms.

amino acid sequence or sequence – the linear chain of amino acids forming a pro-
tein structure. The sequence is typically represented as a string of letters, with
each letter representing one of twenty amino-acid types.

asymmetric unit – a partition of the unit cell related to all other partitions by a
symmetry operation.

backbone – the set of atoms linking one amino acid to the next in a protein structure.
Each amino acid’s backbone consists of an amino group on one end and a
carboxylic group on the other with the alpha carbon (Cα) connecting the two
groups together. The side chain, not part of the backbone, is also connected to
the Cα.

completeness – akin to recall; of all possible events to predict (e.g., amino-acid
locations in a PDB solution), the percentage that were predicted accurately
(e.g., within 2 Å).

conditional probability – P (A|B); the probability of event A given event B has
occurred.

correctness – akin to precision; of all predictions by a model (e.g., Acmi-produced
amino-acid locations), the percentage that were predicted accurately (e.g.,
within 2 Å).

domain knowledge – knowledge about the environment of a task or entire disci-
pline; knowledge available to experts in a field.

electron-density map or density map or map – a three-dimensional image of a mol-
ecule resulting from X-ray crystallography.

xvi

homology – a similarity between two sequences or structures implying common
ancestry.

interpreting or tracing a density map – placing atoms in an electron-density map
to determine the protein structure that produced the image.

joint probability – the probability of multiple events occurring, P (A,B).

likelihood – the probability value associated with a particular outcome. In this
document, the likelihood represents the probability a model assigns to the
correct solution.

marginal probability – the probability of some event, B, when ignoring other
events, A, in a model; this calculation is obtained by summing over all possible
outcomes of A in a joint distribution.

Markov random field (MRF) – a type of undirected graphical model; models the
full-joint probability of a set of random variables as a product of potential
functions associated with cliques (connected subgraphs) in the graph. A
pairwise MRF contains potential functions with no more than two random
variables; that is, potential functions are associated with either a vertex or
edge.

peptide bond – the chemical bond formed between two amino acids, joining the
carboxylic group of one to the amino group of the other.

percentile rank – the percentage of solutions below the true solution in a descend-
ing list of sorted probabilities.

phases – the angular portion of reflection data. The phase problem arises because
diffraction data only measures the intensities of reflections; additional exper-
iments are needed to estimate phases, introducing error into the electron-
density calculation.

posterior probability – the probability of a variable (or state) after being given
evidence or knowledge of the state of other variables in a model.

primary structure – the linear chain of amino acids forming a protein molecule.

xvii

prior probability – the probability of a variable (or state) before any evidence or
knowledge is obtained.

probabilistic graphical model – a probability model defined on a graph where
vertices represent random variables and edges represent relationships between
variables.

probabilistic inference – the process of computing posterior probabilities for a
random variable when given evidence in a probabilistic model; algorithms for
answering queries about hidden variables in a probabilistic model.

probability – a measure expressing belief or likelihood of an event occurring (or
having occurred). Probabilities range from a value of 0 to 1, and the sum of all
possible states of a random variable sum to 1.

protein or polypeptide – a polymer chain of amino acid molecules; these molecules
play an essential role in almost all cellular functions of living organisms.

protein disorder – a local description of amino acids in a protein structure charac-
terized as unstable, existing as an ensemble of widely diverging conformations,
with no specific equilibrium state.

random variable – a variable whose state is a result of a random process.

reflection – the spot on a collection plate in X-ray crystallography resulting from the
diffraction of an X-ray beam by a protein crystal. The reflection data is related to
the electron-density map via a Fourier transform, but only the magnitude of the
complex-valued reflection are collected, meaning phases must be estimated.

residue – an amino acid after it has lost a water molecule when linking with another
amino acid. For this document, the terms amino acid and residue are used
interchangeably.

resolution – in X-ray crystallography, resolution is the highest resolvable peak in
the reflection data; more generally, a measure of the resolvability of molecules
in an electron-density image. Resolution is measured in Angstroms (Å), with
higher values indicating poorer resolution.

secondary structure – one of a set of commonly occurring, three-dimensional struc-
tural motifs in a protein structure.

xviii

spherical harmonics – the angular portion of a set of solution’s to Laplace’s equa-
tion. That is; a set of orthogonal basis functions in spherical coordinates, used
to describe a three-dimensional object in this dissertation.

tertiary structure – a protein’s full, three-dimensional structure.

unit cell – basic repeating unit of a protein crystal; a density map is usually one
unit cell, representing the average image of approximately a trillion unit cells
in the crystal.

X-ray crystallography – a molecular imaging technique where X-ray beams are
shot through a crystallized molecule, creating a diffraction pattern; the most
common technique for determining protein structures.

xix

Abstract

Over the past decade, the field of machine learning has seen a large increase in the
use and study of probabilistic graphical models due to their ability to provide a
compact representation of complex, multidimensional problems. Graphical models
have applications in many areas, including natural language processing, computer
vision, gene regulatory-network modeling, and medical diagnosis. Recently, the
complexity of problems posed in many domains has stressed the ability of algorithms
to reason in graphical models. New techniques for inference are essential to meet the
demands of these problems in an efficient and accurate manner.

One such area of application is in the area of structural genomics. The task of
determining protein structures has been a central one to the biological community,
with recent years seeing significant investments in structural-genomic initiatives.
X-ray crystallography, a molecular-imaging technique, is at the core of many of
these initiatives as it is the most popular method for determining protein structures.
In creating a high-throughput crystallography pipeline, however, the final step
of constructing an all-atom protein model from an electron-density map – a three-
dimensional image of a molecule produced as an intermediate product of X-ray
crystallography – remains a major bottleneck in need of computational methods. In
difficult cases where the image is poor, this can take months of manual effort by an
experienced crystallographer.

In this thesis, I develop new inference techniques for the use of probabilistic
graphical models for the automated determination of protein structures in electron-
density maps. The first, guided belief propagation using domain knowledge, pri-
oritizes messages in the popular belief propagation algorithm for approximate
inference. Second, I propose Probabilistic Ensembles in Acmi (Pea), a framework
for leveraging multiple, diverse executions of approximate inference to produce
more accurate estimations of a variable’s posterior probability distribution. Lastly, I
present work on the use of statistical sampling (particle filtering) for the purpose of
providing physically feasible, all-atom protein structures.

I demonstrate that my new methods not only improve the accuracy of the prob-
abilistic model in terms of log-likelihood values, but also produce protein struc-
tures with higher completeness, lower RMS error, and better fit to the density map
according to RFree factor. My methods interpret difficult electron-density maps
(3-4 Å resolution) better than prior inference approaches. Across a set of poor-quality
density maps, my work outperforms all related work in the field by improving the

xx

state-of-the-art technique, Acmi. In addition, I show that the ability to incorporate
biochemical domain knowledge is an important aspect to probabilistic modeling,
creating more accurate modeling functions and influencing algorithmic design of
belief propagation.

I also describe my contributions on the subtask of three-dimensional shape
matching in electron-density maps by utilizing spherical-harmonic decompositions
to quickly align two 3D objects over rotations. I show that spherical-harmonic
decompositions, when applied to the task of matching small amino-acid fragments,
are more efficient and accurate than previous work. I also extend spherical harmonics
to two other shape-detection tasks: homologous structure detection in electron-
density maps and feature generation for 3D shape classification of local density
regions.

While the application of my work specifically targets the problem of protein-
structure determination, the issues I pose generalize to computational problems
seen in many areas of the field of artificial intelligence. Throughout this work, I will
refer to, and develop, techniques to solve problems seen in probabilistic inference,
three-dimensional shape matching, and statistical sampling, among others.

1

1 Introduction

The task of determining protein structures has been a central one to the biological
community for several decades. Given the structure of a protein, biologists are
able to obtain insight into several important properties of the protein. In particular,
researchers can obtain information about the protein’s chemical interactions and
mechanisms of action, which aid in understanding underlying biology. Determining
a protein’s structure helps researchers’ understanding of protein structure-function
relationships as well as aiding in a wide set of applications, including disease treat-
ment, drug design, industrial catalyst design, and protein design.

In an effort to increase the number of known protein structures, recent years
have seen significant investments in structural-genomic initiatives [81]. X-ray crystal-
lography, a molecular-imaging technique, is at the core of many of these initiatives
as it is the most popular method for determining protein structures. In creating a
high-throughput crystallography pipeline, however, the final step of constructing an
all-atom protein model from an electron-density map – a three-dimensional image of
a molecule produced as an intermediate product of X-ray crystallography – remains
a major bottleneck in need of automation. In difficult cases, this can take months of
manual effort by a crystallographer.

My thesis concerns developing computational methods for automating this task.
In particular, I discuss the use of a probabilistic framework for combining visual
feature recognition in the image with known biochemical constraints in terms of
the dynamics of molecular structures. In the pursuit of a protein-structure determi-
nation method, I address many algorithmic challenges, including the problem of
performing approximate probabilistic inference in models with complex interactions.

The methods I propose both rely on and make contributions to many computa-
tional fields, including machine learning, computer vision, and signal processing.
The result is a combination of methods that forms the current state-of-the-art ap-
proach for determining protein structures in low-quality electron-density maps.
These methods also contribute general algorithmic techniques for improved proba-
bilistic inference, three-dimensional shape matching, and statistical sampling.

2

(a) (b)

Figure 1.1: The last step in the protein X-ray crystallography pipeline takes a) the
electron-density map (a 3D image) of the protein and finds b) the most likely protein
structure that explains the map. Here, the electron density is contoured and the
chemical structure of the protein is designated with a stick model showing all of the
non-hydrogen atoms.

1.1 Protein-Structure Determination in Electron-Density
Maps

As this document lays out, the process of elucidating a protein structure remains a
laborious task filled with potential for automated methods. Of interest to my work
is X-ray crystallography, which accounts for 88% of structures in the Protein Data
Bank (PDB) [72]. The last step in the crystallography process, producing a protein
structure from the electron-density map, remains a resource-intensive and time-
consuming task and is a major hurdle in creating a high-throughput pipeline for
determining protein structures. My work seeks to create and build upon automated
methods for determining protein structures from electron-density maps. Specifically,
the main objective of my work is:

Given both the electron-density map (a three-dimensional image)
and a primary sequence of a target protein, computationally pro-
duce a three-dimensional, physically feasible, all-atom model of
the target protein’s structure.

3

Figure 1.1 depicts this task pictorially. Figure 1.1a shows a contoured electron-
density map, similar to what a crystallographer would see at the beginning of
interpretation. In b) we see the resulting protein structure with all non-hydrogen
atoms in a stick representation.

The process of determining protein structures via X-ray crystallography remains
challenging for several reasons, as I discuss in Section 2.1.2. The key challenge
addressed in this document is the resolution of the density map. Resolution is a
measure of image quality, with poorer resolutions producing maps where individual
atoms are no longer visible. Many proteins have difficulty crystallizing, yielding
poor crystal formations which produce low resolution images. While advances in
image technology may help improve quality, resolution is mainly a property of the
protein itself. In addition to resolution, phasing error (see Section 2.1.2) as well as the
inherent flexibility of proteins further reduces the interpretability of density maps.

This thesis introduces probabilistic techniques for automatically determining
protein structures from electron-density maps. My techniques specifically address
poor-quality maps, utilizing probabilistic models and biochemical domain knowl-
edge to determine protein structures in low-resolution maps where all other methods
fail.

1.2 Probabilistic Reasoning

Over the past decade, the field of machine learning has seen a large increase in the use
and study of probabilistic graphical models such as Bayesian networks and Markov
random fields [6, 33]. These models represent the uncertainty inherent in data and
event outcomes. Their popularity owes to the ability of these models to provide a
compact representation of complex, multidimensional problems and handle noisy,
incomplete (e.g., missing values, hidden variables) data. Graphical models have
applications in many areas, including natural language processing [54], computer
vision [29], gene regulatory network modeling [31], and medical diagnosis [38].

An important problem in probabilistic modeling is inference, or the ability to
reason probabilistically about the value of certain outcomes given evidence of the
states of other variables. Recently, the complexity of problems has exceeded the
ability of algorithms to reason in graphical models. As this complexity continues
to increase, an important task for the field of machine learning is to develop more
efficient and accurate approximate-inference methods.

My thesis work on automatic density-map interpretation is a good example of

4

a complex problem requiring probabilistic graphical models to provide a solution.
The complexity of this task serves not only as a case study in effective probabilis-
tic modeling, but provides a test bed for developing improved machine learning
approaches for performing probabilistic inference.

My task poses problems of complexity for several reasons. First is the size of the
probabilistic model. Each protein structure has thousands of atoms, meaning there
are thousands of variables to model. In addition, the state space of each variable is
the entire electron-density map, which contains on the order of 106 possible values –
one for each (x, y, z) location in the map. A further complication is the globular
nature of proteins, which creates potential pairwise interactions between almost
every atom in the structure. In modeling terms, this means there are N2 interactions
to model, where N is the number of variables.

This work proposes several novel approaches to improved approximate prob-
abilistic inference for such complex domains. One important contribution is the
utilization of domain knowledge to inform existing approximate-inference methods.
Using this expert knowledge exploits information about a model’s domain that,
prior to my work, could not be utilized to inform inference. My second central
contribution is the use of ensemble-learning methods in approximate inference to
mitigate the impact of assumptions introduced by model simplification, producing
multiple, probabilistic perspectives to a complex solution. In this dissertation, I also
describe several other, more secondary, contributions to the problem of approximate
inference.

1.3 Thesis Statement

This dissertation investigates the following statement:

Using biochemical domain knowledge and enhanced algorithms for probabilistic
inference will produce more accurate and more complete protein structures.

Specifically, I first hypothesize that guiding belief propagation using biochemical
domain knowledge will improve the quality of approximate probabilistic inference
in terms of the accuracy of probability distributions as well as the accuracy of
resulting protein structures. Second, I propose extending the concept of ensemble
methods in supervised learning to the problem of approximate inference to leverage
multiple, diverse runs of belief propagation. In addition to inference, I hypothesize
that spherical-harmonic decomposition is a superior method for performing shape-

5

matching tasks in protein-structure images, producing high-fidelity descriptions of
small amino-acid fragments as well as whole-protein structures, efficiently. Lastly,
I propose that the use of statistical sampling techniques will produce physically
feasible, all-atom protein structures that explain the underlying electron-density
map better than all existing automated density-map interpretation methods, across
a set of difficult, poor-quality maps.

1.4 Thesis Organization

My thesis is organized as follows:

• Chapter 2 provides the pertinent background material for my work. I begin
with essential biochemical definitions and concepts for my application, in-
cluding a description of protein structures, X-ray crystallography, and related
techniques for automated protein-structure determination. I then describe
the algorithmic background for my work, including a formal explanation of
probabilistic graphical models and the task of performing inference. Other al-
gorithmic techniques I overview include spherical-harmonic decompositions,
particle filtering, and ensemble-learning methods.

• Chapter 3 presents the Acmi (Automated Crystallographic Map Interpretation)
framework. I begin with a description of prior work on the Acmi project by
Frank DiMaio et al. Next, I provide an abstract description of Acmi’s three-
phase pipeline that provides a good reference for later discussions. This
roadmap describes the role of each phase of Acmi as well as highlight my
contributions within this framework. Lastly, I provide an analogy to my ap-
plication by demonstrating how Acmi’s pipeline would approach the related
problem of face detection in images.

• Chapter 4 describes the general experimental methodology of my work. First,
I describe the test set of proteins used to evaluate my algorithms. Second, I
present the various metrics used to evaluate protein-structure quality in our
system, borrowing from both the information retrieval and crystallography
communities. Lastly, I explain other metrics used throughout my work to
evaluate probabilistic-inference methods.

• Chapter 5 investigates the influence of a message-passing scheduler on belief
propagation. Specifically, I propose a general method for guiding belief prop-

6

agation using domain knowledge to assess the priority of messages and/or
variables. I apply this technique to the inference process (i.e., Phase 2) of Acmi
by utilizing a concept known as protein-disorder prediction to predict the
stability of each amino acid. Results show this scheduling technique produces
more accurate inference solutions in Acmi relative to a naive, round-robin
algorithm as well as a proposed information-theoretic measure.

• Chapter 6 reviews work on improving approximate-inference techniques in
difficult domains such as as Acmi. I apply the concept of ensemble methods
from the supervised machine learning literature to the problem of inference
in graphical models. My proposed technique, Pea (Probabilistic Ensembles
in Acmi), leverages multiple runs of approximate inference to provide a more
complete picture of the underlying protein structure in the density map. I show
that this ensemble method provides statistically significant improvements in
inference quality as well as more complete and accurate protein structures.

• Chapter 7 presents my research on shape matching in electron-density maps,
where I employ spherical-harmonic decompositions to efficiently describe
two three-dimensional objects and align them across all rotations. First, I
describe a new Phase 1 method, Acmi-SH, which generates more accurate
protein structures than the previous technique. Second, I explore the training
of a “first-pass filter” to further reduce the search burden of Phase 1, a priori
eliminating large portions of the map from consideration for having protein
structure. Lastly, I use spherical-harmonic decompositions to develop Shed,
an algorithm that detects homologous structures to an unsolved protein’s
electron-density map with greater accuracy than sequence-only methods, such
as Blast [2].

• Chapter 8 describes my work on producing all-atom proteins structures us-
ing a probabilistic sampling method known as particle filtering. With Frank
DiMaio, I develop Acmi-PF (Phase 3 of Acmi), which samples both backbone
and side-chain atoms to create a physically feasible protein structure. Results
show Acmi is the state-of-the-art method for determining structures in diffi-
cult electron-density maps. In addition, I explore the idea of incorporating
domain knowledge – or well-described biochemical concepts – into Acmi-
PF’s probabilistic framework by informing backbone-atom sampling using
secondary-structure information.

7

• Chapter 9 is the conclusion of my thesis. I review my contributions and outline
directions of future research.

8

2 Background

This chapter presents the biochemical and computational background behind my
work. I begin with a description of protein structures, including the most popular
technique for determining structures, X-ray crystallography. I also present three
popular algorithms for automated density-map interpretation with pseudocode
and high-level overviews. The second half of this chapter concentrates on the
algorithmic concepts underpinning my methods and contributions. This includes a
formal presentation of probabilistic reasoning in graphical models and a discussion
of the important problem of statistical inference. I also describe techniques used to
solve subtasks in the Acmi framework, including spherical-harmonic decompositions
for 3D-object recognition, particle filtering for sequential variable sampling, and
ensemble-learning methods.

2.1 Biochemical Background

This section provides an overview of biochemical concepts and terms used through-
out my work. Much of these descriptions appear in joint work with Frank DiMaio
and Jude Shavlik [24].

2.1.1 Protein Structures

Proteins (also known as polypeptides) are polymer chains that play an essential role
in almost all functions of cells in living organisms. These include enzymatic roles in
catalyzing reactions, cell signaling, and structural support. Proteins are encoded
in an organism’s genome, such that a sequence of a protein is determined (for the
most part) by the sequence of a gene. Proteins form a linear chain, or sequence,
based on a set of building blocks known as amino acids. There are twenty natural
occurring amino acids, each having the same backbone structure in addition to a
unique side-chain group. Figure 2.1 shows the chemical layout of an amino acid.
The backbone of each amino acid consists of an amino group on one end, a carboxylic
group on another, and a central carbon atom, known as the alpha carbon (Cα for short)
connecting the two groups1. An amino acid’s side chain, the only portion that varies
from one amino acid to another, is also connected to the Cα. The side chain of each

1The Cα is chemically identical to other carbon atoms, but plays a special role by linking the major
components of an amino acid together.

9

N Cα

O

OC H

H

H

R

N Cα

O

OC

H

H

CH
2

N Cα

O

OC H

H

CH

CH
3

CH
3

OH

Backbone

Side Chain(a) (b)

Figure 2.1: Chemical structure of amino acids. A single, generic amino acid is
shown in a). R denotes the side-chain atoms – unique to each amino-acid type.
The backbone atoms are shown in the bottom (blue) box. In b) I show two specific
amino-acid residues (serine and valine) linked by a peptide bond.

amino-acid type varies in length, polarity, and charge. These properties influence
an amino acid’s interactions with solutions and other molecules and account for the
variation in structure from one protein to the next.

To form a protein, adjacent amino acids condense via the amino group of one
and the carboxylic group of the other. The bond is called a peptide bond and the
reaction produces a water molecule in addition to the linked amino acids. After this
reaction, amino acids are often referred to as residues (short for amino-acid residues).
This pattern repeats, forming a linear polymer chain with side chains dangling off
the backbone. The linear combination of amino acids in this matter results in the
protein’s primary structure.

The protein’s primary structure often contains continuous segments that form
commonly occurring three-dimensional structural motifs, known as the protein’s
secondary structure. Figure 2.2 shows the two most common motifs: α-helices and
β-strands. An α-helix is a motif where a portion of the peptide chain folds into a
corkscrew formation. The spiral pattern is stabilized by hydrogen bonds between
non-adjacent residues. β-strands, also stabilized by hydrogen bonds, are stretched
out segments of the peptide chain which line up with other segments in either a
parallel or antiparallel fashion. Random coils, or loops, do not form regular formations
like the above motifs but are used to describe the segments of the protein chain
that link motifs together. Finally, tertiary structure refers to a protein’s full three-
dimensional conformation. With a few exceptions, a protein’s primary sequence of
amino acids determines the protein’s tertiary structure.

10

(a) (b)

Figure 2.2: Ribbon representation of two sample proteins, showing secondary struc-
ture; a) consists of antiparallel β-strands (blue arrows), connected by random coils
(red strings); b) shows a set of α-helices (green spirals) connected by random coils.

2.1.2 Protein X-Ray Crystallography

The task of protein-structure prediction often refers to determining the tertiary struc-
ture of a protein given a primary sequence. While researchers have made advances
in developing fully automated methods for predicting a protein’s 3D structure, no
computer algorithm yet exists that can accurately map protein sequences into 3D
structures. Instead, structures deposited into the Protein Data Bank (PDB) are deter-
mined by “wet lab” techniques for measuring a protein’s structure. The vast majority
of deposited structures, about 88% [72], have been produced using a technique
known as X-ray crystallography. While X-ray crystallography remains the most popu-
lar method for determining large macromolecular structures, it is a time-consuming
and resource-intensive process with many bottlenecks. This section describes how
X-ray crystallography produces electron-density maps of protein structures and the
difficulties present in creating a high-throughput structure-determination pipeline.

Figure 2.3 provides an overview of the protein crystallography process. The end
goal is to produce an electron-density map (a three-dimensional image) of the target
protein in high resolution such that an accurate protein structure can be determined
from the image. The first, and most difficult, step for a crystallographer is to take a
target protein and produce a suitable protein crystal containing a regular, repeating
lattice of a purified form of the target protein. This process is difficult due to the
large number of variables involved in successfully crystallizing the protein and the
difficulty of maintaining a large crystal needed for large macromolecules such as
proteins. Once a protein crystal forms, crystallographers expose the crystal to a
beam of X-rays and collect the resulting diffracted beams on a collection plate. The

11

List of Structure
 Factors

Protein
Crystal

[Phasing Experiments]

List of Phases

+

X-ray Beam

FFT

Interpret

Figure 2.3: An overview of the X-ray crystallography pipeline, starting with the
crystallization of the protein and ending with the interpretation of an electron-
density map. Here, the brackets surrounding “Phasing Experiments” denote this
information comes from additional experiments.

12

collection plate will record a pattern of spots known as reflections or structure factors
which represent the crystal lattice in reciprocal space. The collected structure factors
are related to the original atomic structure via a Fourier transform. Thus, a Fourier
transform of the reflections can produce an electron-density map. Unfortunately,
the structure factors represent only the intensities of the Fourier series – all phase
information is lost. This is known as the phase problem. Many methods exist for
making approximations of the true phases [74], but the process remains error prone.
Once phases are estimated, a crystallographer can construct an electron-density map
of the crystallized protein.

An electron-density map is a three-dimensional lattice of points, regular spaced
covering the unit cell. In this document, I alternatively refer to the electron-density
map as density map or map. The unit cell represents the basic repeating unit of the
protein crystal. The unit cell may contain many copies of the target protein. Many
of these copies may be related by crystallographic symmetry – one of 65 commonly
occurring patterns for packing proteins in a crystal. Each crystallographic symmetry
group describes a set of symmetry operators that relate one area of the unit cell
to another via translation and/or rotation. The asymmetric unit refers to just one
of the symmetric copies in a unit cell. In addition to symmetric protein copies,
asymmetric units may contain multiple copies of a protein due to the target protein
forming multimeric complexes such as dimers and trimers when placed in solution.
A crystallographer’s task is to determine the structure of just one copy of the protein,
although this usually requires complete interpretation of all copies in the asymmetric
unit to ensure quality.

The last step in the crystallographic process is interpreting the density map,
whereby a crystallographer fits a protein molecular model to the density map. This
phase is alternatively referred to as tracing the protein. Referring to the image back
in Figure 1.1, Figure 1.1a is a contoured electron-density map, similar to what a
crystallographer would see at the beginning of interpretation. In b) we see the
resulting protein structure with all non-hydrogen atoms in a stick representation.

The crystallographer’s task is: given a protein’s amino-acid sequence and an electron-
density map of the protein, produce the underlying protein structure. This end goal is the
same as in automated ab initio protein-structure prediction, with the difference being
that a crystallographer also possesses a fuzzy image of the protein structure. This
last step of interpreting the density map represents the second bottleneck in creating
a high-throughput molecular determination pipeline, and is the focus of my thesis
work.

13

1Å 4Å3Å2Å

Figure 2.4: The electron density of tryptophan as resolution varies from 1 Å (high
resolution) on the left to 4 Å (low resolution) on the right. As the resolution decreases,
the characteristic double-ringed side chain of tryptophan becomes impossible to see
and can be confused as part of the backbone.

Several factors make tracing the protein a difficult and time-consuming process,
mainly by affecting the quality of the electron-density map. The most significant
factor is crystallographic resolution which describes the highest spatial frequency
terms used to assemble the electron-density map. The main determinant of electron-
density resolution is the quality of the protein crystal. A crystal that produces narrow
diffraction patterns will result in poor-quality density maps where much of the image
is “smoothed” out due to the elimination of higher frequency information. Figure 2.4
demonstrates the effect of resolution when visualizing a portion of structure in
an electron-density map. As the resolution worsens, we quickly lose evidence of
tryptophan’s distinguishing features. In the X-ray crystallography community, the
resolution is measured in angstroms (Å), with higher values indicating poorer-
quality maps. Thus, low-numbered values indicate a high-quality map and are
described as having high resolution, while larger angstrom values represent poor-
quality, low-resolution density maps.

The second factor in electron-density map quality relates to the previously dis-
cussed phase problem. Experimentally determined phases are often inaccurate,
and make interpretation difficult by creating inaccuracies in the density map. As a
crystallographer builds a model, phases are iteratively improved, thus improving
the quality of the density map. However, this usually requires large portions of the
density map to be traced first, which may be difficult if the phases are inaccurate
and/or the map has low resolution.

Further factors affecting the ability to interpret a density map include the sheer

14

number of atoms contained in a map as well as the quantity of noise present in the
signal. In addition, the electron-density map is not an image of just one copy of the
unit cell, but rather an average over all unit cells in the crystal lattice. Side chains
with multiple possible conformations as well as disordered, loopy regions of the
protein result in a blurry smear of density in certain portions of the map where
structure is not even visible in the extreme case.

It should be noted that while technology and additional experiments can mitigate
some of these complicating factors (e.g., the phase problem), the major determinant
of the image quality is the protein itself. Large, active proteins are often difficult to
stabilize out of solution and form imperfect crystals, if any at all.

When a protein crystallizes and produces a high-resolution density map, crys-
tallographers traditionally perform the task of interpreting the density map with
assistance of specialized graphical software suites such as O [44] and Coot [28].
However, poor-quality structures can be magnitudes slower for a crystallographer to
interpret [48]. In some cases, determining the structure is not feasible or is shelved,
due to limited resources, to work on easier targets. The remainder of this chapter
will focus on methods which seek to automatically interpret electron-density maps
with low resolution (greater than 2.3 Å) or poor experimental phases.

2.1.3 Related Work in Automated Density-Map Interpretation

Several research groups have developed automated methods for interpreting protein
structures in electron-density maps. This section presents a high-level overview of
some of these methods, describing algorithmically how each has approached this
problem.

2.1.3.1 ARP/wARP

The most commonly used method for automatic density-map interpretation is
ARP/wARP [65, 71]. The ARP/wARP (Automated Refinement Procedure) software
suite is a crystallographic tool for the interpretation and refinement of electron-
density maps. An overview of ARP/wARP is shown in Figure 2.5. Given a list of
structure factors, phases, and the primary protein sequence, the central algorithm be-
gins by creating a free atom model – a model containing only unconnected, unlabeled
atoms – to fill in the density map of the protein. It then connects some of these atoms
using a heuristic, creating a hybrid model. This hybrid model consists of a partially
connected backbone, together with a set of unconstrained atoms. ARP/wARP then

15

electron-density map

Place free atoms into map

Join chains of free atoms (autotrace)

Refine model using connectivity constraints

Trace sidechains

free-atom model

hybrid model

complete backbone model

hybrid
model

complete all-atom model

Figure 2.5: An outline of ARP/wARP, a method for tracing all-atom protein struc-
tures based on a bottom-up approach of placing free atoms and introducing con-
straints.

refines this model, producing a map with improved phase estimates. The process
iterates using this improved map. At each iteration, ARP/wARP removes every
connection, restarting with a free-atom model. A rotamer search is then applied
to place side chains, followed by a loop-building method which fills in the best
matching templates of five-consecutive Cα’s from structures in the PDB [45].

ARP/wARP contains an atom placement method based on ARP, an interpretation
method for general molecular models. ARP places unconnected atoms into the
density map, producing a free atom model. To initialize the model, ARP begins with
a small set of atoms in the density map. It slowly expands this model by looking for
areas above a density threshold, at a bonding distance away from existing atoms.
The density threshold is slowly lowered until ARP places the desired number of free
atoms.

The next phase of ARP/wARP, wARPntrace, takes this free-atom model and
adds connectivity to create a hybrid model of backbone atoms and free atoms. Given
a free-atom model of a protein, one can form a crude backbone trace by looking for
pairs of free atoms the proper distance apart. wARPntrace formalizes this procedure,
called autotracing, using a heuristic method. wARPntrace assigns a score based on

16

density values to each free atom. The highest scoring atom pairs 3.8 ± 0.5 Å apart
become candidate Cα’s. The algorithm verifies candidate pairs by overlaying them
with a peptide template. If the template matches the map, wARPntrace saves the
candidate pair. Candidate pairs are then linked based on matches to a database of
known backbones. The longest built chain is added to the model, and the process
repeats with the rest of the candidate Cα pairs being linked until no chains of length
5 remain.

Autotracing produces a hybrid model containing a set of connected chains to-
gether with a set of free atoms. Autotracing identifies some atom types and con-
nectivity, which enables the use of stereochemical information in refinement. A
modified version of ARP refines this hybrid model, and the process iterates from the
beginning with a new free-atom model. Since the map is better-phased, autotrac-
ing produces a more complete model. This, in turn, provides a better refinement,
improving the phases further.

This cycle continues for a fixed number of iterations, or until a complete trace is
available. Finally, wARPntrace adds on side chains by identifying patterns of free
atoms around Cα’s. It aligns these free-atom patterns to the sequence to produce
a complete model. To address issues with missing loops in models, ARP/wARP
adds an optional step for their loop construction algorithm Loopy [45]. Given an
incomplete structure model, Loopy will fill in gaps in the protein chain by extending
Cα traces one residue at a time. To extend a trace, the new Cα is treated as the
last in a pentapeptide fragment. Based on templates in the PDB that match this
pentapeptide, Loopy can predict the proper angle and distance of the missing Cα.
This procedure is iterated, creating a tree of loop models which are pruned based
on likelihood of fitting the model.

ARP/wARP is the preferred method for automatically interpreting electron-
density maps, assuming sufficiently high-resolution data is available. Its placement
of individual atoms, followed by atom-level refinement, produces an accurate trace
with no user action required in 2.3 Å or better density maps. After recent im-
provements, the researchers claim success on structures up to 2.7 Å in resolution.
Unfortunately, many protein crystals fail to produce maps of sufficient resolution,
and ARP/wARP suffers due to the reduced number of observations available for
refinement.

17

electron-density map

Skeletonize density map

Extract rotation-invariant features

Identify Cα’s using a trained neural network

Trace sidechains

pseudo-atom list

feature-vector list

backbone model

complete all-atom model

Build, patch, and stitch chains

predicted distances to Cα

Figure 2.6: An outline of Textal, a pattern-recognition based method which utilizes
rotation-invariant features to train a neural network to predict backbone locations.
In the last step, these features are also used to quickly match side-chain templates to
the density map to create an all-atom model.

2.1.3.2 Textal

Textal [42] uses a four-step approach based on pattern-recognition techniques in
order to interpret maps in the 2.2 to 3.0 Å resolution range. A flowchart of Textal
is shown in Figure 2.6. The first step, Findmol, identifies the region(s) of the map
containing the protein target in order to limit the search space. Then Capra [41], a
trained neural-network classifier, identifies Cα locations using a set of 19 rotation-
invariant features from grid points in the density map. Lookup identifies side chains
by comparing regions of density around each predicted Cα to a database of known
side chains and places the best matching side-chain atoms in the trace. Finally, a set
of heuristic methods are run to align the structure to the sequence and refine the
structure.

The most important component of Textal is its extraction of a set of numerical
features from a region of density. These numerical features allow rapid identification

18

of similar regions from different (solved) maps. A key aspect of Textal’s feature
set is invariance to arbitrary rotations of the region’s density. This eliminates the
need for an expensive rotational search for each fragment. Textal uses 76 such
numerical features to describe a region of density in a map. These features include
19 rotationally invariant features, sampled at four different radii: 3, 4, 5 and 6 Å.
The use of multiple radii is critical for differentiation among side chains: large
residues often look similar at smaller radii but greatly differ at 6 Å, while small
amino acids may have no density in the outer radii and thus are only differentiated
at small radii. The 19 rotation-invariant features fall into four basic classes. The first
class describes statistical properties of neighborhoods of density: mean, standard
deviation, skewness, and kurtosis – the last two of which provide descriptions of the
lopsidedness and peakedness of the distribution of density values. The second class
of features is just a single feature: the distance from the center of mass to the center
of the sample. A third class of descriptors includes moments of inertia (MOI), which
provide six features describing how elliptical the density distribution is. Moments
of inertia are calculated as the Eigenvectors of the inertia matrix. The final class of
features represents higher-level geometrical descriptors of the region. Three “spokes
of maximal density” are extended from the center of the region, spaced > 75◦ apart.
These aim to approximate the direction of the backbone N-terminus, the backbone
C-terminus, and the side chain. Rotation-invariant features derived from these
spokes include the minimum, middle, maximum, and sum of the angles, the density
sum along each spoke, and the area of the triangle formed by connecting the end
points of the spokes.

After running a subroutine to identify the region of the map containing a mole-
cule, Capra produces the initial Cα trace by using a feed-forward neural network.
First, Capra skeletonizes the map, creating a trace of pseudo-atoms that identifies
the medial axis of some density map contour. This trace is a crude approximation
of the backbone, and may traverse the side chains or form multiple distinct chains.
A feed-forward neural network – a nonlinear function approximator used for both
classification and regression – is trained to learn which pseudo-atoms on the skeleton
correspond to actual Cα’s. Specifically, the network is trained on a set of previously
solved maps to predict the distance of each pseudo-atom to the nearest Cα. The
rotation-invariant features above are inputs to the network; a single output node
estimates the distance to the closest Cα. A hidden layer of 20 sigmoidal units fully
connects input and output layers. Given a predicted distance for each pseudo-atom,
Capra performs a greedy trace to find a linear chain linking Cα’s together to give us

19

a backbone trace.
Textal must now identify the residue type associated with each Cα. This identi-

fication is performed by a subroutine Lookup. The subroutine compares the den-
sity around each Cα to a database of solved maps to identify the residue type.
Lookup uses the rotation-invariant feature to build a database of feature vectors
corresponding to side chain in solved maps. To determine the residue type of an
unknown region of density, Lookup finds the nearest neighbors in the database
using weighted Euclidean distance. Since information is lost when representing a
region as a rotation-invariant feature vector, the nearest neighbor in the database
does not always correspond to the best-matching region. Therefore, Lookup keeps
the top k side chains and considers these for a more time-consuming correlation
computation. It then quickly approximates the optimal rotation and translation for
each side chain by aligning the moments of inertia between the template density
region and target density region. Lookup computes the real-space correlation at each
alignment, and selects the highest-correlated candidate. Finally, Lookup retrieves
the translated and rotated coordinate atoms of the top-scoring candidate and places
them in the model.

Textal’s final step is improving the model using a few simple post-processing
heuristics. First, Lookup often reverses the backbone direction of a residue; Textal’s
post-processing makes sure that all chains are oriented in a consistent direction.
Refinement, as in ARP/wARP, corrects improper bond lengths and bond angles,
iteratively moving individual atoms to fit the density map better. Finally, Textal
takes into account the target protein’s sequence to fix mismatched residues.

2.1.3.3 Resolve

While the two previous methods use a bottom-up approach, Resolve [82] uses a
top-down procedure in which secondary-structure elements are located in the map
with the best model being chosen for refinement and extension. An outline of the
procedure is provided in Figure 2.7. Given an electron-density map, Resolve begins
its interpretation by searching all translations and rotations in the map for a model 6-
residue α-helix and a model 4-residue β-strand. Resolve constructs these fragments
by aligning a collection of helices (or strands) from solved structures; it computes
the electron density for each at 3 Å resolution, and averages the density across all
examples. Given these model fragments, Resolve considers placing them at each
position in the map. At each position, it considers a set of rotations and computes a
standardized squared-density difference between the fragment’s electron density

20

electron-density map

Identify helix/strand template matches

Extend matches iteratively

Assemble chain from fragments

Trace sidechains

helix/strand list

protein fragment list

backbone model

partial
model

complete all-atom model

Figure 2.7: An outline of Resolve, which uses templates representing common
secondary-structure elements – helices and strands – to identify putative locations of
secondary structure in the map and create an initial list of backbone atoms. Resolve
produces an all-atom protein model by extending and combining identified chains
and finally adding side chains based on a rotamer library.

and the map. This is the same function used by Acmi-FF in Equation 3.1. Each
fragment is refined, and then kept if it exceeds a threshold for correlation to the map.

At this point, Resolve has a set of putative helix and strand locations in the density
map. The next phase of the algorithm extends these using a much larger library
of fragments. Specifically, Resolve makes use of four such libraries for fragment
extension: one for extending helices, another for extending strands, and two for
extending backbones using tripeptide fragments based on the direction of chain
extension. Resolve first attempts to extend using either of the first two libraries.
Once no extensions exist above a certain correlation factor to the map, the last two
libraries are utilized to create loops between the secondary-structure fragments.
This is similar to the Loopy method from Section 2.1.3.1.

Given this set of candidate model segments, Resolve’s next step is to assemble a
continuous chain. To do so, it uses an iterative method. The outermost loop repeats
until no more candidate segments remain. At each iteration, the algorithm chooses
the top-scoring candidate segment not overlapping any others. It considers all other
segments in the model as extensions: if at least two Cα’s between the candidate and

21

extension overlap, Resolve accepts the extension. Finally, the extension becomes the
current candidate chain.

Resolve’s final step is, given a set of Cα positions in some density map, to identify
the corresponding residue type, and to trace all the side-chain atoms. Resolve’s side-
chain tracing uses a probabilistic method, finding the most likely layout conditioned
on the input sequence. Resolve’s side-chain tracing relies on a rotamer library.
This library consists of a set of low-energy conformations that characterizes each
amino-acid type. A cross-correlation score is calculated for rotamer at each Cα to the
map. These scores are converted to probabilities and then run through a Bayesian
calculation for providing the sequence-to-chain alignment that best matches the
rotamer correlation-coefficient calculations to the chain. Resolve has successfully
interpreted density maps from 1.1 to 3.2 Å in quality. More recently, Resolve has been
incorporated into the Phenix software package, forming the core of the Autobuild
procedure [1].

2.1.3.4 Buccaneer

A recent method, Buccaneer [13] takes a similar approach as Textal by first finding
likely Cα locations in the electron-density map and then extending them into a chain.
The main difference is that while Textal utilizes rotation-invariant features to infer
Cα positions, Buccaneer utilizes orientation-based features in order to not only infer
Cα positions, but the likely orientation of the backbone at each position. First, a
set of highly probably “seed” Cα positions are chosen using a density-dependent
likelihood function. Next, these Cα are extended into chain fragments under angular
constraints by optimizing the likelihood of a fragment given the local density. Lastly,
Buccaneer joins consistent chain fragments by searching for the longest chain path
possible among the fragments and then prunes inconsistent fragments from shorter
chain fragments. Buccaneer currently only performs a backbone trace, and thus does
not provide a complete protein model. Nonetheless, results have shown promise on
maps ranging up to 3.2 Å in resolution.

2.2 Algorithmic Background

This section describes the algorithmic background underpinning my work which is
largely rooted in the machine learning and statistics fields. A more in-depth discus-
sion of these topics can be found in Bishop’s textbook [6] or Mitchell’s textbook [63].

22

I also rely on concepts from the computer-vision and signal-processing communities
with further reading found in the cited literature.

2.2.1 Probability

Probability describes a branch of mathematics concerned with handling uncertainty,
or randomness, in systems. This section provides a brief description of the termi-
nology and notational conventions employed in this document. Random variables
describe events or processes with multiple possible outcomes (discrete or contin-
uous), with each outcome having a weight, or probability. Random variables are
usually denoted with capitalized letters, specific outcomes in lower case, and a prob-
ability distribution described by the function P (). For example, for some random
variable, A, the probability of a specific outcome, or state, a, is denoted P (A = a)
or P (a). P (A) describes a probability distribution of all possible outcomes. The
probability of a specific state is between 0 and 1 and the sum of all possible outcomes
equals 1: ∑

a

P (A = a) = 1. (2.1)

In the example above, P (A) is known as a prior probability on the random variable
A. That is, absent any other information or data, this function encodes the probability
of each value of A. For example, consider the task of modeling a coin flip. Before
executing a series of trials to determining the propensity of outcomes with a “heads”
versus “tails”, one could model the prior probability of flipping a heads as uniform
(i.e., a fair coin), P (heads) = P (tails) = 0.5.

A conditional probability, or posterior probability in Bayesian terms, describes the
probability distribution of a random variable given information about a previously
unknown portion of the world (e.g., the state of another variable; empirical data).
For example, given the value of a variable, B, the effect on random variable A is
encoded with the function P (A |B). The conditional probability can model more
than two variables; in general, all undetermined (or hidden) variables are placed
before the bar, | , and all evidenced variables are placed after. For example, to model
the effect of variables B and C on the outcome of random variable A, we express
P (A |B,C). Two variables are considered conditionally independent if the evidence
does not alter the prior belief; that is P (A |B) = P (A).

A joint probability refers to a distribution over the outcomes of multiple vari-
ables in combination and is expressed, for variables A and B, as P (A,B). Joint
probabilities can be expressed conditionally to indicate the influence of evidence

23

on two variables, such as with the probability of A and B given evidence of C,
P (A,B | C). Additionally, two variables are said to be independent of one another
if their joint probability is equivalent to the product of their prior probabilities,
P (A,B) = P (A)P (B).

Often, it becomes computationally intractable to calculate the full-joint probabil-
ity distribution over a large set of variables since the quantity grows exponentially
in state space. In my work, I often calculate the marginal probability of a variable
which is the result of summing out all other variables from the joint probability
distribution. For example, if we have a joint distribution P (A,B,C), we can obtain
the marginal probability of A by summing out B and C:

P (A) =
∑
b∈B

∑
c∈C

P (A,B = b, C = c). (2.2)

These summations are over all states of B and C and reflect the value of A in the
joint distribution.

Lastly, in important concept in probabilistic modeling is Bayes’ rule, which trans-
forms conditional probability distributions. Bayes’ rule states:

P (A |B) = P (B |A)P (A)
P (B) . (2.3)

This reversal of the conditional probability proves useful when the quantity P (A |B)
is difficult to estimate directly from the data, but the quantity P (B | A) is more
easily available. Additionally, if one wishes to calculate the relative importance of
outcomes of A, the denominator can be omitted since it is independent of the value
of A and cancels out in the ratio.

As an example application of Bayes’ rule, imagine a scenario where a medical lab
wants to report a disease test result. The test has been validated as 99% accurate in
identifying diseased and non-diseased patients; that is, the test correctly identifies a
non-diseased patient as negative 99% of the time and a diseased patient as positive
99% of the time. The lab also knows that only 1 in 200 individuals in the public are
positive (0.5%). If a patient’s test result comes back positive, what is the probability
the patient actually has the disease? Intuition may lead us to think the value is 99%,
but that is incorrect.

To see why, I’ll introduce notation. We want to know the probability a person has
a disease given a positive result, P (Disease = true|Test = positive), or more simply
P (dis | pos). Tests are positive (pos) or negative (neg) and individuals are diseased

24

(dis) or not (no_dis). Given this, the test accuracy above is written: P (pos | dis) =
P (neg | no_dis) = 0.99. The background, or prior, rate of disease is P (dis) = 0.005.
To determine the probability a person has a disease given a positive result, we use
Bayes’ rule:

P (dis | pos) = P (pos | dis)P (dis)
P (pos) .

The denominator is unknown, but we can normalize by summing the probabilities
of the two possible values the disease state can take:

P (dis | pos) = P (pos | dis)P (dis)
P (pos | dis)P (dis) + P (pos | no_dis)P (no_dis) .

We know all of the values in both the numerator and denominator, yielding:

P (dis | pos) = 0.99× 0.005
0.99× 0.005 + 0.01× 0.995 ≈ 0.332.

This is much lower than intuition would imply, and provides a representative exam-
ple of how evidence can alter probabilistic estimates.

2.2.2 Undirected Graphical Models

From the discussion in the previous section, we could proceed to develop and
solve probabilistic models using algebraic manipulation. However, it is beneficial
to consider a diagrammatic representation of probability models using probabilistic
graphical models [6]. Graphical models, such as Bayesian networks and Markov ran-
dom fields, provide a data structure for compactly representing full-joint probability
models while also providing modelers the flexibility to encode and inspect rela-
tionships between random variables (e.g., conditional dependencies). In addition,
an important task in probabilistic modeling is efficiently answering queries about
the world – a process known as statistical inference (in the remainder of this docu-
ment, I will use inference for short). Graphical models pair with several algorithms
for performing inference which can be expressed in terms of manipulations of the
graphical model.

Of particular interest to my work are pairwise Markov random fields (MRF) [33], a
type of undirected graphical model where vertices, or nodes, represent random vari-
ables and edges encode dependencies between two variables. Edges are undirected,
hence the categorization of undirected graphical models. Associated with nodes and
edges are potential functions, where the multiplication of all such functions represents

25

x1

x4

x5x3

x2

Figure 2.8: A sample pairwise Markov random field model. Vertices represent
random variables and edges represent constraints between two random variables.

the full-joint probability of the variables in the graphical model. Thus, the joint
distribution over all variables is decomposed into a product of local factors over a
small subset of variables. In general, potential functions are defined over cliques,
or a subset of fully connected variables. In pairwise MRFs, however, the maximum
clique considered is two variables so we only consider potentials associated with
edges and nodes.

Formally, a pairwise Markov random field model G = (V,E) consists of vertices
i ∈ V connected by undirected edges (i, j) ∈ E. The full-joint probability over a set
of variables, x = x1, x2, . . . , xN is

P (x) = 1
Z

∏
i∈V

ψi(xi)×
∏

(i,j)∈E
ψij(xi, xj) (2.4)

where Z is the partition function acting as a normalizing constant. The second term
is a product over potentials, ψi(xi), associated with each vertex i. These are local
potentials, akin to a prior probability function on variable xi. The second product
term is over edge potentials, ψij(xi, xj), which encode the dependency between
variables xi and xj . These dependencies can be thought of as soft constraints on the
respective variables.

Figure 2.8 shows a sample MRF model. This simple graph represents a probabilis-
tic model with five random variables, x = {x1, x2, x3, x4, x5}, and a set of pairwise
edges connecting (some) pairs of variables. Using Equation 2.4, the full-joint proba-

26

bility for the model in Figure 2.8 is

P (x1, x2, x3, x4, x5) = 1
Z
× ψ1(x1)× ψ1(x2)× ψ1(x3)× ψ1(x4)× ψ1(x5)

×ψ12(x1, x2)× ψ23(x2, x3)× ψ24(x2, x4)× ψ45(x4, x5).

In the above discussion, we assumed the variables are discrete. The framework
works for continuous variables as well, with the substitution of integrals for sum-
mations. Also, it should be noted that potential functions are not restricted to be
probabilities as in directed graphs. This results in a need to calculate the (expensive)
partition function, which limits the application of undirected graphical models
when model parameters must be learned. If one is not interested in learning model
parameters but rather in calculating local marginal probabilities, this term can be
omitted since marginal probabilities can be normalized after summing out variables.

2.2.2.1 Inference in Graphical Models

While a probabilistic graphical model provides a representation of the joint prob-
ability over all variables, a modeler typically is interested in querying probability
distributions of specific subsets of variables, particularly when certain variables
are observed, or provided as evidence. This process of reasoning over variables is
known as inference. Two specific quantities of interest in probabilistic inference are
marginal probabilities:

P (xA) =
∑
xB

P (xA,xB) (2.5)

for some partition of node indices (A,B); and second, the most probable assignment
of outcomes to each variable, known as the maximum a posteriori (MAP) probability:

x∗A = max
xB

P (xA,xB). (2.6)

If the set of variables and states is small, these calculations can be executed by
simply enumerating all possible states, in essence calculating the full-joint probability
distribution. This calculation, however, grows exponentially. With discrete variables,
the size of the joint probability table is O(KN), with K being the number of states
(or outcomes) for each variable and N being the total number of variables in the
model. In many instances, the conditional independencies in the probabilistic model
suggest methods for performing inference in more manageable time. For example,
inference in a linear chain, where nodes are lined up left to right and each node

27

Algorithm 2.1: Belief Propagation
input : vertex potentials ψi(xi) for each i ∈ V ,

edge potentials ψij(xi, xj) for each (i, j) ∈ E
output : (approximate) marginal probabilities p̂i(xi) for each i ∈ V
// Initialize all messages to uniform
foreach (i, j) ∈ E do

m0
i→j(xj)← U(xj)

end
while Stop Criteria Not Met do

foreach i ∈ V do
// Accept messages from all neighbors
p̂ni (xi)← ψi(xi)×

∏
j∈Γ(i)m

n
j→i(xi)

// Calculate messages to all neighbors
foreach j ∈ Γ(i) do

mn
i→j(xj)←

∑
xi
ψij(xi, xj)× ψi(xi)×

∏
k∈Γ(i)\jm

n−1
k→i(xi)

end
end

end

connects only to the node directly preceding and following it, can be performed in
linear time. In tree-structured graphs, algorithms such as variable elimination and
junction trees exist for performing exact inference in tractable time.

In large graphs with loops, however, exact inference is often not possible. Instead,
we must look towards approximate-inference methods such as variational methods or
Montel Carlo algorithms (e.g., Markov Chain Montel Carlo and Gibbs Sampling)
for solutions. The next section will discuss the method utilized in my work, (loopy)
belief propagation [70]. For an in-depth discussion of inference, see Koller and
Friedman’s textbook [50] or Jordan et al. [46].

2.2.2.2 Belief Propagation

Belief propagation (BP) is an inference algorithm that calculates marginal proba-
bilities (Equation 2.5) by utilizing a local message-passing scheme to propagate
information across a graphical model [70]. In tree-structured graphs, this infer-
ence is exact and efficient. In cyclical graphs, such as the model for Acmi in later
chapters, convergence to the exact solution is not guaranteed. In practice, belief
propagation in graphs with cycles (loopy belief propagation) tends to produce good
approximations, particularly under certain conditions [67, 87]. This section provides

28

a general introduction to belief propagation; Section 3.2.3 and Chapter 5 provide a
more detailed description of belief propagation in Acmi’s framework.

Belief propagation proceeds in an iterative fashion, with each iteration updating
a node’s (i.e., variable’s) belief by receiving information from neighboring nodes.
Conceptually, evidence flows across edges in the graph through message passing,
allowing each variable to receive new information on each iteration. Formally, at
each iteration, a vertex computes an estimate of its marginal probability distribution
(or belief), as a product over all associated potential functions, marginalizing out
other random variables. The vertex then calculates outgoing messages to each of
its connected neighbors by combining its belief with the edge potential function
shared with that particular neighbor. BP, at iteration n for each vertex i, computes
an estimate, p̂ni (xi), of variable xi’s marginal distribution (or belief) over all possible
outcomes for xi by combining its local potential function and incoming messages:

p̂ni (xi) ∝ ψi(xi)×
∏

j∈Γ(i)
mn
j→i(xi) (2.7)

where Γ(i) is the set of vertices connected to vertex i (i.e., neighbors of i). Messages
from vertex i to vertex j are calculated by convoluting the edge potential ψij(xi, xj)
with vertex i’s belief

mn
i→j(xj) ∝

∑
xi

ψij(xi, xj)× ψi(xi)×
∏

k∈Γ(i)\j
mn−1
k→i(xi). (2.8)

In essence, a message from vertex i to j is stating, “Based on my current belief,
here are the probabilities of your outcomes”. Note that the the values after the first
potential are equivalent to xi’s belief in the previous iteration, pn−1

i (xi), with the
influence of xj ’s last message to xi removed:

mn
i→j(xj) ∝

∑
xi

ψij(xi, xj)×
p̂ni (xi)

mn−1
j→i(xi)

. (2.9)

Belief propagation proceeds iteratively, updating beliefs and messages until the
beliefs converge or some stopping criteria is met. Algorithm 2.1 provides pseu-
docode for belief propagation. An important design choice is the order messages
are processed in the inner loop. While the pseudocode enumerates variables based
on some arbitrary index of variables, Chapter 5 will explore the importance of this
design choice in detail.

29

Figure 2.9: Ensemble-learning methods for supervised learning. Multiple algorithms
construct models based on the training data. The resulting models are combined to
produce a more comprehensive, composite model.

2.2.3 Ensemble Methods

Ensemble-learning methods come primarily from the supervised machine-learning
community. The goal of supervised learning is to develop a model (or classifier)
with high predictive performance on future instances of a problem. Traditional
learning methods involve a search through a hypothesis space that returns a single-
best model, f̂(x), to estimate the underlying (but unknown) true function, f(x).
Ensemble-learning methods, shown in Figure 2.9, aim to develop a collection of
models, f̂1(x), f̂2(x), ..., f̂N (x), that, in aggregate, produce a classifier with better
performance than any single constituent model. Empirical evaluations of ensemble-
learning methods (or ensembles) show that such methods outperform the best in-
dividual constituent models under two conditions [5, 17, 59]. First, the ensemble
must be diverse. A lack of diversity means each model will produce the same an-
swer to a given instance and thus the collective performance will mirror individual
performance. Second, the individual members must be weak classifiers; that is, each
member must be accurate, performing better than random guessing.

There are two primary design choices in developing an ensemble-learning
method. First, the learner must generate models that meet the two criteria above;
i.e., the learner must generate diverse, accurate models. The machine learning litera-
ture contains a variety of techniques for accomplishing this, including the popular
methods bagging and boosting. Second, the learner must aggregate the decisions (or
predictions) of each model. This is often accomplished with majority voting, where
each model gets a weighted or unweighted “vote” on the answer to a query instance.

While most work on ensembles is on supervised machine learning problems,

30

I am interested in structured-prediction problems. Rather than classification, this
task involves performing inference to estimate the probability densities of several
unknown and connected variables. Weiss et al. [86] proposed Structural Ensemble
Cascades (SEC), an iterative, hierarchical method for structured-prediction problems.
Their model learns a sequence of coarse-to-fine models to filter possible output loca-
tions in a vision task (e.g., tracking human pose across frames of video). Ensembles
are used in inference, where an intractable graph is converted to a set of tractable
(i.e., tree-structured) graphs. Wainwright et al. [84] took a similar approach to the
problem of intractable inference by decomposing the graph into a set of overlapping,
tractable models. These techniques, however, tie parameter learning between the
tractable models, imposing an expensive increase in inference time. SEC loosens
this contraint since it is not needed for the filtering task.

2.2.4 Spherical-Harmonic Decomposition and the Fast Rotation
Function

In Chapter 7, I present a series of methods for recognizing molecular objects in
electron-density maps. These methods rely on a 3D shape descriptor known as
spherical harmonics. Spherical harmonics Y m

l (θ, φ), with order l = 0, 1, . . . , L and
degree m = −l,−(l − 1), . . . , l, are the solution to Laplace’s equation in spherical
coordinates. They are analogous to a Fourier transform, but on the surface of sphere.
They form an orthogonal basis set on the sphere’s surface. Any spherical function
f(θ, φ) can be written:

f(θ, φ) =
∞∑
l=0

l∑
m=−l

alm · Y m
l (θ, φ) (2.10)

where alm represents the complex coefficient for each harmonic. The key property
of a spherical-harmonic decomposition is that for any rotation to a function, the
spherical harmonics at some frequency are a linear combination of all spherical
harmonics at that same frequency:

R(~r) · Y m
l (θ, φ) =

l∑
k=−l

Y k
l (θ, φ) ·Dl

km(~r). (2.11)

In other words, the amount of energy in a particularly frequency remains the same,
just as a translation shift in a Fourier series does not change the power in any
frequency. Here Dl

km(~r) is an entry in the Wigner D-matrix.

31

(,) (,)
(,) (,)(,) (,)

Y0
0

Y1
-1 Y1

0 Y1
1

Y2
-2 Y2

-1 Y2
0 Y2

1 Y2
2

Figure 2.10: The real and imaginary components of several low-order spherical
harmonics. These basis functions are illustrated such that the radius at a particular
angular coordinate indicates the value at that particular location. Colors indicate
sign (gray positive and white negative).

Figure 2.10 illustrates the real and imaginary components of some low-order
spherical harmonics. The methods I describe below are based on spherical-harmonic
decompositions of three-dimensional objects or images. Spherical-harmonic de-
compositions have been applied to similar shape-matching problems in other do-
mains [36, 40], and is also similar to the fast rotation function used for molecular-
replacement solutions [15, 83]. The key advantage of such a representation is that
several different “fast rotation” algorithms exist to quickly compute the cross correla-
tion of two functions on a sphere as a function of rotation [52, 83]. That is, given (real)
functions f(θ, φ) and g(θ, φ) on the sphere, we want to compute the cross correlation
between them as a function of rotation angles ~r:

Cfg(~r) =
∫ ∫

f(θ, φ) ·R(~r) · g(θ, φ) · sin θ dθ dφ. (2.12)

If the functions f and g are band-limited to some maximum bandwidthB, then these
fast rotation functions quickly compute this cross correlation given the spherical-
harmonic decomposition of f and g, running inO(B4) orO(B3 log B) as opposed to
the naive O(B6) [52, 75]. A full derivation is shown by Kostelec and Rockmore [52].

For computational settings, a bandwidth B is chosen to limit the harmonic
transformation to the B lowest-frequency components. This limit truncates the
signal in higher frequencies, possibly eliminating high-frequency phenomena. In

32

general, choosing too low of a value for B will lose important information in the
signal, while setting B too high results in significant slowdown. Furthermore,
eliminating some high frequency components in the signal may be desirable (for
example, it may reduce noise). Similar design issues are seen in handling other basis
functions, such as wavelets or Fourier series.

2.2.5 Particle Filtering

In Section 2.2.2.2, I described belief propagation, a method for performing approx-
imate inference on a graphical model. Belief propagation is part of a large class
of approximate-inference methods, which attempt to approximate probability dis-
tributions over (hidden) random variables given a set of evidence. One group of
methods, called variational methods [46], approach the problem by simplifying the
graph structure and performing deterministic inference on the new model. Another
set of methods, Markov Chain Monte Carlo (MCMC) methods, approximate probabil-
ity measures using stochastic sampling to produce a large set of instantiations of all
variables in a Markov Chain. MCMC methods are usually exact representations of
the model, but take a long time to reach convergence.

I present an overview of particle filters, a set of methods that are a sequential
analogue of Markov Chain Monte Carlo (MCMC) methods. In particular, Chapter 8
utilizes sequential importance resampling (SIR) [4, 25] to sample a protein structure.
SIR approximates a posterior probability distribution over a state sequence x1:K =
{x1, . . . , xK} given observations y1:K , as the weighted sum of a finite number of
point estimates x(i)

1:K ,

p(x1:K | y1:K) ≈
N∑
i=1

w(i)δ(x1:K − x(i)
1:K). (2.13)

Here, i = 1, . . . , N is the particle index, w(i) is particle i’s importance weight, and
δ() is the Dirac delta function. In my work, the technical term “particle” refers to
one specific 3D layout of all the non-hydrogen atoms in the protein. SIR represents
the distribution of protein configurations as a set of distinct layouts. Particles are
sampled sequentially, that is one state (i.e., amino acid) at a time. Each xk is the
position of every non-hydrogen atom in a single amino acid, and each yk is the region
of density in the map providing evidence to amino acid k. Each hidden variable,
xk, has a state space of an entire electron-density map. Therefore, the Dirac delta
function, for sequence position k leads to a probability of w(i) being placed on the

33

location sampled by x(i)
k (i.e., a point estimate). The collection of importance weights

thus serve as approximations to the relative posterior probabilities of the particles
such that:

N∑
i=1

w(i) = 1. (2.14)

SIR relies on the choice of a proposal distribution, π(xk | x
(i)
1:k−1, y1:k), for sampling

point estimates for each variable:

x
(i)
k ∼ π(xk | x

(i)
1:k−1, y1:k). (2.15)

The optimal proposal function is the end target function; that is, xk’s posterior
transition distribution:

π(xk | x1:k−1, y1:k) = p(xk | xk−1, yk). (2.16)

SIR is based on the assumption that this posterior is too difficult to sample from
directly, but can be used to evaluate a given estimate up to a normalization con-
stant. Instead, SIR typically employs the transition prior probability as the sampling
function (called the importance function) to approximate the posterior:

π(xk | x1:k−1, y1:k) = p(xk | xk−1). (2.17)

To correct for the bias of this importance function, SIR’s importance weights are
set to be the the ratio of the optimal proposal distribution (Equation 2.16) to the
importance function (Equation 2.17). The weight update comes out to:

w
(i)
k ∝ w

(i)
k−1

p(yk | x
(i)
k)p(x(i)

k | x
(i)
k−1)

π(xk | x1:k−1, y1:k)
. (2.18)

When Equation 2.17 is the importance function, this simplifies to

w
(i)
k ∝ w

(i)
k−1p(yk | x

(i)
k). (2.19)

If the importance function is close to the optimal proposal distribution, weights
will have low variance. If there is a large bias, however, weights will diverge quickly
causing a few particles to maintain extremely high weights and pushing most par-
ticles to nearly 0 weight values (due to normalization). This problem is known as
degeneracy. To overcome this problem, SIR incorporates an optional resampling step

34

at the end of each sequential sampling round. If the effective number of particles,
defined as:

Meff = 1∑N
i=1 (w(i))2

(2.20)

falls below a given threshold, resampling with replacement occurs. That is, a new
set of particles is drawn one by one from the old set of particles. The chance of
selecting a particle is proportional to its old weight. When a particle is drawn, it
is placed in the new set but not removed from the old set, so it can be selected
multiple times. When N particles have been sampled, all weights are set to uniform.
Thus, each step of SIR extends all N particles by sampling xk from the proposal
distribution, updates the weights of particles based on Equation 2.18, normalizes
weights, and then optionally resamples particles before moving to the next variable
in the sequence.

35

3 The Acmi System

3.1 Introduction

As outlined in Chapter 2, the most popular technique for determining protein
structures is via electron-density maps produced in X-ray crystallography. To this
end, a central goal for current structural genomics efforts is to develop automated
approaches for interpreting these density maps efficiently and accurately [81]. Sec-
tion 2.1.3 outlined four current efforts for automated density-map interpretation:
ARP/wARP, Textal, Resolve, and Buccaneer. While these techniques have found
success in a large range of protein structures, they tend to fail on more difficult pro-
tein structures with low resolution (>2.7 Å), high disorder, poor crystal formations,
poor phasing information, and/or large numbers of amino acids.

To overcome these shortfalls, our group has been developing the Automated Crys-
tallographic Map Interpretation (Acmi) system. Acmi is a probabilistic framework
for combining visual features detected in an electron-density map with biochemical
constraints to infer a protein structure. Acmi combines methods from several fields
of study, relying primarily on novel approximate-inference approaches to scale to
the large state-space of protein-structure determination. This chapter serves two
purposes. First, I provide a description of prior work on Acmi; that is, previous
contributions to the software by other members of our group. Second, I provide
a roadmap for my contributions to the Acmi framework. This latter section will
serve as a comparison point between my contributions and previous work. More
importantly, it will provide a reference point for later discussions to understand
where my contributions fit conceptually in the larger Acmi framework. Last, I present
a simple face-detection problem as an illustrative analogy for the Acmi pipeline.

3.2 Prior Work on Acmi

DiMaio et al. [21] developed an alternative approach to density-map interpretation
which uses a probabilistic model to trace the protein backbone in poor-quality maps
(∼3 to 4 Å resolution). Much of this section is also detailed in Frank DiMaio’s thesis
work [18]. At the center of Acmi’s backbone trace algorithm is a pairwise Markov
random field model (MRF) [33] constructed from the protein sequence where nodes
represent the location of each residue’s Cα and edges enforces chemical constraints.
Acmi maintains two properties that distinguish it from other methods in the field and

36

electron density map,
protein sequence

ACMI-FF: construct and match 5-mer templates

ACMI-BP: infer locations with constraints

Eqn. 3.8: Choose maximum-marginal locations

a priori probability of Cαi’s location

marginal probability of Cαi

Cα-trace model

’s location

Figure 3.1: An outline of Acmi from DiMaio et al. [21]. Acmi utilizes a probabilistic
framework to first independently match templates of each residue to the density map
and then enforce global bond constraints to create a backbone model of a protein.

allow it to perform inference on difficult maps. First, Acmi simultaneously ties local
density information and global constraints to infer possible locations of residues.
Second, rather than represent each residue as one or a set of possible locations in
the map, Acmi represents each residues location as a distribution over the entire
electron-density map. This allows the algorithm to overcome poor, early decisions
while also allowing weaker evidence to linger and possibly be utilized in later stages.

This section will outline the two main components of Acmi as originally con-
structed in DiMaio et al. [21]. An overview of the Acmi method is show in Figure 3.1.
The first component, Acmi-FF, scores local matches for each residue across all loca-
tions in the electron-density map. The result is a probability distribution over the
electron-density map for each residue. The second component, Acmi-BP, builds a
pairwise Markov random field model to enforce global constraints on the the local
matches. Acmi-BP performs inference over the likelihood function used to model
these constraints to produce a posterior marginal probability describing the location
of each residue. From there, a Cα trace can be constructed by taking the maximum
probability location for each residue’s marginal probability distribution. Throughout

37

this document, Acmi will refer to the program as a whole. Individual components
of Acmi will be named Acmi-XX, such as Acmi-BP or Acmi-FF.

3.2.1 Local Matching with Acmi-FF

The local matching step of Acmi computes, for each residue i in the protein, a
probability distribution Pi(~ui) over all locations and orientations ~ui in the unit cell.
This phase of Acmi can be considered an “amino-acid finder” task, where the goal is
to find likely locations in the map for each residue. The probability distributions are
calculated using an independent search for each residue that scores proxy templates
for the residue against regions around each grid point of the density map, converting
the score into a probability and storing the most likely orientation of the residue for
each grid point1. The particular method used for creating templates, performing a
match search, and creating a probability distribution is referred to as Acmi-FF (for
fast-Fourier matching). An overview of the method is shown in Algorithm 3.1.

To detect where an amino acid is likely to be found in the electron-density map,
the structure of an amino acid is compared against each region of the map and
scored based on the match. The particular conformation for a residue (i.e., the shape
the residue takes in this protein), however, is unknown. In addition, each of the
twenty amino acids take on several different possible conformations. Acmi-FF uses
pentapeptide fragments from the Protein Data Bank (PDB) as proxy templates in this
search. These pentapeptide fragments are short polypeptide segments five amino
acids in length. Throughout this document they may also be referenced as fragments
or 5-mers.

For each residue, Acmi-FF first queries previously solved structures in the PDB for
fragments with a similar 5-mer context as the residue in question. That is, the amino-
acid sequence starting two upstream (i− 2) from the residue of interest through two
downstream (i+ 2) forms a 5 amino-acid long sequence with the residue of interest
(i) in the center. The rationale for including neighboring amino acids is that local
chemical interactions often influence the particular conformation an amino acid may
take, therefore Acmi-FF seeks to query fragments with a similar context as the target
residue. A set of no fewer than fifty pentapeptide fragments are retrieved based on
a nearest-neighbor search, where the PAM-120 distance is used as the measure of
similarity. Acmi-FF clusters the retrieved set of fragments into distinct conformations
and stores a single representative instance (centroid) and weight for each cluster.

1The number of grid points varies for each map, and for each dimension (i.e., x, y, z). Typically,
the points range anywhere from 30 to 250 in each dimension.

38

Algorithm 3.1: Local Template Matching with Acmi-FF
input : amino-acid sequence Seq

density map M
output : Vertex potentials ψi(~u,~r) for i = 1 . . . N
foreach residue i do

// Find fragments with a similar sequence; cluster by structure similarity
PDBfragsi ← lookup-in-PDB(Seqi−2:i+2)
centroidsi ← cluster(PDBfragsi)
foreach frag ∈ centroidsi do

template← compute-dens(frag)
foreach rotation ~rk ∈ R do

// Calculate the mismatch between the map and the rotated template
t←Fffear(template(~rk),M)
// Convert the mismatch scores to probabilities based on expected values
foreach point ~uj ∈M do

(µt, σt)← learn-from-tuneset(PDBfragsi,~uj ,~rk)
zk ← (µt − t(~uj))/σt
pnull ← normCDF (zk)
ψi(~uj , ~rk)← (1− pnull)/pnull

end
end

end
end

This set of cluster representatives enumerates the conformational space that will be
considered for the target residue.

Given an electron-density map, protein sequence, and set of 5-mer cluster rep-
resentatives for an amino acid in the sequence, Acmi-FF must now measure the
correlation of each cluster with each location and orientation in the map to produce
the required probability distribution. This template-matching process is outlined
in Figure 3.2. Acmi-FF constructs an expected electron density for each centroid
fragment. This electron density is then compared to the region around each loca-
tion in the electron-density map using a mean squared electron-density difference
function t(~ui) where ~ui = (xi, yi, zi)T is the 3D grid point location. Acmi defines the
mismatch score as:

t(~ui) =
∑
y

εf (~y)
(
ρ′f (~y)− 1

σρ(~ui)
[ρ(~y − ~ui)− ρ̄(~ui)]

)2

(3.1)

39

centroid

density map

tuning set

scores ti(x)

score distribution
probability distribution

P(residuei at x)

Figure 3.2: An outline of Acmi-FF’s method for estimating a residue’s probability
distribution over all locations in the density map. This figure shows one centroid
being compared against the density map to generate match scores. These match
scores are converted into a probability distribution by comparing the scores to
randomly generated match scores.

where ρ(~u) is the electron-density function of the target map, ρ′f (~y) is the standard-
ized fragment electron-density function, εf (~y) is a masking function that is non-zero
only for grid points near the fragment, and ρ̄(~u) and σρ(~u) standardize the map in
the masked region εf (~y) centered at ~u.

Equation 3.1 is similar to the mismatch function utilized by Resolve [82]. In
addition to searching across the three dimensions of the electron-density map, Acmi
must consider all possible rotations of the fragment. This poses a computationally
expensive 6D search problem (i.e., three translation dimensions, three rotation
dimensions). Acmi-FF uses a fast Fourier transform (FFT) convolution to efficiently
perform a search over all locations at a particular angle. Using Cowtan’s Fffear [12]
package, Acmi-FF discretizes the angular components of the search and performs
an efficient FFT calculation of the mismatch score at each angular combination. For
each position, Acmi-FF stores the score for the best pentapeptide fragment and the
corresponding orientation.

With the mean squared electron-density difference scores calculated, Acmi-FF
converts these scores into a probability distribution, P (res i at ~ui | t(~ui)), which
measures the probability that a particular residue, i, is at position ~ui given the mean
square electron-density difference score t(~ui). To calculate this probability, Bayes

40

rule is employed to give us:

P (res i at ~ui | t(~ui)) = P (t(~ui) | res i at ~ui)×
P (res i at ~ui)
P (t(~ui))

. (3.2)

The denominator is simply the distribution of all match scores obtained in the map.
The prior probability P (res i at ~ui) can be dropped as Acmi-FF will normalize the
final probability scores to sum to the number of copies of the particular 5-mer in the
target protein. The first term measures the probability of seeing score t(~ui) given
residue i is at position ~ui. To calculate this, Acmi-FF collects a tuning set of 5-mers
from the original pentapeptide search and calculates the distribution of match scores
between a) the centroid that matched the map best and b) each member of the tuning
set. By doing this, Acmi-FF simulates the expected distribution of scores if a residue
is present.

3.2.2 Enforcing Global Constraints with Acmi-BP

At the end of Acmi-FF, Acmi possesses a set of a priori probability distributions de-
scribing the likelihood of the location and orientation of each amino acid’s Cα in the
target protein. In a generative model sense, each distribution describes the probabil-
ity that the density at a grid point ~ui was generated by residue i. These distributions
take into account only local information and do not depend on results of other
residues. This lack of considering global interactions leads to clashing information
(e.g., two amino acids have a high probability of being at the same location) and
inconsistencies (e.g., neighboring amino acids have probability peaks that are too
far apart to be chemically feasible). The second phase of Acmi, Acmi-BP (for Belief
Propagation, seeks to ameliorate these errors by enforcing global constraints on the
local-match information to produce a physically feasible backbone trace. Given a
protein’s linear amino-acid sequence, Acmi-BP uses a pairwise Markov random field
model to accomplish this task. A pairwise Markov random field, a type of undirected
graphical model introduced in Section 2.2.2, defines a probability distribution on
a graph, where vertices (or nodes) are associated with random variables, and edges
enforce pairwise constraints on those variables. The probability of a particular set-
ting of a random variable is the product of all potential functions associated with
vertices and edges. In Acmi-BP, each vertex corresponds to an amino acid i, and
the random variables describe the location and orientation, ~ui, of each Cαi. Edges
enforce pairwise structural constraints on the protein.

Figure 3.3 shows the Markov random field model associated with an arbitrary

41

Ph
as

e
1

Ph
as

e
2

Ph
as

e
3

a priori probabilities ψobs
Lo

ca
l M

at
ch

A
pp

ly
 G

lo
ba

l C
on

st
ra

in
ts

posterior marginal probabilities P

Sa
m

pl
e

St
ru

ct
ur

e

ui-2

ui-1

all-atom protein structureall-atom protein structure

Figure 3.3: A portion of a pairwise Markov random field model for an example
protein sequence. Each node represents a random variable for the configuration
(location and orientation) of a residue, represented by a three-letter amino-acid code.
Each edge represents a pairwise constraint between those two random variables.
Boxes on an edge represent the existence of a potential function modeling a constraint
between the two variables.

protein. Formally, Acmi-BP’s pairwise Markov random field model is similar to the
definition in Section 2.2.2, with the addition of an evidence variable, M, representing
the fact that our amino-acid locations are conditionally dependent on the evidence
in the density map.

Specifically, Acmi-BP produces a graph, G = (V,E) consisting of vertices i ∈ V
connected by undirected edges (i, j) ∈ E. Each vertex is associated with a hidden
random variable ~ui ∈ U. Each vertex has an associated potential function ψi(~ui |M),
referred to as an observation potential function. Edge potential functions, denoted
ψi,j(~ui, ~uj), represent one of two conformation potentials. With these potential func-
tions, the full joint probability of all amino-acid conformations, U, is defined as

P (U |M) =
∏
i∈V

ψi(~ui |M)×
∏

(i,j)∈E
ψi,j(~ui, ~uj). (3.3)

The edge potentials can be further separated into two types of edges – those between
adjacent amino-acid residues and those between non-adjacent residues. Incorporat-
ing these into the Acmi-BP model expands Equation 3.3 to:

P (U |M) =
∏

amino acid i

ψi(~ui |M)×
∏

amino acids i,j
|i−j|=1

ψadj(~ui, ~uj)×
∏

amino acids i,j
|i−j|>1

ψocc(~ui, ~uj).

(3.4)

42

There are three types of potential functions in Equation 3.4. The first, ψi(~ui |M),
represents a function over possible locations and orientations for amino acid i,
which is proportional to the probability calculations obtained from Acmi-FF. The
second function, ψadj(~ui, ~uj), is on edges between neighboring amino acids and
represents the adjacency potential function. This potential encodes the constraint that
adjacent residues must maintain an approximate 3.8 Å spacing and the angle between
consecutive Cα-Cα-Cα atoms must follow previously observed distributions. Briefly,
both conditions are represented as probability distributions. The Cα-Cα distance is
a tight Gaussian distribution where the mean and standard deviation are learned
from adjacent Cα distances in the PDB. The angular constraint is modeled as a
four-dimensional Gaussian centered on the optimal orientation for each location
from Acmi-FF. The width of each Gaussian is also taken from structures in the PDB.
The third function, ψocc(~ui, ~uj), occurs on edges between non-neighboring amino
acids i and j. This function is the occupancy potential. This potential enforces the
constraint that no two residues can occupy the same region of the electron-density
map. Since occupancy is only an issue of location (and not orientation), this function
is simply a step function where all values outside of a 3 Å radius are 1 and inside
are 0.

3.2.3 Approximate Inference in Acmi-BP

The model in Equation 3.3 represents the full joint probability distribution over all
possible configurations (location and rotation) for all residues in the target protein.
Calculating this probability exactly is intractable in large graphs with loops. The
goal of Acmi-BP, however, is only to find the trace U∗ = { ~u∗i } that maximizes the
observation and edge potentials:

U∗ = arg max
U

∏
i∈V

ψi(~ui |M)×
∏

(i,j)∈E
ψi,j(~ui, ~uj). (3.5)

Acmi-BP uses loopy belief propagation (BP) to compute an approximate marginal
probability P (~ui) for each amino acid i. With this distribution, Acmi-BP can ap-
proximate the maximum a posteriori trace in Equation 3.5 by instead taking the
maximum-marginal label for each amino acid.

Belief propagation, detailed in Section 2.2.2.2, is an inference algorithm that calcu-
lates marginal probabilities by utilizing a local message-passing scheme to propagate
information across a graphical model [70]. Recall that in cyclical graphs, such as the

43

LYS31 LEU32

LYS31→LEU32

pn
LEU32pn

LYS31 pn+1
LEU32

(a)

(b)

(c)

mn

Figure 3.4: A sample message being sent in ACMI’s belief-propagation algorithm.
In a) we show the portion of interest in the protein’s MRF. In b) we show the current
state of beliefs and the calculated message to be sent from lysine (amino acid 31 in the
sequence) to leucine (32). Finally, c) shows leucine’s updated belief after receiving
the message, which has boosted the confidence in one of the original four peaks. For
simplicity, these distributions represent probabilities on a 2-dimensional plane.

model for Acmi-BP, convergence for belief propagation to the exact solution is not
guaranteed. In practice, however, a variation known as loopy belief propagation tends
to produce good approximations, particularly under certain conditions [67]. As
originally shown in Algorithm 2.1, at each iteration a vertex computes an estimate
of its marginal probability distribution as a product over all associated potential
functions, marginalizing out other random variables. The vertex then calculates
outgoing messages to each of its connected neighbors by combining its marginal
probability estimate with the edge potential function shared with that particular
neighbor. Acmi-BP, at iteration n for each vertex (i.e., amino acid) i, computes an
estimate, p̂ni (~ui), of amino acid i’s marginal distribution (or belief) over location in the
unit cell by combining its local probability (from Acmi-FF) and incoming messages:

p̂ni (~ui) = ψi(~ui |M)×
∏

k∈Γ(i)
mn
k→i(~ui) (3.6)

44

(a)

(b)

Figure 3.5: An example of occupancy messages passed from node 3 in a graph.
a) shows the basic method, where unique messages must be calculated, one for each
neighbor of node 3. b) shows the use of an aggregate occupancy model, where the
same message is passed to all neighbors.

where Γ(i) is the set of vertices connected to vertex i.
Messages from amino acid i to amino acid j are calculated by convoluting the

edge potential ψi,j(~ui, ~uj) (i.e., adjacency potential or occupancy potential) with
amino acid i’s belief

mn
i→j(~uj) =

∫
EDM

ψi,j(~ui, ~uj)×
p̂ni (~ui)

mn−1
j→i(~ui)

d~ui. (3.7)

The convolution occurs over the entire distribution, denoted EDM (for Electron-
Density Map). The denominator inside the integral removes the influence of the
previous message sent across the edge. In essence, message passing from vertex
i to j is amino acid i stating, “Based on my belief in my location, I would expect
you to be located (with probability) here.” A sample iteration of message passing
is shown in Figure 3.4. This process continues iteratively, one amino acid at a time,
until all amino acids converge to a stable solution, or some stopping criteria is met.
The belief after the final iteration becomes the posterior probability of each amino
acid’s location.

Acmi-BP makes two more approximations to improve computational efficiency.

45

Figure 3.6: A comparison of predicted versus actual structure on DiMaio et
al.’s [21] sixth-best (of ten) interpretation at 3.5 Å resolution. The thin continuous coil
is the actual structure, while the thicker segmented chain is ACMI’s prediction. The
predicted structure is colored by log-likelihood, where the least probable residue
placements are shown in red, and most probable in blue.

The calculation of messages and beliefs are done using a Fourier representation
of each probability distribution and message, allowing an efficient nonparametric
belief propagation (NBP) implementation. This improves message passing efficiency,
since calculating convolutions can be done quickly using FFTs.

Second, rather than passingO(N2) occupancy messages, where N is the number
of amino acids, Acmi-BP utilizes the fact that the numerator in Equation 3.7 for
amino acid i is the same for all occupancy messages sent out. In addition, accu-
mulated incoming occupancy message for any two vertices, i and j, differ only in
one component –their own occupancy message. Acmi-BP, therefore, aggregates all
occupancy messages as one large message [20]. At each iteration, each node sends
and receives messages with three neighbor – the amino acids before and after it in
the linear sequence, and the aggregator node. When a node sends a message to
the aggregator (denoted ∗), the aggregator multiplies the incoming message to its
current aggregator belief. Then, when node i calculates its own belief, it receives a
message from the aggregator and removes its own contribution from the previous
iteration mn−1

i→∗ . This occurs in place of accepting all individual occupancy messages,
thus reducing the number of messages calculated and sent from O(N2) to O(N) per
iteration. An illustration of this aggregation is shown in Figure 3.5.

The last step for Acmi-BP is to return a backbone trace – the item of interest to

46

biologists – using the approximate marginal probabilities. This is done by choosing
the most probable (location), ~ui∗, for each amino acid i according to the final belief
of its location:

~ui
∗ = arg max

~ui

p̂i(~ui). (3.8)

One advantage of this approach is the ability to assign a confidence measure to the
trace based on the probability of the chosen argument. Figure 3.6 shows a sample
trace, with the relative probability of each amino acid location indicated by color
scale. Results show the backbone traces produced by Acmi have greater accuracy
and completeness than traces by Textal [42] and Resolve [82] in a test bed of maps
truncated to 3 Å and 4 Å resolution (Section 4.1). However, like Buccaneer [13],
Acmi-BP only produces a Cα backbone trace. While useful to biologists for certain
tasks, the lack of all-atom protein models hinders the usefulness of the final model.

3.3 Roadmap for Acmi and Thesis Contributions

The previous section provides a base for further development of the Acmi system.
The remainder of this document will describe several of my contributions to Acmi,
some of which replace modules and others that augment modules in the prior Acmi
framework. Figure 3.7 provides a conceptual overview of Acmi in its current form
(i.e., inclusive of my contributions) as a reference for future discussions. Acmi is a
three-phase pipeline for automatically determining protein structures in low quality
density maps, beginning with a density map and linear protein sequence and ending
with an all-atom protein structure. The following paragraphs detail the goal of each
phase.

Phase 1 – Local Match

Given: Electron-density map
Protein sequence

Do: Score each amino acid i’s match to every location in the
map to produce observation potentials, Ψobs = {ψi(~ui)}

Phase 1 estimates the observation potential function, a distribution of the probable
location of each amino acid in the density map independent of information about
other amino acids. Section 3.2.1 described the prior work’s appcoach to this problem,
Acmi-FF. This phase is conceptually an “amino-acid finder” and is similar to tasks in

47

Ph
as

e
1

Ph
as

e
2

Ph
as

e
3

a priori probabilities ψobs

Lo
ca

l M
at

ch
A

pp
ly

 G
lo

ba
l C

on
st

ra
in

ts

posterior marginal probabilities P

Sa
m

pl
e

St
ru

ct
ur

e

ui-2

ui-1

all-atom protein structureall-atom protein structure

Figure 3.7: The three-phase ACMI pipeline. Given an electron-density map and
amino-acid sequence, Phase 1 performs a local-match search independently for each
amino acid. Phase 2 combines these local-search results with global constraints to
create posterior probabilities of each amino acid’s location. Finally, Phase 3 uses
these marginals to sample physically feasible, all-atom protein structures. The upper
box in Phase 2 shows a portion of a Markov random field for an example protein
sequence.

48

3D shape matching and object recognition in the computer vision community. The
term local refers to the local context of the search; that is, ignoring global concerns
such as chemical constraints and the location of distant amino acids.

Phase 2 – Apply Global Constraints

Given: Protein sequence
Observation potentials, Ψobs

Pairwise structural constraints (e.g., adjacency constraint,
Ψadj , occupancy constraint, Ψocc)

Do: Produce a posterior probability for each amino acid i’s
location in the density map given all available information,
P = {p̂(~ui)}

Phase 2 estimates the posterior probability of an amino acid’s location given the local
match information of all amino acids in addition to known biochemical constraints
on protein structures. While Phase 1 is independent for each amino acid, Phase 2
models the dependencies between amino acids in the protein structure and thus
takes a global view of the entire structure. Prior work developed Acmi-BP, which
constructs a Markov random field (Section 3.2.2) to probabilistically model the highly
connected nature of a protein structure. Acmi-BP employs an approximate-inference
technique known as loopy belief propagation, described in Section 3.2.3, to handle
the difficult task of performing inference in a complex MRF model.

Phase 3 – Sample Possible Protein Structures

Given: Protein sequence
Electron-density map
Posterior probability of each amino acid’s location in the
density map, P

Do: Produce a physically feasible, all-atom protein structure
that explains the electron-density map

Phase 3 is the final phase of Acmi and estimates a protein structure model. While
Acmi is a probabilistic framework, biologists are interested in an actual protein
structure, not the probability space of structures. Thus, Phase 3’s output is a point
estimate of the most likely structure given the probability model. In previous work,
Phase 3 is a fairly basic post-processing step in Acmi-BP – Equation 3.8 assigns the

49

Acmi Phase

My Contributions 1 2 3

Guided Belief Propagation using Domain Knowledge (Chapter 5) X
Probabilistic Ensembles in Acmi (Chapter 6) X X
Statistical-Sampling to Produce All-Atom Protein Structures (Chap-
ter 8)

X

Spherical-Harmonic Decompositions for Template Matching (Sec-
tion 7.2)

X

Filtering Methods for Reducing Search Space (Section 7.3) X
Structural Homology Search in EDMs (Section 7.4)

Table 3.1: Thesis contributions in the Acmi roadmap. Each item in the first column
lists a contribution of this thesis, outlined in Section 1.4. The next three columns
attribute whether the contribution applies to Phase 1, 2, and/or 3 respectively. A
check-mark in a cell implies that the contribution applies to that phase. The last
contribution, Shed, is outside the Acmi framework but extends work on Phase 1.

maximum probability location according to the posterior probabilities as an amino
acid’s location. These coordinates are only for the Cα atom of each amino acid,
yielding only an intermediate result known as a backbone trace. Ideally, biologists
want a physically feasible structure with all backbone and side-chain atoms.

These three phases encapsulate three general machine learning problems: shape
matching (Phase 1), approximate probabilistic inference (Phase 2), and statistical
sampling (Phase 3). In Chapter 1, I outlined the contributions and structure of my
thesis. Given this high-level overview of Acmi, I further ascribe the contributions in
my thesis to addressing one or more of the three phases of Acmi and subsequently
a general area of study in machine learning. Table 3.1 describes which phase(s) of
Acmi each contribution of my work applies to. The exception to this framework is
my contribution in Section 7.4, structural homology detection in electron-density
maps, which is an extension of a novel method for Phase 1 to a different problem in
X-ray crystallography. Table 3.1 and Figure 3.7 provide a reference point for placing
later discussions in context of the full Acmi framework.

50

Figure 3.8: An example of the input image to the face-detection algorithm based
on the Acmi pipeline. Photo of Dr. Neil deGrasse Tyson courtesy of David Britt-
Friedman / MSNBC.com file.

3.4 Analogy to Face Detection

To further illustrate the high-level concepts involved in the Acmi pipeline, this section
addresses an analogous problem: face detection2. I define the face-detection task
as: given a two-dimensional image and a list of face-parts, identify the location of a person’s
face in the image. Here, the two-dimensional picture plays the role of the electron-
density map, while the list of face parts is analogous to a protein sequence. While
the sequence of amino acids differs from protein to protein, we can assume for this
analogy that all faces have two eyes, one nose, and one mouth. Figure 3.8 shows an
example image with a face. While this example seems trivial, it will illustrate the
role each phase of Acmi plays in processing an image.

In Phase 1, we seek to perform a local-match detection. In Acmi, we seek to
measure the probability of individual amino acids being at every location in the
map. In face detection, we similarly look to determine the probability of each face part
being at a location in the image. Assuming we have some part-detection algorithm
to score matches, we independently search for a nose, two eyes, and a mouth in our
image. Figure 3.9 illustrates the results of such an algorithm projected on our original
image. For all three panels, ovals indicate contoured levels of high probability; that

2This analogy is for illustrative purposes only, it is not to be taken as representative of current
state-of-the-art methods for face detection, nor a complete description of the face-detection task.

51

(a) ψeye (b) ψnose (c) ψmouth

Figure 3.9: Phase 1 observation potentials for the face-detection task. Portions of the
image inside contoured ovals indicate high probability values.

Figure 3.10: Phase 2 posterior probabilities for the face-detection task, with all four
face parts projected on the image with contoured probabilities. Yellow represents
high probability of an eye, red for a mouth, and green for a nose.

is, the portion of the image inside the circle exceeds some threshold. Figure 3.9a
shows the observation potential for the random variable representing the location
of an eye, ψeye(~ueye), with high probabilities encircled in yellow. Figures 3.9b and
3.9c show similar probability maps for the nose (green) and mouth (red) variables.
As the image shows, the algorithm has done a good job of identifying the correct
locations, but also placed high probabilities on some false locations.

While local features can be powerful, they cannot alone infer the best location for
a face. Phase 2 seeks to apply global constraints to introduce structural consistency
into our probability model. In Acmi, Phase 2 models pairwise constraints, such

52

Figure 3.11: Phase 3 output of the most likely face estimate for the face-detection
task.

as the fact that neighboring amino acids must be within a constrainted distance.
Similarly, we can model pairwise constraints between face parts. For example, no
two parts can be in the same location. As an aside, face detection, in reality, poses
one problem not seen in protein-structure determination – face parts are not scale
invariant. That is, the size of faces vary from person to person, and by distance to
lens and magnification of the lens. We’ll assume that all images are standardized
so that face parts are the same size. With that assumption, we can also have a
global constraint that each pair of parts have a limited range of distances between
each other (e.g., two eyes cannot be a foot apart). Figure 3.10 shows the Phase 2
posterior probabilities, P = {p̂eyel, p̂eyer, p̂nose, p̂mouth} projected on to the original
image. Notice that the location of the false positives have disappeared (i.e., now
have low probabilities).

While probability models are extremely powerful in modeling complex problems,
many applications require an actual point estimate. In Phase 3, we sample such an
estimate. In Acmi, Phase 3 samples a protein structure from the posterior probabilities
of Phase 2. In face detection, we again have a set of posterior probabilities from
which we want to sample the best face location. In our illustrative example, Phase 3
would output an answer similar to that show in Figure 3.11, where the location of
a face is circled in blue. To summarize, face detection provides a simple analogy
to the Acmi pipeline. It first identifies individual parts in the image, then applies

53

constraints to introduce structurally consistent estimates, and finally outputs the
single best estimate.

54

4 Data Sets and Protein-Structure Validation
Methods

This chapter describes the data sets I use to validate the methods I develop in my
thesis. In addition, I provide the details for many of the assessment techniques
used for both determining the accuracy of predicted protein structures as well as
probability distributions over amino-acid locations.

4.1 Protein Sets for Algorithm Evaluation

This section describes the proteins I utilize for evaluating the performance of my
proposed techniques. All experiments in this thesis use one of the two data sets
described below. The proteins described below were provided by the Center for
Eukaryotic Genomics (CESG) at the University of Wisconsin.

4.1.1 Model-Phased Structures

The first data set of proteins collected, chronologically, consists of ten model-phased
electron-density maps. Natively, these maps have fairly good resolution – 1.5 to
2.5 Å – and all have crystallographer-determined solutions. Since Acmi is designed
for low-resolution maps, Frank DiMaio and CESG computationally downsampled
the data to simulate poor-resolution maps. Table 4.1 provides a description of
each test-set protein, including the PDB (Protein Data Bank) access number for the
deposited solution, the size of the protein structure, and the size of the unit cell in the
map. Throughout this document, I refer to this data set as the model-phased, protein-
structure set since maps were constructed using the final, deposited structure to
determine phasing information.

To simulate difficult maps, Frank DiMaio and CESG smoothly truncated the
structure factors at 3 Å and 4 Å resolution, and then recomputed the electron-density
maps. Truncating in this fashion gives maps virtually identical to maps natively at a
particular resolution. To avoid truncation effects, and give a more realistic model of
low-resolution data, they scaled structure factors by exp(−K/R2), where R is the
resolution of the structure factor and K is a scaling constant chosen based on the
desired resolution (higher values of K smooth the map more). K was chosen to be
K = R2

0, where R0 is the desired final resolution (e.g., 3.0 or 4.0 Å). The result is the
signal strength was weakened by 1/e at the point of truncation.

55

PDB ID Amino
Acids

in ASU

Molecules
in ASU

Resolution
(Å)

Unit-Cell
Size (Å)

1Q4R 112 1 1.9 55× 55× 58
1VJH 244 2 2.1 46× 34× 79
1VK5 157 1 1.7 83× 83× 61
1VMO 260 2 1.9 60× 79× 44
1XFI 367 1 1.7 40× 43× 53
1XM8 508 2 1.8 68× 59× 69
1XMT 103 1 2.0 27× 61× 29
1XQ1 266 1 2.1 56× 77× 112
1XY7 332 2 1.8 56× 56× 147
1YDH 432 2 2.3 122× 80× 51

Table 4.1: Protein structures in the model-phased protein data set. ASU stands for
asymmetric unit.

4.1.2 Experimentally Phased Structures

The second data set used in this document is a set of ten experimentally phased electron-
density maps. Unlike the model-phased set above, however, this data set contains maps
in their original form before any interpretation was attempted. Thus, this set more
realistically simulates the task of interpreting density maps as a crystallographer
would first experience it; e.g., without the optimal phasing information from the
final structure.

CESG crystallographers initially phased these maps using either the Solve [82]
or Sharp [53] packages, with non-crystallographic symmetry averaging used to
improve the map quality where possible. The ten maps were selected as the “most
difficult” from a larger data set of twenty maps made available by CESG. The diffi-
culty assessment of these maps was based on expert judgment of the electron-density
quality (by E. Bitto and other members of CESG), as well as quantitative estimate of
phase error (see Table 4.2). These structures were previously solved by a crystallo-
grapher and deposited to the PDB, enabling a direct comparison with the correct
model. However, all ten required a great deal of human effort to build the final
atomic model.

Table 4.2 provides a summary of the protein structures in this data set, including
the resolution and phase error values indicating the quality of density maps. The
resolution refers to that available from the initial phasing, which may not reach the

56

PDB ID Amino
Acids

in ASU

Molecules
in ASU

Resolution
(Å)

Mean
Phase
Error

Unit-Cell
Size (Å)

2NXFa 322 1 1.9 58◦ 64× 87× 157
2Q7Aa 316 2 2.6 49◦ 82× 82× 107
3BUS 566 2 2.65 54◦ 119× 119× 84
1XRI 430 2 3.3 39◦ 124× 124× 124
1ZTP 753 3 2.5 42◦ 63× 117× 124
1Y0Z 660 2 2.4 (3.7b) 58◦ 145× 61× 115
2A3Q 340 2 2.3 (3.5b) 66◦ 74× 74× 236
2IFU 1220 4 3.5 50◦ 84× 91× 265
2BDU 594 2 2.35 55◦ 134× 134× 39
2AB1 244 2 2.6 (4.0b) 66◦ 46× 58× 89
a A different data set was used to solve the PDB structure
b Phasing was extended from lower resolution

Table 4.2: Protein structures in the experimentally phased protein data set. ASU
stands for asymmetric unit.

resolution limit of the data set. In three structures, the initial low-resolution phas-
ing was computationally extended to higher-resolution shells, using the algorithm
implemented in Resolve. The mean phase error was computed by comparing the
phases calculated from the final all-atom model with those in the initially phased
data set using the CCP4 suite [11] of programs. Included in this table are the size of
protein structure (i.e., amino acids in the asymmetric unit (ASU)) and unit-cell size
which also influence the difficulty of tracing a protein structure.

4.2 Assessing Protein-Structure Quality

As introduced in Chapter 3, Acmi is a three-phase system whose final product is a
protein-structure model that explains a provided electron-density map. To validate
techniques introduced in this document, I propose in this section various metrics
of assessing protein-structure quality. These methods borrow concepts from the
information-retrieval and crystallography communities.

57

4.2.1 Correctness and Completeness

When comparing a predicted protein structure to its ground-truth (i.e., PDB-deposited)
structure, one set of complementary metrics I employ is completeness and correctness.
Correctness describes the portion of amino acids in the predicted structure that
are within 2 Å of their corresponding true-solution location. This is similar to the
precision metric used in information retrieval, rewarding algorithms that make good
predictions, and ignoring how many predictions were actually made. 2 Å was chosen
by our group since it is approximately half the distance between adjacent Cα atoms.
The completeness of the predictions is the percent of amino acids available in the
PDB solution that are accurately predicted (within 2 Å). This is akin to a recall metric
and reflects how much of the true solution an algorithm recovered, while ignoring
extraneous predictions.

Correctness and completeness are calculated from the coordinates of the true
solution and the predicted solution. Specifically, given a list of coordinates for
the true structure, T =

{
~ti
}

, and a list of predicted coordinates by an algorithm,
A = {~ai}, for i = 1, . . . , N where N is the number of amino acids in the protein, I
compute the correctness as

Correctness =
∑N
i=1 f(~ti − ~ai)
|A| (4.1)

where the numerator is an indicator function that returns 1 if the distance between
~ti and ~pi is less than 2 Å:

f(~d) =
{

1 if ||~d|| ≤ 2 Å
0 else

. (4.2)

Completeness is defined as

Completeness =
∑N
i=1 f(~ti − ~ai)
|T| . (4.3)

Crystallographers often cannot place all amino acids in a protein. In this case, I
ignore the predictions for amino acids not in the true solution since there is no ground
truth to evaluate their accuracy. In other words, i only indexes over amino acids in
the true solution. If an amino acid is not predicted by an algorithm (but there is a
true solution) then ~ai is undefined and the indicator function in Equation 4.2 returns
0. Unless otherwise noted, the coordinate vectors represent the three-dimensional

58

(i.e., (x, y, z)) location of an amino acid’s Cα atom.

4.2.2 Root-Mean-Squared (RMS) Error

Another metric of precision used in statistics and bioinformatics is the root-mean-
squared error (RMS error), or root-mean-squared deviation, of an estimate. RMS error
measures the difference between the predicted and the actual values of some estimate.
Better estimates produce lower RMS error values, with a perfect prediction yielding
a value of 0.

In my application, RMS error measures the deviation in the (x, y, z) coordinates
between the predicted location of an atom and the actual (i.e., PDB) coordinates.
Each pair of values for a single atom form a residual error, and the root of sums of all
residual errors for a protein-structure prediction define the RMS error:

RMSE(A,T) =

√√√√ 1
N

N∑
i=1
||~ai − ~ti||2

=

√√√√ 1
N

N∑
i=1

(aix − ~tix)2 + (aiy − ~tiy)2 + (aiz − ~tiz)2. (4.4)

The vectors A and T are lists of (aligned) coordinates (e.g., predicted structure
and true structure, respectively). In my results, I often only look at the Cα atom
for each residue, so the lists will only contain the coordinates of those atoms. In
addition, an alignment search is first performed to minimize the RMS error. If either
the true structure or predicted structure do not make a prediction for a coordinate,
it is not included in either list of vectors since no comparison can be made. Thus,
RMS error is a measure of only predicted atoms, not all possible predictions. RMS
error is best used in conjunction with the completeness and correctness measures of
Section 4.2.1 to obtain a total picture of structure error.

4.2.3 R-factor

In interpreting an electron-density map, it is essential to have a metric to measure the
quality of the resulting protein structure. While the metrics in Section 4.2.1 validate
a protein model against a manual “ground truth” solution, crystallographers need
a metric that validates a structure on a novel protein structure. This is particularly
important when using computational methods where crystallographers must judge

59

the validity of a “black box” interpretation of a density map. To produce such
an assessment, crystallographers typically calculate a protein model’s R-factor (for
residual factor) to evaluate the quality of an interpretation. The R-factor provides a
measurement of how well a protein model fits the observed values in the electron-
density map.

Given the experimentally determined structure factors, Fobs, and the model-
determined structure factors, Fcalc, the R-factor is defined as:

R =
∑
||Fobs| − |Fcalc||∑

|Fobs|
. (4.5)

Structure factors are the initial diffraction values accumulated on the collection plate
in Figure 2.3, and roughly correspond to the intensity values of the diffracted X-ray
beams. Crystallographers usually strive to obtain R-factors under 0.2 (or lower,
depending on map resolution), while also building a physically feasible (i.e., valid
bond distances, torsion angles, etc.) model. In large, difficult proteins, however, it is
not uncommon to see values up to 0.6.

One problem with the R-factor is that Equation 4.5 is susceptible to overfitting –
one can always reduce the R-factor by placing extra water molecules in the density
map. This explains more of the density values, thus improving the model score,
but does not provide any meaningful contribution to the interpretation. To avoid
this problem, crystallographers measure the free R-factor, or Rfree, which is akin to a
held-aside test set in machine learning. Typically, 5-10% of reflections are randomly
held out during refinement of the model. Refinement optimizes the R-factor of
the remaining observations (now called Rwork). Once modifcations to the model
are complete, Rfree is calculated as the R-factor for these held-aside reflections,
providing a check against overfitting of the diffraction data.

4.3 Assessing Accuracy of Probability Distributions

While the accuracy of predicted protein structures is the ultimate metric for assessing
the performance of the entire Acmi system, the intermediate outputs of the system
are probability distributions over the protein structure. Specifically, the Phase 1
observation potentials and Phase 2 posterior probabilities are distributions over
the entire density map, produced for each amino acid in the sequence. To test
the performance of proposed shape-matching and inference techniques in these
phases, I propose two metrics in this section for reporting the accuracy of probability

60

distributions: log-likelihood probability and percentile rank of the true solution. In
each of these metrics, the gold standard is the deposited PDB solution. That is, I am
comparing a point-estimate1 to the probability distribution estimate.

4.3.1 Log-Likelihood Probability

One technique for assessing the accuracy of a probability distribution is to view
the probability value of the true solution, known as the likelihood. Since the output
space for each variable in my work is an entire density map, there are on the order
of one-hundred thousand possible locations for one amino acid, making most of
the probabilities very small. Therefore, I report the log-likelihood of the true solution,
with higher scores indicating better confidence in the correct answer.

To calculate the log-likelihood probability for an entire protein, I average the
log-likelihoods of each amino acid. That is, given a set of posterior probabilities,
P = {p̂(~xi)} for each amino acid, i = 1, . . . , N and the coordinates of the deposited
PDB solution for the structure, T =

{
~ti
}

, the average log-likelihood score is

AvgLLK =
∑N
i=1 log(p̂i(~ti))

N
. (4.6)

Recall from Section 2.2.1 that a probability distribution sums to 1. An algorithm
producing a posterior probability, p̂i must choose how to spread this mass over the
entire density map. If the probability estimate for amino acid i places all mass at
the true solution, ~ti, then the term log

(
p̂i
(
~ti
))

will take it’s maximum value of 0. If,

however, the value for p̂i
(
~ti
)

is low, the numerator takes on a negative value. Without
using a log-transform, the probability estimates can take on minuscule probabilities
(e.g., 10−6 for a uniform distribution), which would skew the average score. The
log-transform, however, reduces the impact of strong skews in likelihood values,
providing more meaningful results. In some results, I may report the negative log-
likelihood which creates visually better results, but flips the meaning of the solution
so that lower values indicate high confidence. As with correctness and completeness,
I ignore amino acids without coordinates in the PDB solution and ~ti specifies the
Cα coordinates for amino acid i.

1Here, a point-estimate refers to a probability distribution where all of the probability mass is at
one location.

61

4.3.2 Percentile Rank

While the log-likelihood provides an indication of the confidence in the true solution,
it may not provide the best indication of Acmi’s ability to produce the correct solution
in Phase 3. Often, I am more interested in the relative chance of selecting the true
solution. That is, how does the true solution compare to the other locations in the
map? When calculating likelihood, the size of the output space varies from protein
to protein, so the background (or uniform) chance of selecting the correct solution
also varies significantly.

To provide an indication of weight in the true solution relative to other locations
in the density map, I calculate the percentile rank. The percentile rank represents
how highly ranked the correct solution (i.e., location from the deposited structure
in the PDB) is in the posterior marginal probabilities. To calculate the percentile
for a given amino acid, I sort all of the probabilities in the posterior from highest to
lowest and then calculate the percent of locations lower than the true location. The
desired score of 100 means the true location had the highest probability value in the
map. This is akin to standardized test scores, such as the ACT or SAT, which report
how well your score is relative to the general test population.

Given a set of posterior probabilities, P = {p̂(~xi)} for each amino acid, i =
1, . . . , N and the coordinates of the deposited PDB solution for the structure, T ={
~ti
}

, the average percentile rank is

AvgPercRank =
∑N
i=1 rank(p̂i, p̂i(~ti))

N
× 100 (4.7)

where the rank score of an individual amino acid is

rank (p̂, threshold) =
∑
~x∈p̂ threshold > p̂ (~x)

|EDM |
. (4.8)

Here, the numerator is a comparison function that returns 1 if a threshold value
(e.g., true solution probability) is greater than some location on the “list” and 0
otherwise. ~x is a 3D coordinate in the electron-density map, and the denominator
serves as normalization constant where |EDM | is the number of grid locations in
the electron-density map.

62

5 Guiding Belief Propagation using Domain
Knowledge for Protein-Structure
Determination

In Section 3.2.2, I described Acmi’s use of a fully connected, pairwise Markov random
field to model the 3D location of each non-hydrogen atom in a protein. Since exact
inference in this model is intractable, Acmi uses loopy belief propagation (BP) to
calculate marginal probability distributions of each amino acid’s location in an
electron-density map. While previous work established that Phase 2 of Acmi does
well at performing inference on difficult proteins [21], BP is only an approximate
method in Acmi, suggesting there is room for improvement.

This chapter explores a critical design choice in performing inference: loopy belief
propagation’s message-passing protocol. I propose a novel, general framework for
using domain knowledge as a criterion for prioritizing messages in BP. Specifically,
I show that using predictions of protein-disorder regions effectively guides belief
propagation in Acmi, producing more accurate, complete protein-structure models.
Referring to the roadmap in Section 3.3, the contributions of this chapter apply to
Phase 2 of Acmi. Much of the work in this chapter appears in Soni et al. [78].

5.1 Introduction

As outlined in Section 2.2.2.2, belief propagation is an iterative, local message-passing
algorithm which distributes evidence between nodes in a graphical model. Figure 5.1
gives a high-level view of belief propagation on a simple MRF. A message is sent
between two random variables (i.e, nodes), conveying the sender’s belief in the
recipient’s state, with probabilities. At each iteration, BP must choose a message to
be delivered, calculate that message, and update the recipient’s current marginal
probability estimate. In graphs with loops (such as Acmi’s), the use of BP is not
guaranteed to arrive at the exact solution, or even converge to any solution. While
empirically successful in Acmi, BP is often abandoned in large, complex tasks due to
the inability or slowness to converge to a solution.

Elidan et al. [27] demonstrated that the manner in which messages are chosen to
be processed (or message-passing schedule) can dramatically affect the success of BP.
They show that a simple method (e.g., process messages in a round-robin fashion)
is suboptimal, slowing inference in the best case and preventing convergence in the

63

m13(x3)

m31(x1)

m23(x3)

m32(x2)

1

4 3

2

m14(x4)
m42(x2)

m41(x1)

m24(x4)

Figure 5.1: Message-passing on a simple Markov random field model. Each node
represents a random variable, xi. During belief propagation, messages, mij , are sent
across edges to convey xi’s belief in xj ’s current state. A message schedule defines the
order these messages are sent.

worst case. An efficient scheduler would require fewer message calculations as well
as produce better approximations to the true marginal probability distributions. In
Figure 5.1, we see the possible messages that could be sent for a simple graph. The
question is: in which order should BP send these messages?

Elidan et al. suggest a residual-based method, where each message is prioritized
based on how much new information it contains relative to the previous time it was
sent. Intuitively, this reduces redundancies and allows BP to identify areas of the
graph furthest from convergence. However, as my results will show, this technique
is ineffective in the fully connected graph used for Acmi, where it produces flat
probability distributions that are insufficient for sampling protein structures. I
propose, instead, a new method for scheduling messages in belief propagation
using domain knowledge. I apply this general framework to the task of performing
inference in Acmi, where a prediction of protein disorder [26] can serve as a priority
function for message passing. My results show, across a data set of difficult protein
structures, using such a function to prioritize messages in BP improves approximate-
inference performance in Acmi relative to a naive scheduling protocol. Additionally,
informed scheduling results in more complete and accurate protein structures.

64

Algorithm 5.1: Round-Robin BP in Phase 2
input : amino-acid sequence Seq of length N ,

vertex potentials ψi(~ui) for i = 1 . . . N
output : marginal probabilities p̂i(~ui) for i = 1 . . . N
iter ← 1
while Stop Criteria Not Met do

if isOdd(iter) then
startRes← 1; endRes← N

else
startRes← N ; endRes← 1

end

for i← startRes to endRes do
// Accept messages from all neighbors
p̂i(~ui)← ψi(~ui)×

∏
j∈Γ(i)mj→i(~ui)

// Calculate messages to all neighbors
foreach j ∈ Γ(i) do

mi→j(~uj) =
∫

EDM ψi,j(~ui, ~uj)× p̂i(~ui)
mj→i(~ui) d~ui

end
end

end

5.2 Message Scheduling in Phase 2 of Acmi (Belief
Propagation)

As discussed in Elidan et al. [27], an important design decision for belief propagation
is to define a protocol for ordering the passing and receiving of messages. In exact
inference, the ordering of messages only affects the rate of convergence, not the
final solution. In graph models with loops, however, the message-passing protocol
can affect the speed and accuracy of inference [27, 80]. Message-passing protocols
fall into two categories: synchronous or asynchronous. Synchronous message passing
is where all outgoing messages are calculated at the same time followed by a syn-
chronous reception of messages by all nodes in the graph. Asynchronous message
passing, instead, prioritizes messages, sending and updating one at a time. Elidan et
al. [27] showed that asynchronous message passing demonstrates faster convergence
tendencies and lower error bounds than synchronous message passing, in general.

Algorithm 5.1 shows the original implementation of Phase 2 from Section 3.2.3,
which I refer to as Round Robin Phase 2. In this formulation, Phase 2 of Acmi utilizes

65

an asynchronous message-passing protocol. In particular, nodes are treated in a
simple round-robin fashion where a pass begins at one end of the protein’s primary
sequence and works toward the other. On the first iteration, isOdd(iter) returns
true since 1 is odd, causing amino acid 1 to be the first residue to be processed. At
each step along the way, amino acid i first updates its belief based on Equation 3.6
and then updates its outgoing messages using Equation 3.7; this sequence is then
repeated by amino acid i+ 1, and so on. Unlike a traditional round-robin schedule,
once all amino acids are processed in one pass of Phase 2, the next pass works in
the reverse direction. This back-and-forth process continues until all beliefs reach
convergence, or some predefined maximum number of passes has been reached.

One disadvantage to this protocol is that it does not prioritize nodes based on any
metric of evidence or information gain. Even in the best case, this leads to a waste of
resources on passing low-information messages along the chain. A more worrying
problem arises when the ordering of nodes gives high priority to nodes with poor
prior information – that is, false positives in the match search from Phase 1 of Acmi.
This leads to poor evidence being passed around and thus smoothing away more
accurate information further down the protein sequence. The next two sections
explore alternative scheduling approaches which attempt to identify important
messages during the inference process.

5.3 Guiding Phase 2 using Domain Knowledge

The primary motivation for this work is that well-structured regions of the protein se-
quence are likely to contain better information in their local-match probabilities than
disordered regions of the protein. In fact, crystallographers often use such heuristics
to decide which portions of the protein molecule to begin manually placing in the
density map [George Phillips and Craig Bingman, personal communication, 2009].
Portions of the protein structure that are well-structured (or ordered) have a unique or
nearly unique conformation [26]. Disordered regions of structure, conversely, adopt
many different conformations under the conditions of the experiment. This often
results in smeared density in the protein image since an electron-density map is
an average over millions of copies of the protein, each of which takes one of many
possible conformations. Thus, the local-match search (i.e., Phase 1) is unlikely to pro-
duce accurate results for disordered amino acids since there is little evidence in the
map. To capture this intuition, belief propagation should guide messages based on
some domain-knowledge based priority function – that is, some expert-determined

66

Algorithm 5.2: Domain-Knowledge Guided BP in Phase 2
input : amino-acid sequence Seq of length N ,

vertex potentials ψi(~ui) for i = 1 . . . N ,
priority function pord(i) for i = 1 . . . N ,
decay factor ∆ > 0

output : marginal probabilities p̂i(~ui) for i = 1 . . . N
// Initialize priority queue based on function value, paired with node
foreach residue i do

PQ.push(< pord(i), i >)
end

while Stop Criteria Not Met do
// Pop top value and identify target node, i
< val, i >← PQ.pop()
// Accept messages from all neighbors
p̂i(~ui)← ψi(~ui)×

∏
j∈Γ(i)mj→i(~ui)

// Calculate messages to all neighbors
foreach j ∈ Γ(i) do

mi→j(~uj) =
∫

EDM ψi,j(~ui, ~uj)× p̂i(~ui)
mj→i(~ui) d~ui

end

// Add node i back to queue with decayed priority
PQ.push(< val −∆, i >)

end

function of a message’s relevance. If this function is accurate, random variables
deemed more influential or a priori more accurate should push belief propagation
toward quicker convergence and/or more accurate approximations.

Algorithm 5.2 shows an overview of my proposed inference algorithm for guiding
belief propagation in Phase 2 of Acmi. The main difference from the description
in Algorithm 5.1 is the introduction of a priority measure, pord. This probability
function is given to Phase 2 by a user. Guided BP then places the values, pord(i), into
a priority queue paired with the variable it describes. Each iteration of BP takes the
highest-priority variable, updates its belief, and updates messages to its neighbors.
Finally, the priority value is decayed before the variable is placed back in to the
priority queue.

While specifically built for my task, this formulation applies to any instance of
belief propagation. The function pord should describe the relative importance of node
i in influencing the network. For my task, it measures the probability that amino

67

acid i in a protein’s primary sequence will be well-structured in the final 3D solution.
Guided BP in Phase 2 uses this information to decide, for a given iteration, which
residue to next perform inference on. Intuitively, Phase 2 now focuses the initial
iterations on passing information along regions of the sequence likely to produce
stable structure. This probability measure is steadily decayed to allow other amino
acids to move to the top of the queue. This will allow the (predicted) ordered regions
to refine their probabilities, essentially locking in their locations. When less reliable
amino acids finally work up the queue, the ordered amino acids should contain
more confident messages and thus have a larger influence on the final distributions.

5.4 Related Work on Guided Belief Propagation

Several methods exist that attempt to improve BP performance by prioritizing nodes
based on the amount of new information they expect to receive from their neighbors.
As previously mentioned, Elidan et al. [27] formulated residual belief propagation
(RBP), a scheduling function based on the intuition that messages which differ sig-
nificantly from their previous value are more likely to push BP toward convergence.
Conversely, a message whose new value is similar to the value the last time it was
sent is contributing relatively little new information to the recipient node and should
have low priority.

RBP calculates a residual factor, ri, for each node1. When a neighbor of i is
updated, the residual factor is calculated, capturing the amount of new information
available. If that value is larger than the current value for ri, it is updated. Parameter
ri is defined:

ri = sup
j∈Γ(i)

‖mnew
j→i −mold

j→i‖1 (5.1)

where Γ(i) is the set of neighbors for node i and sup is the supremum of the set
of residuals for messages to node i. At each step of message passing, the node
with highest priority is popped off the queue. The popped node updates its belief
and outgoing messages before before its residual value (and priority) is set to 0. In
addition, all neighbors of the node update their priority values if applicable.

Further work by Sutton and McCallum [80] showed that residual BP still wastes
resources, since calculated outgoing messages may never be sent before they are
updated again. This occurs if a node’s neighbor updates twice before it itself is able

1While the original formulation maintains a residual for each message, the symmetrical nature of
Acmi’s MRF allows us to generalize the method to prioritize nodes instead.

68

Algorithm 5.3: Residual BP in Phase 2
input : amino-acid sequence Seq of length N ,

vertex potentials ψi(~ui) for i = 1 . . . N
output : marginal probabilities p̂i(~ui) for i = 1 . . . N
// Initialize priority queue
foreach residue i do

PQ.push(< 0, i >)
end

while Stop Criteria Not Met do
// Pop top value and identify target node, i
< val, i >← PQ.pop()

// Accept messages from all neighbors
p̂i(~ui)← ψi(~ui)×

∏
j∈Γ(i)mj→i(~ui)

// Calculate messages to all neighbors and update their residual values
foreach j ∈ Γ(i) do

mold ← mi→j(~uj)
mi→j(~uj)←

∫
EDM ψi,j(~ui, ~uj)× p̂i(~ui)

mj→i(~ui) d~ui

r ← ‖mi→j −mold‖1
if r > PQ.getVal(j) then

PQ.remove(j)
PQ.push(< r, j >)

end
end

// Add node i back to queue
PQ.push(< 0, i >)

end

to update. Sutton and McCallum, instead, estimate the residual values to calculate
priority and only update messages when they are actually sent.

In Section 5.6, I show how residual belief propagation affects performance in
Phase 2; specifically, how well the marginal probability distributions approximate
the true location of an amino acid in an electron-density map relative to the original
round-robin protocol and domain-knowledge based priority function. My design of
residual belief propagation for Acmi is shown in Algorithm 5.3.

69

5.5 Experimental Methodology

In Section 5.6, I compare several variations of belief propagation to determine the
effect of a message-passing protocol on Acmi’s ability to produce accurate protein
structures. Table 5.1 provides a brief summary of the methods and the abbreviation
used in the results. First is the original version of Phase 2 [21], which uses the
round-robin scheduling algorithm in Algorithm 5.1. In the results in Section 5.6, this
method is designated as ORIG. I also consider a scheduler based on residual belief
propagation [27] from Section 5.4. Algorithm 5.3 shows the details for applying resid-
ual belief propagation to Acmi, where I prioritize nodes according to Equation 5.1.
Phase 2 scheduled with this function is designated RESID in the results below. Last,
I consider a method based on Algorithm 5.2, utilizing domain knowledge to guide
Phase 2. In the results below, I denote this heuristic as GUIDED.

Not specified in Algorithm 5.2 is the source for the input pord(i). This function
would ideally measure the amount of order for amino acid i in the final protein-
structure solution. Since I do not know this a priori, I approximate the concept using
protein-disorder prediction [26]. Specifically, I use DisEMBL [56], a computational
method for disorder prediction using a concept known as “hot loops” – residues
without secondary structure (i.e., not a helix or strand) and with high temperature
factors. Temperature factors are a term in PDB entries describing the variance of
the atom’s location. A high temperature factor indicates either low confidence by
the crystallographer or the existence of multiple conformations. DisEMBL provides
reasonable predictions, identifying 60-70% of disordered residues while predicting
about 80% of ordered residues [30]. DisEMBL prediction scores are probabilities
measuring the likelihood that an amino acid is in a “hot loop” region. In my ex-
periments, I use the additive complement of this score to formulate pord(i); i.e.,
pord(i) = 1− pdisordered(i).

For each of the tests in Section 5.6, all methods use the same Acmi pipeline with
the only differences coming in the second phase. First, Phase 1 is run for each map
in the test set to produce the observation potentials, as conceptually presented in
Section 3.3. More specifically, I used the protocol in DiMaio et al. [23], which will
be discussed in Chapter 7. Then, Phase 2 is run with each of the message-protocols
above (i.e., ORIG, RESID, GUIDED) using the same vertex potentials as an input. Each
algorithm was run for the equivalent of forty passes across the sequence (i.e., 40×N
nodes were processed). While Phase 2 could run until convergence, previous results
found 40 passes to be a good stopping point beyond which performance usually

70

Abbreviation Scheduling Protocol Definition

ORIG Original, round-robin Algorithm 5.1
RESID Residual priority Algorithm 5.3
GUIDED Domain knowledge guided,

using disorder prediction
Algorithm 5.2

Table 5.1: Summary of methods evaluated in Section 5.6. The first column specifies
the abbreviation I use to represent the protocol in the text and figures. The second
column describes the protocol, with the final column referencing the relevant pseudo-
code. The main contribution of this work is GUIDED, which guides BP using domain
knowledge. RESID is an implementation of residual belief propagation for the task
of Acmi, while ORIG is the original implementation of BP in Acmi.

did not improve, and sometimes degraded [21]. For results in Section 5.6.2, Phase 3
sampled protein structures from the final marginal probability distributions of the
respective Phase 2 methods using the protocol in DiMaio et al. [19] (highlighted in
Section 3.3 and to be explored in Chapter 8). Each map was run ten times producing
a set of ten unique structures, of which the average solution is reported.

5.6 Results and Discussion

To evaluate the different methods for scheduling message passing in belief propaga-
tion, I ran each (i.e., ORIG, RESID, GUIDED) in the Acmi framework as described
in Section 5.5. See Table 5.1 for a summary of the three methods. Note that the
method GUIDED represents the main contribution of this work and presents a novel
algorithm for belief propagation. RESID, based on work by Elidan et al. [27], is
an implementation of residual belief propagation for Acmi. I compare the results
across the set of ten experimentally phased electron-density maps from Section 4.1.2.
Since this work modifies Phase 2 of Acmi, Section 5.6.1 first details the quality of
approximate marginal probability distributions produced using each of the different
message-passing protocols. While not directly modifying Phase 3, the probabilities
produced in Phase 2 are inputs for Phase 3 sampling of protein structures, and thus
the proposed methods each have an indirect effect on the final protein structure
produced by Phase 3. Section 5.6.2 reports the results of using the marginals from
Section 5.6.1 in Phase 3 to produce all-atom protein structures.

71

-20

-10

0

-20 -10 0
ORIG Log-Likelihood

G
U

ID
ED

 L
o

g
-L

ik
el

ih
o

o
d

(a)

-5

-15

-5-15
-20

-10

0

-20 -10 0
ORIG Log-Likelihood

R
ES

ID
 L

o
g

-L
ik

el
ih

o
o

d

(b)

-5

-15

-5-15
-20

-10

0

-20 -10 0
RESID Log-Likelihood

G
U

ID
ED

 L
o

g
-L

ik
el

ih
o

o
d

(c)

-5

-15

-5-15

Figure 5.2: Log-likelihoods of the true (i.e., PDB) solution, averaged over all residues
in a protein. Each point represents one protein in my experimentally phased test
set. The shaded region indicates better performance than the original BP protocol
(ORIG) for a) using protein-disorder prediction (GUIDED) and b) using residual
belief propagation (RESID) to guide Phase 2. The shaded region of the plot in c)
indicates better performance for GUIDED relative to RESID.

5.6.1 Approximate Marginal Probabilities

As described in Section 3.2, Phase 2 produces a marginal probability distribution for
each amino acid, describing the probability of that amino acid’s location at each point
in the electron-density map. Figure 5.2 shows the log-likelihood of the true solution
for each message protocol’s results. Detailed in Section 4.3.1, the log-likelihood is
the log of the probability for the true (x,y,z) coordinates for each residue, according
to the Phase 2 posterior marginals. The “true” solution is the solution provided in
the deposited PDB file. The higher the value, the more likely a final trace will place
the residue in its correct location. Each plot in Figure 5.2 is a versus plot, comparing
the performance of two different algorithms on the same test-set protein. Each point
in this figure represents one protein structure, and is an average of log-likelihoods
over all residues in that structure. Figure 5.2a compares ORIG to GUIDED, with
the diagonal line designating equal performance. All points above the line represent
maps where GUIDED produced higher average-log-likelihoods than ORIG. In all
but two maps, GUIDED improved the accuracy of Phase 2’s marginal probabilities.
In Figure 5.2b we see a similar comparison with RESID on the y-axis and ORIG
on x-axis. Here, RESID outperforms ORIG in 7 of the maps. Figure 5.2c shows a
mixed picture with RESID and GUIDED splitting on the performance across the test
set. The overall average-log-likelihood across all maps was -14.5 for ORIG, -12.0 for
GUIDED and -12.2 for RESID. Since these numbers are in log-scale, one should read

72

40

70

100

ORIG Percentile Rank

R
ES

ID
 P

er
ce

n
ti

le
 R

an
k

85

55

8555 1007040
40

70

100

ORIG Percentile Rank

G
U

ID
ED

 P
er

ce
n

ti
le

 R
an

k

85

55

8555
RESID Percentile Rank

G
U

ID
ED

 P
er

ce
n

ti
le

 R
an

k

(c)
1007040

40

70

100

85

55

8555 1007040

Figure 5.3: Percentile rank of the true solution’s probability, averaged over all residues
in a protein (see Section 4.3.2 for a definition of percentile rank). A higher percentile
implies the algorithm puts the true locations closer to the most probable location to
be sampled in Phase 3. The shaded area represents better ranks for the true solution
relative to ORIG for a) GUIDED and b) RESID. The shaded region in c) shows better
ranks for GUIDED than RESID. Each point represents one experimentally-phased
protein-density map.

these as orders of magnitude; that is, GUIDED performs 2.5 orders of magnitude
better than ORIG. In terms of likelihood of the true solution, on average, Phase 2
benefits from using either of the informed message-passing protocols.

One difficulty in comparing average log-likelihood values among different pro-
teins comes from the fact that the size of the probability space for each protein
varies. That is, an amino acid from a protein in a small unit cell has fewer possible
outcomes than a protein in a large unit cell. Instead of log-likelihood, we can look
at the percentile rank of the true solution. This is a normalized metric, allowing me
to compare results between maps. Figure 5.3 examines the percentile rank for the
true solution of a residue, averaged over all residues in the protein. Defined in
Section 4.3.2, the percentile rank of the true solution of one residue is the percentage
of points in that residue’s marginal probability below the probability of the true
solution’s location. Higher ranks indicate estimates closer to the true solution, with
100 being the optimal score. The plot in Figure 5.3 compares ORIG to GUIDED in a),
ORIG to RESID in b), and RESID to GUIDED in c). Again, both RESID and GUIDED
perform better than ORIG with a relative decrease in rank by 18 and 10 percentage
points respectively. That is, ORIG on average ranks the true residue solution at the
33% mark across all maps while GUIDED ranks at the 23% level and RESID at 15%.
According to this metric, RESID tends to produce better ranks than GUIDED, and
both outperform ORIG.

73

From these previous results, we can see an improvement in marginal probability
accuracy by the RESID and GUIDED message-passing schemes. Biologists, however,
are more interested in seeing if this translates into better protein structures at the
end of the Acmi pipeline. The final phase of Acmi, Phase 3 [19], samples all-atom
structures from the marginal probabilities produced by Phase 2 (details are found
in Chapter 8). This phase of Acmi revealed a shortcoming of RESID. While ORIG
(and GUIDED) tend to concentrate probabilities in a few peaks, RESID produced
smoother distributions with smaller and more numerous peaks. This is seen in
the entropy levels, where the average entropy for an RESID produced marginal
was 28.5, over five times higher than the 5.16 and 5.31 averages for GUIDED and
ORIG marginals, respectively. The prime culprit is that RESID is susceptible to
non-convergent oscillations. That is, a small group of nodes cannot arrive at a stable
probability state after a series of messages are passed within this cluster. In this case,
the residual stays high in this cluster without resolution, thus choking resources for
the other nodes. In fact, for each protein in my set, the median value for the number
of times a message was popped off the queue and updated in RESID was either 5 or
6, while the mean was 40. GUIDED, on the other hand, processed all nodes between
30 and 40 times.

Figure 5.4a and 5.4b show, for ORIG and RESID respectively, a typical distribution
of probability values within one amino acid’s marginal probability. These figures are
not an indication of accuracy, but rather a way of understanding the entropy of the
probability values. GUIDED produces a very similar histogram as ORIG, so it is not
shown here. For reference, there are 878,952 points in one map, meaning a uniform
distribution of probability would assign a log-likelihood of -13.7 to each point. For
ORIG, almost all points (98.4%) have the minimum value2 of -18.2, allowing for a
small number of locations to take up most of the probability mass. RESID, on the
other hand, distributes the mass much more evenly, with very few points having the
minimum probability value (0.8% of all points). In fact, ORIG, has only 280 locations
with a probability greater than uniform probability (i.e. greater than -13.7) while
RESID has 46,396 such locations. If we thought of Phase 2 as a filter to limit locations
considered in Phase 3, RESID eliminates much fewer locations.

This is problematic for Phase 3. To find a good solution, Phase 3’s sequential
sampling must adequately explore the conformation space of an amino acid. With
limited samples, this requires a restricted space of non-negligible locations to search,
which is what ORIG and GUIDED provide. RESID, however, contains more locations

2Acmi distributes a small amount of probability to each point to prevent probabilities of 0.

74

-16-20 -12 -8 -4 0
0

300K

900K

600K

Log-likelihoods

C
o

u
n

ts

ACMI-BP (ORIG)

(a)

-16-20 -12 -8 -4 0
0

300K

900K

600K

Log-likelihoods

C
o

u
n

ts

RESID

ORIG

(b)

Figure 5.4: The distribution of log-likelihoods for an example amino acid’s marginal
probability produced by a) ORIG and b) RESID. For comparison, I have also placed
the distribution for ORIG behind RESID in gray. The y-axis measures the number
of points in the probability map that have a certain log-likelihood value. The maxi-
mum log-likelihood value for any point is 0 (corresponding to a probability of 1). I
produced this distribution for an amino acid in 2NXF from Section 4.1.2.

of non-negligible probability than Phase 3 can sample in an efficient manner, causing
the algorithm to fail. In fact, across all ten proteins, nine failed to produce any

75

ORIG Correctness (%)

G
U

ID
ED

 C
o

rr
ec

tn
es

s
(%

)

(a)

50

70

100

50 70 100
ORIG Completeness (%)

G
U

ID
ED

 C
o

m
p

le
te

n
es

s
(%

)

(b)

90

60

8060 90

80

50

70

100

50 70 100

90

60

8060 90

80

Figure 5.5: Accuracy of predicted protein structures from the test set in Section 4.1.2.
Plot a) shows the correctness of predictions – the percent of predicted amino acids
within 2 Å of a corresponding residue in the true solution. Plot b) shows the com-
pleteness of the predictions – the percent of residues from the true solution with
a corresponding prediction within 2 Å. The shaded region indicates better perfor-
mance for GUIDED.

portion of the protein structure when using RESID marginals, and the tenth only
extended 5% of the total protein. The results in Figure 5.3 and the histograms in
Figure 5.4 reflect that RESID excelled at preventing the true solution from having
neglible probability (i.e., a percentile rank close to 0) and thus looked better on
average. RESID, however, did not eliminate enough portions of the density map
from consideration for Phase 3 to succeed. This explains why the rank was better
for RESID, but the log-likelihoods were slightly better for GUIDED.

5.6.2 Protein Structures

After Phase 2 produces a set of marginal probabilities, Phase 3 is run to sample
physically feasible protein structures. I compare how Phase 3 performs with GUIDED
produced marginals relative to ORIG produced marginals. As mentioned, RESID
did not produce the sharp distributions needed to sample protein structures and
thus the results for RESID are not discussed here.

Figure 5.5 shows the results of my experiments on a versus plot, with the original
Acmi protocol being shown on the x-axis (ORIG) and the method using domain
knowledge for guidance as in Algorithm 5.2 on the y-axis (GUIDED). Each point in
the plot refers to one of the test-set proteins. I assess the quality of structures using
the correctness and completeness metrics detailed in Section 4.2.1. Figure 5.5a shows

76

the correctness of the structures – the percentage of residues predicted that were
within 2 Å of their corresponding true solution location. Conversely, Figure 5.5b
shows the completeness of the predictions – the percent of residues available in the
true (i.e, PDB) solution that were accurately predicted (within 2 Å). Anything above
the diagonal indicates GUIDED produced better structures. In general, GUIDED
produced more complete and correct protein structures, particularly in the hardest
maps. GUIDED did worse on two proteins in terms of completeness and once in
terms of correctness. The underperformance in correctness occurs on a structure
Acmi was already performing well on; in fact, most of the proteins with high cor-
rectness did not change one way or the other based on the different marginals. Of
the three hardest proteins, however, the correctness was dramatically higher when
using GUIDED, and in two of these the completeness also improved.

5.7 Summary

Acmi was previously shown to outperform other methods in the literature in building
all-atom protein structures in low quality electron-density maps [19]. The success
of Acmi is due to its three-phase probabilistic framework. In this chapter’s work, I
improved the middle phase, Phase 2, which combines local-match information from
the first phase (Phase 1) with global constraints to produce a marginal probability of
each amino acid’s location in the density map. While Acmi is a successful method,
Phase 2’s results are only approximations, leaving room to improve the resulting
marginal probabilities. The accuracy of these probabilities are crucial for Acmi’s
ultimate success as they define the sampling search space for Phase 3 (the last phase).
Results from Elidan et al. [27] indicate that Phase 2’s original message-passing
protocol was suboptimal and an intelligent protocol could improve BP’s convergence
properties.

In this chapter, I introduce a general message-passing protocol utilizing domain
knowledge to guide belief propagation. I apply this to Phase 2 by using protein-
disorder prediction [26] to favor message passing between amino acids predicted to
be well-structured, particularly in the early iterations of BP. My results indicate that
guiding Phase 2 using this function improves Acmi’s overall performance. Across
most maps, the rank and log-likelihood of the true locations of each residue improve.
In addition, Acmi is able to build protein structures with improved completeness and
correctness from these more accurate approximate marginal probabilities, with the
greatest improvement coming in the most difficult test cases. The method proposed

77

by Elidan et al., residual belief propagation [27], fails to produce adequate marginal
probabilities for use in Phase 3, primarily due to its inability to sufficiently refine the
large state space for each amino acid.

One avenue of future work is to apply a similar domain knowledge function to
Phase 3, which utilizes particle filtering – an approximate-inference algorithm in
which each iteration also requires a choice of what amino acid to next sample in the
electron-density map. In addition, I would like to investigate the use of domain-
specific heuristics to guide loopy belief propagation when applied to other tasks,
particularly other large-state space problems in the field of computer vision. The
protocol developed in Section 5.3 and Algorithm 5.2 is a general approach for guiding
BP. That is, the use of a priority function is agnostic to the application at hand. Many
of the tasks using BP could benefit from my domain-knowledge message-passing
protocol, where rule-of-thumb heuristics can be encoded into a priority function to
guide BP. The only requirement is that the domain knowledge must be mapped into
a priority function over the random variables in the probabilistic model.

78

6 Probabilistic Ensembles for Improved
Inference in Protein-Structure Determination

In Section 3.2.2, I described Acmi’s use of a fully connected, pairwise Markov random
field to model the 3D location of each non-hydrogen atom in a protein. Of particular
importance is the model’s need for approximate-inference techniques (e.g., loopy
belief propagation) to calculate the best protein structure to explain a density map.
In Chapter 5, I briefly introduced the shortcomings of approximate inference in Acmi,
and the need for advanced methods to improve the quality of predicted protein
structures. In that chapter, I proposed guiding message passing in belief propagation
to improve approximate-inference results. This chapter explores a different solution
to the shortcomings of approximate inference: ensemble methods for probabilistic
models.

In this chapter, I develop Probabilistic Ensembles in Acmi (Pea), a framework
for leveraging multiple, independent runs of approximate inference to produce esti-
mates of protein structures. My results show statistically significant improvements in
the accuracy of inference resulting in more complete and accurate protein structures.
In addition, Pea provides a general framework for advanced approximate-inference
methods in complex problem domains. With respect to the roadmap from Sec-
tion 3.3, the contributions of this chapter apply to both Phase 2 and Phase 3 of Acmi.
Much of the work in this chapter appears in Soni and Shavlik [79].

6.1 Introduction

Over the past decade, the field of machine learning has seen a large increase in the use
and study of probabilistic graphical models due to their ability to provide a compact
representation of complex, multidimensional problems [50]. Graphical models
have applications in many areas, including natural language processing, computer
vision, gene regulatory network modeling, and medical diagnosis. Recently, the
complexity of problems posed in many areas of data analysis, such as statistical
relational learning [34], has stressed the ability of algorithms to reason in graphical
models. New techniques for inference are essential to meet the demands of these
problems in an efficient and accurate manner.

As discussed previously, one such application is our group’s work on Acmi. Acmi
employs approximate inference techniques to produce a probability distribution for

79

each amino acid’s location in the density map. While Acmi has shown promising
results, its inference is not guaranteed to arrive at the correct solution and, more
importantly, is computationally expensive. This limits Acmi’s ability to produce
sufficiently accurate solutions in some cases.

To overcome these limitations I propose Probabilistic Ensembles in Acmi (Pea), a
general framework for performing approximate inference in complex domains. Pea
borrows the concept of ensemble-learning methods from the supervised machine
learning literature [5, 17]. Section 2.2.3 describes ensemble methods in detail. While
traditional methods build a single model to estimate the underlying true model to
a problem, ensembles leverage a collection of estimates to produce a more accurate
solution. In classification, this is useful when the complexity of the underlying
model is too difficult to approximate accurately or the search for the true model is
non-convex (i.e., susceptible to many local minimums). A single approximate model
may only describe part of the true model accurately, but multiple, diverse models
may provide a cohesive estimate in aggregate.

I extend this idea to my task by performing multiple, independent runs of
approximate inference in Acmi to produce multiple probability estimates of the
protein’s locations. Each estimate may only be partially correct due to the loopy
nature of the graph, but the estimates in aggregate may provide a better idea of
the true probability distribution of an amino acid’s location. My results show Pea
dramatically outperforms Acmi in both the quality of inference and accuracy of
protein structures produced. Pea presents a novel, general approach to improved
approximate inference. While previous approaches used a collection of simplified,
exact inference solutions to estimate a difficult problem [84, 86], Pea instead considers
a collection of complex, approximate-inference solutions with each being built from
a different view of the problem.

6.2 Probabilistic Ensembles in ACMI

With the well-documented success of ensemble methods in classification tasks, I
seek to extend the idea of aggregating multiple estimates to probabilistic graphical
models. As discussed in Section 2.2.3 and in the previous section, current efforts by
other researchers in the area rely on simplifying the structure of an intractable graph
to create a collection of tractable problems [84, 86]. This is done by removing edges
in the graph until the sparseness of the graph allows for exact-inference methods.
This usually requires removing all cycles in the graph creating a tree graph. This

80

Protocol 1 Protocol 2 Protocol C. . .

P
1

P
h

as
e

1
P

h
as

e
2

. . .

P
2

P
C

P
h

as
e

3

a priori probabilities ψ
obs

Lo
ca

l M
a

tc
h

A
p

p
ly

 G
lo

b
a

l C
o

n
st

ra
in

ts

Posterior Marginal Probabilities P

Sa
m

p
le

 S
tr

u
ct

u
re

ui-2

ui-1

All-atom protein structureAll-atom protein structure

ˆ ˆ ˆ

AGG

Figure 6.1: Probabilistic Ensembles in Acmi (Pea). Phase 1 is the same as in the Acmi
framework (Figure 3.7). Phase 2 performs C independent inference runs, each with
a unique protocol. This results in a set of C marginal probabilities for each amino
acid’s location. Phase 3 aggregates the set of marginal probabilities to produce a
protein structure.

81

approach, however, does not readily extend to the graph in Acmi, which is fully
connected and thus difficult to convert to the necessary number of tree-structured
graphs1. In addition, previous work in Acmi introduced an approximation that
exploited redundancies in messages passing to dramatically reduce the complexity of
inference [20]. Described in Section 3.2.3, this approximation aggregates occupancy
messages into one message, reducing O(N2) messages to O(N) in one pass of BP
without removing constraints. Converting Acmi to a tree-structured graph loses
the gains from this approximation as well as important information encoded in
edges. Thus, unlike previous approaches, I am interested in an ensemble solution
that boosts the accuracy of inference, not the tractability.

I propose Probabilistic Ensembles in Acmi (Pea), shown in Figure 6.1 and Algo-
rithm 6.1. Pea is a framework for generating and combining multiple approximate-
inference solutions to create more accurate protein structures. As with ensemble-
learning methods in classification, there are two major design components to address.
In Section 6.2.1, I discuss how Pea generates a diverse set of solutions (i.e., ensemble
components). In Section 6.2.2, I describe my framework for aggregating these solu-
tions to produce a protein structure. Both of these components modify the existing
Acmi framework (compare Pea in Figure 6.1 with Acmi in Figure 3.7). Specifically,
generating diverse solutions amends the inference process in Phase 2 and combining
these solutions takes place in structure sampling of Phase 3.

6.2.1 Generating Ensemble Components

From Section 3.2.2, Equation 3.3 calculates P (U |M) – the probability distribution
over all possible protein structures given the density map. Since this calculation
is intractable, Phase 2 of Acmi produces p̂i, the approximate marginal probability
of amino acid i’s location for each amino acid in the protein sequence. Rather
than performing inference once, my proposed framework, Pea, performs several
independent runs of inference. As shown in Figure 6.1, each run (C in total) uses a
unique protocol and outputs its own marginal probability distribution for each amino
acid’s location. Phase 2, in total, produces a matrix of probability distributions P =
(P̂1, P̂2, . . . , P̂C) where each ensemble component c produces P̂c = (p̂1c , p̂2c , . . . , p̂ic).
Here, p̂ic represents the probability of amino acid i’s location in the density map
according to component c of the ensemble.

1In Acmi, a fully connected graph with N vertices will have N2−N
2 edges. To convert this MRF

to a tree-structured graph, at most N − 1 edges may exist, meaning N2−3N
2 − 1 constraints must be

removed.

82

Algorithm 6.1: Probabilistic Ensembles in Acmi (Pea)
input : amino-acid sequence Seq of length N ,

electron-density map of protein M,
number of ensemble components C,
inference protocol for each component protocolc

output : protein structure U = (~u1, ~u2, . . . , ~uN)
where ~ui is the coordinates of amino acid i

// Calculate vector of observation potentials, Ψ(U)
for i = 1 . . . N do

ψi(~ui)← Phase1(Seq,M)
end

// Generate ensemble of posterior probabilities, P
for c = 1 . . . C do

P̂c ← Phase2(Seq,Ψ(U), protocolc)
end

// Sample all-atom protein structure
U← Phase3(Seq,P)

As mentioned in Section 6.2, a desired property of an ensemble is that the
individual components are diverse. Fortunately, Elidan et al. [27] showed the choice
of a message-passing protocol (i.e., what order to send and receive messages between
nodes) has a large effect on the outcome of belief propagation, particularly in complex,
loopy graphs such as Acmi’s. Chapter 5 examined the effect of using various message-
passing schedules on Acmi’s performance and found that this decision choice has a
significant impact on the final solution of Phase 2 [78]. Section 6.3 provides example
message-schedules for generating ensemble components in Pea.

6.2.2 Aggregating Ensemble Components

In DiMaio et al. [19], we developed Phase 3 of Acmi which utilizes particle filtering [4],
a sampling algorithm, to generate all-atom protein structures given the posterior
marginal probabilities from Phase 2. Details are found in Chapter 8. Briefly, Phase 3
is an iterative process which sequentially grows a protein structure one amino acid
at a time2. Figure 6.2 shows how, at a given iteration, Phase 3 samples the location,
~ui, of amino acid i.

2Phase 3 maintains multiple estimates (or particles) during the sampling process and uses separate
steps to sample backbone and side-chain atoms. For simplicity, I only consider one particle’s backbone
placement in this description.

83

Figure 6.2: Acmi’s Phase 3 backbone sampling step for amino acid i. In a) Phase 3
samples M possible new locations, ~uim . In b) these locations are weighted by their
agreement with the Phase 2 probability, p̂i. In c) one location is chosen from the
weighted distribution to be amino acid i’s location, ~ui.

Phase 3 first samples M potential locations for the new amino acid based on the
location of already placed amino acids in the sequence and a distribution of known
angles and distances between neighboring amino acids (i.e., the adjacency potential
function ψadj(~ui−1, ~ui) from Section 3.2.2). Next, Phase 3 assigns a weight, wm, to
each sampled estimate, ~uim , correlated with the likelihood of amino acid i being in
that location. This is calculated from the Phase 2 posterior marginal probabilities:

wm ∝ p̂i(~uim). (6.1)

Lastly, Phase 3 chooses one of the M samples as its prediction for amino acid i’s
location in the structure. The sample is chosen with probability proportional to wm.

In Pea, I must adjust Phase 3 to deal with the existence of multiple Phase 2
posterior probabilities for each amino acid. I propose several functions for combining
these probabilities into a single weight measurement. First, I look at the average
score over all ensemble components using a mixture model:

wm ∝
∑
c

πc · p̂ic(~uim) (6.2)

where πc is the mixture weight, representing the confidence that component c pro-
vides the correct distribution3. The average score should perform well if the true
location tends to have a high score across all runs of inference while false positives
are uncorrelated between runs. False positives would be smoothed out and con-
sistent peaks would maintain high probabilities. Conversely, strong divergences

3πc can be set by various measures, such as entropy or prior knowledge. I use uniform weights in
my experiments.

84

between models would smooth away most information.
Another proposed weight function is to instead take the maximum score for a

given location across all components:

wm ∝ max
c
p̂ic(~uim). (6.3)

In difficult portions of a protein, it is likely that most models will miss the correct
location since there is very little evidence. Given multiple estimates, it is more likely
that one model found the correct answer. Using the maximum score allows Phase 3
to capture the correct location in this situation, although it may also over-emphasize
false positives.

Lastly, I consider using a subsampling approach where Phase 3 randomly selects
one of the ensemble components to score the location:

c ∼ U [1, C]

wm ∝ p̂ic(~uim)
(6.4)

whereU [1, C] returns an integer between 1 andC with uniform weight. Alternatively,
c could be drawn from a weighted distribution based on πc in Equation 6.2. This
technique fits intuitively into the sampling framework of particle filtering where
multiple structure estimates exist to explore several different paths to the end state.

6.3 Experimental Methodology

In Section 6.4, I compare the performance of our original Acmi framework from
DiMaio et al. [19] (i.e., the work from Section 3.2 with Phase 3 implemented in
Chapter 8) to my proposed algorithm, Pea. I use the set of ten experimentally phased
electron-density maps described in Section 4.1.2 for validation.

Phase 1 (performing an independent search for local features) is the same for both
algorithms, meaning Phase 2 for both the original Acmi and proposed Pea algorithms
begin with the same input. To clarify, Acmi herein refers to a single-inference version
of my method as shown in Figure 3.7, while Pea refers to the ensemble-inference
version of Acmi from Figure 6.1.

85

Pea Ensemble Components

Protocol ID No. of Iterations Starting AA

1 40 1
2 40 middle AA
3 20 1
4 40 arg maxi pord(i)

Table 6.1: Summary of protocols for ensemble components in Pea used in Sec-
tions 6.4.1 and 6.4.2. Each protocol varies in duration (number of times each node
sends a message) and starting point. AA stands for amino acid and pord(i) is the
protein-disorder priority function discussed in Chapter 5.

For the experiments in Sections 6.4.1 and 6.4.2, Pea utilizes an ensemble of size
four with each component having its own protocol:

• Protocol 1 is the original protocol of Acmi, which is run for 40 iterations per
amino acid in a round-robin fashion starting with amino acid 1, proceeding
left-to-right, and then reversing at the end of each pass.

• Protocol 2 is similar to Protocol 1, but starts halfway through the sequence.

• Protocol 3 is similar to Protocol 1, but runs for only 20 iterations.

• Protocol 4 employs guided belief propagation discussed in Chapter 5 and
shown in Algorithm 5.2.

I summarize these protocols in Table 6.1. Each of these protocols corresponds to an
independent run, c, of inference in Pea as shown in Figure 6.1.

I compare my ensemble approach to single runs of inference in Acmi. I consider
three variations of Acmi’s belief-propagation protocol for Phase 2:

• ORIG, same as Protocol 1. This is the original protocol for Acmi shown in
Algorithm 5.1.

• EXT, an extended version of the original protocol going for 160 iterations. EXT
uses as much CPU resources as all four protocols in Pea combined.

• BEST, the top-performing individual version of Acmi from the four protocols
considered for Pea.

86

Variations of Acmi

Abbreviation No. of Iterations Starting AA

ORIG 40 1
EXT 160 1
BEST — —

Table 6.2: Summary of three variations of Acmi considered as controls in Sections 6.4.1
and 6.4.2. Each protocol varies in duration (number of times each node sends a
message) and starting point. BEST is picked from the top-performing protocol in
Table 6.1.

Note that these are independent assessments of Acmi and are not combined. Table 6.2
summarizes these three variations. The BEST protocol provides an overly optimistic
estimate of Acmi to see how Pea performs as an ensemble relative to its individual
components.

For the learning curve in Section 6.4.3, 50 protocols were created. All were
based on the standard, round-robin schedule and executed for 40 iterations. Each
varies in the starting location and the direction of the first iteration. Twenty-five
starting locations were chosen, evenly spaced out in the sequence. Each starting
location spawned two protocols – one starting left-to-right, and the other right-to-left,
generating 50 components in all.

Phase 3 experiments in Section 6.4.2 were run with 100 particles (see Chapter 8
and DiMaio et al. [19] for details). For the aggregators in Section 6.2.2, my shown
results reflect a uniform mixture weight (i.e., π = 1/C if there are C components to
the model). I considered a weight based on the entropy of the distributions, but the
results were statistically equivalent to using a uniform weight. I determine statistical
significance using a paired t-test.

6.4 Results and Discussion

Using the methodology described in Section 6.3, I compare the performance of my
new approach of using Probabilistic Ensembles in Acmi (Pea) against the original
Acmi algorithm [19]. I compare the results across the set of ten difficult experimen-
tally phased density maps from Section 4.1.2. Since Phase 1 remains unchanged
between the two algorithms, I do not report the results of generating the observation
potentials here. Section 6.4.1 first assesses the quality of approximate inference

87

0

20

40

60

80

100

MAX AVG ORIG EXT BEST

Pe
rc

en
!l

e
Ra

nk
 (%

) ACMI
PEA

0

4

8

12

16

20

MAX AVG ORIG EXT BEST

N
eg

a!
ve

 Lo
g-

lik
el

ih
oo

d

(a) (b)

* *

* *

Figure 6.3: Accuracy of inference solutions across the set of ten experimentally
phased electron-density maps in Section 4.1.2. In a) percentile rank of the true
solution’s probability. A higher percentile means the algorithm puts the true location
of an amino acid closer to the top of a list of sorted probabilities. In b) the negative
log-likelihood of the true solution. Lower scores mean a higher probability value for
the correct answer. In both, columns are the average score over all amino acids in
all test-set proteins. Dark (red) bars represent variations of PEA, while light (green)
bars represent variations of ACMI. An * denotes a statistically significant difference
with ORIG at p < 0.01.

by comparing the accuracy of the Phase 2 outputs by the two approaches (single-
inference Acmi and ensemble method Pea). In Section 6.4.2, I feed these Phase 2
probabilities into Phase 3 to measure the accuracy of the all-atom protein-structure
models produced by Pea and Acmi. Lastly, Section 6.4.3 shows how the accuracy of
Pea changes as the number of ensemble components increases.

6.4.1 Approximate Inference

My first experiment assesses the quality of approximate-inference solutions pro-
duced in Phase 2 for both Acmi and Pea by examining the accuracy of posterior
marginal probabilities. In this experiment, Acmi and Pea use the same Phase 1
outputs to run their respective Phase 2 algorithms and halt before executing Phase 3.
Pea runs Phase 2 with the four ensemble components specified in Table 6.1. Given
these ensemble components, I measure the accuracy of the maximum score aggre-
gator from Equation 6.3 and the average score aggregator from Equation 6.2 (MAX
and AVG, respectively in the results). The sampling algorithm from Equation 6.4
performs aggregation as a step in Phase 3 and cannot be compared here.

88

To compare Pea against Acmi, I consider three controls detailed in Table 6.2:
the original, round-robin protocol (ORIG), an extended run of inference (i.e., 160
iterations) in Acmi (EXT), and the best-performing individual component of Pea
(BEST). BEST is not a realistic scenario for running Acmi since I identify the top
performer using the true solution, but it provides an overly optimistic, experimental
control against the ensemble method to see if any gains obtained are from combining
many weak solutions or from generating one strong solution.

Figures 6.3a and 6.3b show the results of running these techniques on a set of
difficult protein images. Figure 6.3a shows the percentile rank which represents
how highly ranked the correct solution (i.e., location from the deposited structure in
the PDB) is in the posterior marginal probabilities. The percentile rank, defined in
Section 4.3.2, measures the probability score for the true amino-acid location relative
to all other locations in the map. The optimal score of 100 means the true location had
the highest probability value in the map. In Figure 6.3b, the negative log-likelihood
is the probability value for the true location, transformed as a negative-log score
(see Section 4.3.1 for details). Here, I desire lower values as they indicate higher
probabilities. In both figures, one column represents the average score across all
10 test-set proteins and across all amino acids in those proteins. Columns are color
coded based on whether they are instance of Acmi (light green) or Pea (dark red).

Both figures show that the ensemble method, Pea, drastically outperforms the
existing, single inference version of Acmi across all protocols. Both the maximum
and average aggregators obtain scores in the 89th percentile compared to the original
Acmi protocol which averages scores in the 66th percentile. This implies that, on
average, there are three times as many false positives in Acmi versus Pea. The
negative log-likelihoods tell a similar story; the probability scores improve by over
three orders of magnitude by using ensembles.

One explanation of the results is that by generating four different solutions, Pea
is simply utilizing one good model that is itself better than the ORIG protocol. The
results for the best individual component of Pea (BEST), however, are only slightly
better than standard Acmi, showing that Pea benefits from combining multiple,
good models rather than from generating one very good model. Another alternate
explanation is that Pea is receiving more CPU resources (i.e., the sum of resources
for each ensemble component) and thus has an unfair advantage over ORIG. The
extended run of standard Acmi (EXT) does show minor improvements over ORIG,
but comes nowhere near the performance of Pea, showing that the gains of my
ensemble method cannot be explained away by the increased CPU resources. In

89

(a) (b)
50

60

70

80

90

100

MAX AVG ORIGSAMP

Pe
rc

en
t (

%
)

Correctness
Completeness

0

0.50

1.00

ACMI F -score

PE
A

F

-s
co

re

0.75

0.25

0.750.25 1.000.500

1

1

*

Figure 6.4: Protein-structure prediction accuracy. In a) correctness (light blue)
specifies the percent of predicted structure within 2 Å of the true answer, averaged
over all proteins from the experimentally phased map test set. Completeness (dark
red) is the percent of the true structure a method predicted within 2 Å. ORIG is the
standard Acmi algorithm and MAX, AVG, and SAMP are variations of PEA. An *
indicates statistically significant difference compared to ORIG at p < 0.05. In b)
I show a detailed comparison of F1-scores for ACMI (x-axis) and PEA using the
averaging aggregator (y-axis). F1 is the harmonic mean between the correctness
(precision) and completeness (recall) metrics. Each point represents one protein and
the shaded region indicates better scores for PEA.

addition, Pea’s use of resources are trivially parallelizable. The results of all pairwise
differences between the Pea variations and the three Acmi variations are statistically
significantly at scores of p < 0.01 for both metrics in Figure 6.3 based on a paired
t-test.

6.4.2 Protein Structures

While the previous results indicate my ensemble technique improves the accuracy
of approximate-inference probabilities, biochemists are more interested in the actual
protein structures produced. As a follow-up experiment, I used the marginal proba-
bilities from Section 6.4.1 as the input for Phase 3 of the Acmi and Pea algorithms,
respectively, to produce all-atom protein structures for all 10 of my test-set proteins.
I use the completeness and correctness (see Section 4.2.1 for details) of the resulting
protein structures to compare my proposed aggregators for Pea against Acmi.

Figure 6.4a shows the averaged results of my experiments. The first three pairs of
columns represent, respectively, the maximum (MAX), average (AVG), and sampling

90

(SAMP) aggregators for Pea presented in Section 6.2.2. The fourth pair of columns
represent the original Acmi protocol (ORIG). Within each pair, the first column
represents the correctness of the predicted protein structure (akin to precision in infor-
mation retrieval). The second column represents the completeness of the predictions
(akin to a recall metric). Each column represents an average over all ten test proteins.
The top performer across both metrics was Pea using the averaging function to
aggregate ensemble components. On average, 90.3% of its predicted amino-acid
locations were correct (compared to 79.3% for the original Acmi algorithm), while
completing 84.3% of the real structure (78.6% for Acmi). Importantly, all three Pea
methods outperform Acmi in both correctness and completeness measures.

Figure 6.4b provides a closer comparison of Pea versus Acmi. Here, each dat-
apoint represents the results of one protein in my test set. The x-axis value is the
accuracy of the original Acmi algorithm and the y-axis is the accuracy of Pea using
the average aggregator. To assess accuracy, I use an F -measure to combine the cor-
rectness and completeness metrics from Figure 6.4a. The F -measure is commonly
used in the information retrieval community to balance both the need for high preci-
sion and high recall, rather than looking at the metric individually. Here, I use the
traditional F1 metric, which is the harmonic mean of correctness and completeness:

F1 = 2 · correctness× completeness
correctness+ completeness

. (6.5)

The line represents equivalent performance, and the shaded region represents
values where Pea outperforms ACMI. In every test case, Pea performs better than or
equal to Acmi in the F1 metric, affirming the results from Figure 6.4a. The largest
improvement comes in the most difficult test case, with the F1-score improving from
0.25 to 0.66. This corresponds to an extra 41 percentage points of the true structure
being built and 42 percentage points of extra predictions being correct. Overall, Pea
shows substantial improvement in 6 of the 10 proteins with equal performance in
the other 4, although these values are not statistically significant. The variance in
overall performance is not correlated with either the size of the protein or image,
but indicative of the range in image quality in my test set.

Figure 6.4b only considers the average aggregator for Pea since it performed
better than the alternative options. As hypothesized in Section 6.2.2, the averaging
aggregator’s main advantage is that it can smooth away “noisy” probabilities. That
is, as seen in Figure 6.3, Acmi’s individual inference runs contain many incorrect
locations (i.e., false positives) with higher probabilities than the correct solution.

91

P
er

ce
n

ti
le

 R
an

k
(%

)

Ensemble Size

0 30252015105

100

80

60

40

Figure 6.5: Learning curves for ensemble inference. Each dashed line represents
one protein’s percentile scores for Phase 2 posteriors as the number of ensemble
components increases. Proteins were taken from the experimentally phased test set.
The solid black line represents the average learning curve.

This makes it more difficult for Phase 3 to find the correct location for the structure
during sampling. If an ensemble produces diverse solutions, however, than the
“noisy” locations should be independent between runs. When averaged together,
these incorrect peaks are smoothed away since they are low in probability in most
components, and the signal from the true location will be boosted since its signal is
detected by multiple inference runs. Thus, while each individual run produces mod-
erate results, the average together reveals only a handful of possible solutions. The
maximum aggregator and sampling aggregator also produced improved inference
probabilities, but did not translate into the same level of improvement in structure
quality as the averaging aggregator. It is difficult to pinpoint the exact reason, but
the areas of major difference happened to be in regions of the map with the least
amount of signal, implying the averaging aggregator handles noise the best.

6.4.3 Ensemble Learning Curve

As a last experiment, I consider how the size of an ensemble effects the accuracy
of inference in Pea. Due to resource limitations, I could not run larger ensembles

92

sizes for the previous experiments. Instead, for the seven smallest test-set proteins, I
generated ensembles with various number of components, ranging from 1 to 50. I
assessed each using percentile rank scores as described for Figure 6.3a. Figure 6.5
shows the learning curve for seven of my test-set proteins as the number of ensemble
components increases (the values past 30 are not shown since no change occurred).

Pea, here, uses the mixture-model average aggregator to combine posteriors.
The light, dashed lines represent the inference results for one test-set protein while
the thick, black line represents the average performance across the seven proteins.
As the figure shows, Pea gains accuracy from adding more components, making its
largest leap in performance with the first 10 ensemble components before seeing
very little improvement after 20 component ensembles. As such, I would expect
even more accuracy in producing protein structures by increasing the sample size in
Section 6.4.2’s experiments.

6.5 Summary

While Acmi was previously shown to outperform other automated density-map
interpretation methods in building all-atom protein structures in low quality electron-
density maps [19], performing approximate inference in Acmi’s model is an expensive
process in need of advanced inference methods. In this work, I developed a new
approximate-inference method based on the concept of ensemble-learning methods
from the supervised machine learning community. My new framework, Probabilistic
Ensembles in Acmi (Pea), executes several independent runs of inference to provide
multiple, diverse solutions to the problem. I suggest several protocols for generating
unique solutions for each component of the ensemble, as well as different techniques
for aggregating these models to produce a single, accurate prediction of the protein
structure.

My results show Pea provides improved performance on a test-set of 10 difficult
protein images. This improvement is seen in the accuracy of the inference process,
where the probability distributions from Pea were statistically significantly better in
terms of both percentile rank and probability value assigned to the correct location
of each amino acid. The results show that this improvement could not be explained
by either the extra CPU resources utilized or by using the single-best component of
Pea. More importantly, Pea’s improved inference translates into more complete and
correct protein structures.

In the future, I seek to test Acmi on a larger set of proteins, including membrane

93

proteins which present many difficulties for crystallographers [9]. Also, the learning
curve in Section 6.4.3 indicates Pea can demonstrate even better performance with
an increase in ensemble size. Further work is needed to manage the computational
resources required to accomplish this task.

While I presented ensembles of approximate-inference solutions for the task of
protein-structure determination, my method can generally be applied to difficult
inference problems where the complexity of probabilistic graphical models limits
the accuracy of current methods. In future work, I look to find such applications,
and to provide an in-depth comparison to related inference techniques that rely on
simplifying the graph structure [84].

94

7 Spherical-Harmonic Decomposition for
Molecular Recognition in Electron-Density
Maps

In Section 3.2.1, I introduced our group’s prior work on Acmi-FF, a 3D shape-
matching algorithm for computing the density correlation between a protein frag-
ment from the Protein Data Bank and a local area of the electron-density map.
Generalized as Phase 1, this process requires a six-dimensional search (three in
translations, three in rotations) to yield an observation potentials (or local match
score) for each amino acid. Acmi-FF uses fast Fourier transforms (FFTs) to reduce
the complexity of this computation over the three translational dimensions.

In this chapter, I report work done jointly with Frank DiMaio which uses spherical-
harmonic decompositions instead of FFTs to reduce the complexity over the rotational
dimensions. Spherical harmonics are analogous to a Fourier series, but mapped
into spherical coordinates, allowing an efficient comparison of 3D two objects at
different rotations. Our new method, Acmi-SH, is more efficient than Acmi-FF. It also
produces more accurate observation potentials and more accurate protein structures.
In addition, Section 7.3 introduces my work on using machine-learned classifiers to
a priori filter the search space, thus also reducing the complexity over translational
dimensions. I propose several classification methods which successfully reduce
Phase 1’s search space by four fold while also improving Acmi’s accuracy.

While the previous two methods apply to Phase 1 in the roadmap, I also propose
Shed, a method which extends the use of spherical-harmonic decompositions in
Phase 1 to a different problem – identifying homologous structures in an unsolved
electron-density map. Shed is a useful exploratory tool, recalling more homologous
structures from the PDB than sequence-based methods alone, such as Blast. The
work in this chapter appears in DiMaio et al. [23], an extension of our initial work [22].

7.1 Introduction

As outlined in Section 3.3, one important subprocess of Acmi is Phase 1 – a local,
feature recognition algorithm for detecting putative locations for each amino acid in
the electron-density map. This task is generally one of shape matching – computing
the correlation between two three-dimensional objects in a manner that is robust to

95

changes in rotation, translation, and/or scale1. As described in Section 3.2.1, this
search process requires comparing a set of template fragments from the Protein
Data Bank (PDB) against every location in the density map (i.e., three translation
dimensions), over all rotations (i.e., three rotation dimensions), for each amino acid
in the sequence. This 6D search is computationally expensive, requiring efficient
methods for exploring the search space. In prior work, DiMaio et al. approached this
task using the algorithm Acmi-FF (for Fast Fourier feature recognition) [21]. This
method utilizes fast Fourier transforms (FFTs) [12] to quickly perform a comparison
between two “signals” across all three-dimensional translations. Here, the signals
are the density map and the simulated density of a protein fragment2, and the com-
parison is the squared-density difference equation in Equation 3.1. While efficient
over translations, FFTs do not reduce the complexity of the rotational search.

In this chapter, I introduce a series of algorithms utilizing spherical-harmonic de-
compositions [49] to perform shape-matching. Spherical harmonics are analogous
to a Fourier series, but mapped into spherical coordinates. That is, spherical har-
monics represent shapes as a set of spherical basis functions with coefficients, as
shown in Figure 2.10. Importantly, spherical-harmonic decompositions (detailed in
Section 2.2.4) lends to methods that match two signals efficiently over rotations.

In Section 7.2, I present joint work done with Frank DiMaio on a new algorithm
for Phase 1, Acmi-SH (for Spherical Harmonic feature recognition), which uses
spherical-harmonic decompositions to score matches between template fragments
and local regions of the electron-density map. This decomposition lets us efficiently
match all rotations of the template fragment at a single location. This technique
produces more accurate observation potentials and, consequentially, more accurate
protein structures than Acmi-FF.

Second, Section 7.3 details methods for further reducing the Phase 1 search space
by developing classifiers that, a priori, filter out translational search locations (i.e.,
eliminate certain (x, y, z) coordinates from consideration). Acmi-FF reduced the 6D
search of Phase 1 by improving performance across all possible translations, but only
obtains this speed up by using the entire density map. Conversely, a “convolution”
over rotations allows me to mask – that is, to eliminate from consideration – some
(x, y, z) locations in the density map. I propose and evaluate a set of “first-pass filters”

1Scale invariance is not an issue in electron-density images because all maps are measured using
an absolute scale (e.g., Å) and the objects (i.e., atoms) are, for the most part, fixed in size from one
image to another.

2Protein structures are stored as point estimates; programs, like Sfall [11], model the expected
electron density from this point estimate.

96

that eliminate points that are not likely to match any template. A beneficial filter
will speedup Acmi, but also increase accuracy by removing possible false positives
from the density map and allowing greater granularity in the local template-match
search. One such filter achieves a four-fold reduction in search locations by utilizing
spherical harmonics to generate a set of rotation-invariant features for use with
supervised learning methods.

Lastly, in Section 7.4, I describe an extension of the fast rotation function, from
a) finding small-fragment matches to a density map, to b) searching for whole-
protein matches to a density map. This whole-protein search, Shed (Structural
Homology using Electron Density), detects structural homologs without requiring
the actual protein structure of the target protein. Results show that Shed detects
several structural homologs and, while requiring a raw electron-density map, out-
performs Blast [2] – a popular sequence-only, homology-detection algorithm – at
finding structurally similar proteins.

7.2 Local Template Matching with Acmi-SH

With Equation 3.3, I stated that Acmi uses a probabilistic model which ties local
density features with global constraints. A key component in this equation is the
first term, the observation potential, ψi(~ui), associated with each amino acid. In my
roadmap for Acmi, this potential is calculated by Phase 1. In prior work, Acmi-FF (Sec-
tion 3.2.1) performed this local template-matching procedure Acmi-FF. Phase 1, gener-
ally, scores pentapeptide representations of each amino acid, independently, against
all locations and orientations in the density map. This “amino-acid finder” algorithm
is a computationally intensive calculation. More importantly, as the only source of
evidence from the density map in Acmi’s Markov random field model, Phase 1’s
accuracy is critical to producing a quality solution. This section describes Acmi-
SH [22], a method for calculating observation potentials using spherical-harmonic
decompositions and the fast rotation function listed in Section 2.2.4. An overview of
our local match procedure appears in Algorithm 7.1, and is illustrated in Figure 7.1.

7.2.1 Methods

As in Acmi-FF, we use pentapeptide fragments from the PDB as a proxy for the amino
acid of interest in our search. Acmi-SH retrieves fragments from the PDB using the
same PAM-120 similarity metric as Acmi-FF for detecting sequence similarity. In
contrast to Acmi-FF, however, Acmi-SH does not cluster these fragments. Rather, the

97

Pentapeptide
Template

Electron-Density
Map

Density in
Spherical Shells

Spherical-
Harmonic

Coefficients

Correlation as a Function
of Template Rotation

sample region
of density

compute
expected density

spherical-harmonic transform

fast rotation function

Figure 7.1: Acmi Phase 1’s improved template-matching algorithm, Acmi-SH. Given
some pentapeptide template (left) Acmi-SH first calculates the template’s expected
electron density. On the right, Acmi-SH samples a spherical region from the electron-
density map. Then, it calculates spherical-harmonic coefficients for both objects, and
uses the fast rotation function to compute cross correlation as a function of template
rotation.

time savings described later allow us to consider each fragment itself as a search
template.

98

Algorithm 7.1: Local Template Matching with Acmi-SH
input : amino-acid sequence Seq,

density map M
output : vertex potentials ψi(~u,~r) for i = 1 . . . N
// Calculate distribution of random correlations
(µCC , σCC)← learn-from-tuneset()
foreach residue i do

// Find fragments with a similar 5mer sequence
PDBfragsi ← lookup-in-PDB(Seqi−2:i+2)
foreach frag ∈ PDBfragsi do

// Calculate SH coefficients for fragment
template← compute-dens(frag)
templCoef ← SH-transform(template)
foreach point ~uj ∈M do

if is-filtered-out(uj) then next uj
// Calculate SH coefficients for the local region of the map
signal← sample-dens-around(uj)
sigCoef ← SH-transform(signal)
// Calculate cross-correlation between fragment and map; convert to

probability
CC←fast-rotate(templCoef, sigCoef)
foreach rotation ~rk ∈ R do

zk ← (µCC − CCk)/σCC
pnull ← normCDF (zk)
ψi(~uj , ~rk)← (1− pnull)/pnull

end
end

end
end

When calculating the match for some pentapeptide against the density map,
Acmi-SH begins by computing the density we would expect to see given the pen-
tapeptide using Sfall [11]. We then interpolate this calculated density in concentric
spherical shells extending out to 5 or 6 Å in 1 Å steps. This is done to cover most
of the density in an average pentapeptide. A fast spherical-harmonic transform
computes spherical-harmonic coefficients corresponding to each spherical shell us-
ing a recursion similar to that used in fast Fourier transforms [37]. In parallel, we
produce a similar set of coefficients for the density around some grid point in the

99

electron-density map. Given these two sets of spherical-harmonic coefficients – ~a
corresponding to the template and~b corresponding to some location in the density
map – a fast implementation of Equation 2.12 computes the cross correlation over
all rotations of the template pentapeptide. Acmi-SH uses the implementation of
Kostelec and Rockmore [52].

After computing the cross correlation (CC), we compute the vertex potential
ψi(~ui) as the probability that a particular cross correlation value is not generated by
chance. That is, we assume that the distribution of the cross correlation between
some template’s density and some random location in the density map is normally
distributed with mean µ and variance σ2:

CC∗ ∼ N (x;µ, σ2). (7.1)

We estimate these parameters, µ and σ2, by computing cross correlations between
the template and random locations in the map. Given some cross correlation score,
cck for some rotation index k, we compute the expected probability that we would
see score cck or higher by random chance,

pnull(cck) = P (CC ≥ cck;µ, σ2) = 1− Φ((cck − µ)/σ). (7.2)

Here, Φ(z) is the normal cumulative distribution function. Each amino acid’s poten-
tial is then (1− pnull)/pnull.

7.2.2 Results and Discussion

In DiMaio et al. [22], we evaluate Acmi-SH by running the method against a battery
of three tests. Herein, I detail only the results from the one experiment that is part
of my contribution. The two additional tests can be found in the original work or in
Frank DiMaio’s thesis [18]. Specifically, the first of the two experiments measures the
error rate of using a spherical-harmonic representation. In other words, how much
information is lost when considering some finite set of spherical-basis functions.
This data helps set the bandwidth parameter, B, for Acmi-SH between 8 and 12
basis functions, and shows spherical-harmonic decompositions represent protein
structure with high fidelity. Second, DiMaio et al. compares the accuracy of Acmi-SH
against Acmi-FF using the negative log-likelihood metric from Section 4.3.1. The
results show Acmi-SH, on average, produces more accurate observation potentials
by two orders of magnitude across the model-phased test set in Section 4.1.1, and in

100

0

20

40

60

80

100

0 20 40 60 80 100

0

20

40

60

80

100

0

2

4

6

8

10

12
ACMI-SH
ACMI-FF
TEXTAL

RESOLVE

 C
α

RM
S

Er
ro

r

C
o

m
p

le
te

n
es

s(
%

)
0

2

4

6

8

0 2 4 6 8

ACMI-FF Cα RMS Error

A
C

M
I-

SH
 C
α

RM
S

Er
ro

r

3A reso.
4A reso.

(d)

(c) ACMI-FF Completeness(%)

A
C

M
I-

SH
 C

o
m

p
le

te
n

es
s(

%
)

3A resolution
maps

4A resolution
maps

3A resolution
maps

4A resolution
maps

(a) (b)

Figure 7.2: Comparing Acmi-SH’s protein models with three other methods. The
average scores across all test-set proteins are shown in (a) for Cα RMS error and
(b) for completeness – the percentage of amino acids from the true solution that are
predicted (within 2Å) by the respective method. The scatter plots compare Acmi-
FF’s performance with Acmi-SH’s individually for each test-set protein on (c) RMS
error and (d) completeness percentage. For (c) and (d) the shaded regions indicate
superior performance by Acmi-SH. The proteins in this experiment come from the
model-phased test set in Section 4.1.1.

less computational run time.
Here, I detail the results of our final experiment, which compares the perfor-

mance of Acmi with both Phase 1 methods (i.e., Acmi-FF and Acmi-SH) against
two other automated techniques specialized to low-resolution maps: Ioerger’s Tex-
tal [42] and Terwilliger’s Resolve [82], both described in Section 2.1.3. For the Acmi
methods, Phase 1 is either the prior method (Section 3.2.1) utilizing Acmi-FF for
local matching, or Acmi-SH. Following Phase 1, we run the original implemention
of Phase 2 (i.e., Acmi-BP), specified in Section 3.2.3. Finally, Phase 3 produces a
Cα backbone trace using Equation 3.83. In figures and discussion below, Acmi-FF
represents this pipeline with Acmi-FF being used in Phase 1; similarly Acmi with

3This work precedes Chapter 8 in the development of Acmi, so Acmi only produces backbone
traces and not all-atom protein models for our results in this chapter.

101

our new proposal technique represents Acmi-SH.
We utilize the model-phased test set from Section 4.1.1 where we truncate the

resolutions of ten density maps to 3 Å and 4 Å. To compare the accuracy of the models,
we utilize two metrics. First is the Cα RMS error, defined in Section 4.2.2, which
finds the best alignment between the predicted backbone trace and true solution
and measures the average root-mean squared distance between the respective Cα
atoms. Lower scores imply a closer alignment and thus higher accuracy. Second,
we report the completeness of predictions, discussed in Section 4.2.1, which is the
percent of amino acids from the true solution properly predicted. Higher scores
indicate better predictions. Figures 7.2a and 7.2b show the average Cα RMS error
and percentage completeness over the ten structures for each method. A more
detailed versus plot is shown in Figures 7.2c and 7.2d , where each point is a test-set
protein at either 3 or 4 Å simulated resolution. The x-axis indicates Acmi-FF’s score
while the y-axis shows the value for Acmi-SH. The shaded regions indicate points
with better results for Acmi-SH (i.e., lower Cα RMS error and higher completeness
percentages, respectively).

Acmi-SH shows a clear improvement over all other approaches. For 3 Å maps,
Acmi-SH shows slightly lower RMS error than Acmi, but roughly 1.0 Å and 1.3 Å lower
error than Textal and Resolve, respectively. With the 4 Å maps, however, Acmi-SH’s
advantage increases dramatically, producing structures with significantly less error
than all other methods. When comparing Acmi-FF to Acmi-SH, Acmi-SH rarely
performs poorly, with 8 of 10 structures having less than 1 Å of error in the 3 Å maps
and 7 of 10 maps performing better than Acmi-FF in 4 Å maps. One potential
problem with the RMS-error metric is that a method can improve its score by being
conservative with its predictions since the error does not penalize for amino acids not
predicted (e.g., predicting 5 amino acids with no RMS error is better than predicting
500 with 1 Å of error). Figures 7.2b and d, however, show that Acmi-SH’s lower
Cα RMS error occurs in conjunction with more complete predictions. In 3 Å maps,
Acmi-SH achieves almost 100% completeness and stays above 90% for 4 Å maps
as well. This is substantially higher than other methods, particularly at 4 Å where
Acmi-FF comes in second place with 62% completion. The scatter plot shows this
advantage occurs consistently, with only one protein at 4 Å performing better under
Acmi-FF.

The accuracy increase in using spherical harmonics likely comes from several
different places. The increased efficiency allows a finer angular sampling: the
bandwidth limit B = 12 in Acmi-SH is analogous to a 15◦ angular spacing for

102

Acmi-FF. This increased efficiency also lets us search for each individual template –
without clustering – which may also help accuracy since Acmi-SH can explore a
larger set of conformations for each amino acid. Finally, band-limiting the signal,
which throws out the highest-frequency components, may help eliminate noise from
the density map allowing preventing the match search from overfitting to noise.
Even with this improved accuracy, the running time of Acmi-SH is about 60% of that
of Acmi-FF using the settings above and the point-density filter in Section 7.3.1 for
eliminating 80% of search locations.

7.3 Filtering Methods to Prune Acmi-SH Search Space

Acmi-FF (Section 3.2.1) performs Fourier convolutions over the entire electron-density
map to efficiently match a template to a map. One disadvantage to this approach is
that the entire map must be considered in every calculation. In protein-structure
determination, however, the number of locations containing a template match is
small compared to the size of the map; that is, there are on the order of 1 Cα’s per
1000 grid points. Fortunately, Acmi-SH does not require a search at all locations since
rotational alignments are done independently at each point in the map. A significant
reduction in computation could be achieved if I can efficiently eliminate the areas
of the map not containing templates before performing a fast rotation alignment to
each template.

Figure 7.3 illustrates how such a “first-pass filter” would effect the search space
for Acmi-SH. In Figure 7.3a, I show the locations of the known Cα atom locations
for a sample protein in red. These values are taken from the final PDB file, but is
not available to Acmi in practice. Figure 7.3b shows, in white, the search locations
for a fully exhaustive template-match search in Acmi-SH – a spherical-harmonic
decomposition and fast-rotation match is performed (Figure 7.1) at every (x, y, z)
grid point. A good filter will substantially reduce the search space as in Figure 7.3c by
eliminating locations unlikely to contain a Cα. Here, the hypothetical filter removed
a majority of the grid space from the template-match search. Filtering, however,
can lead to a reduction in performance if it is too aggressive and eliminates true
positives. Figure 7.3d shows that such an instance; Acmi-SH misses a significant
number of actual Cα locations in its search.

103

(a) Cα locations (b) No filter

(c) Moderate filter (d) Aggressive filter

Figure 7.3: Illustration of a first-pass filter in Acmi-SH. In a), I show (in red) the true
Cα locations, unknown to the filter. Without a filter, Acmi-SH must do a full-rotation
match at every grid location, shown in b) as white dots. A filter can dramatically
reduce this search space, as shown with a moderate filter in c) and a more aggressive
filter in d).

7.3.1 Methods

In DiMaio et al. [22], Frank DiMaio and I compared several simple “first-pass filters”
that use information from the density map to estimate the likelihood that a template
is centered at some location in the map. Three of these filters are based upon the
observation that in density maps, especially poor-resolution maps, Cα locations
correspond to the highest-density points in the map [55]. We consider filtering
points based on the grid point’s density, as well as the average density in a 2 or
3 Å radius around each point. The example in Figure 7.3 uses such a filter.

We also consider a filter based on the skeletonization of the density map [35].

104

Skeletonization, similar to the medial axis transformation [7] in computer vision,
gradually “erodes” the density map until it is a narrow ribbon approximately tracing
the protein’s backbone and (in high-resolution maps) side chains. We consider
filtering each point based upon its distance to the closest skeleton point. This is also
the first-pass filter used by Capra [41] to eliminate points from the density map.

Finally, in DiMaio et al. [23], I developed an additional filter based on a set of
rotation-invariant descriptors derived from spherical-harmonic coefficients. While
spherical-harmonic coefficients are not rotation invariant, Kondor [51] theoretically
describes a transformation of these coefficients which creates a rotation-invariant set
of descriptors. In extending this work to our task, I describe a region of density in a
way that does not change as the region of density is rotated. Although these features
are more time-consuming to compute than the previous filters, computation time is
significantly less than that of a full rotational alignment of hundreds of templates at
a point in the map.

Briefly, Kondor [51] generalizes the bispectrum of a Fourier series to spherical
harmonics. The power spectrum of a Fourier series provides the amount of energy
in each frequency band of the signal and is known to be a translation-invariant
representation of a signal. However, it loses all phase information and thus cannot
reconstruct the original signal. The bispectrum is a way of representing a signal
in a way that is shift-invariant, yet uniquely identifies the original signal (up to
translational shifts). The power spectrum can be shown to be the Fourier transform
of the autocorrelation function:

corr(x) =
n−1∑
y=0

f(y + x) · f∗(y) (7.3)

where f(x) is the signal (e.g., density values), f∗(x) is the complex conjugate of the
signal, and y is an offset.

The central idea behind the bispectrum is to instead use the Fourier transform of
the triple correlation function:

a(x1, x2) =
n−1∑
y=0

f∗(y − x1) · f∗(y − x2) · f(y). (7.4)

Kondor [51] provides an in-depth proof generalizing this equation to functions on a
sphere. The bispectrum representation – given a function band-limited to bandwidth
B – produces O(B3) descriptors that are invariant to rotations of the original signal,

105

yet are able to uniquely reconstruct the signal (up to rotations).
Using these O(B3) features, I consider training a support vector machine (Svm) [14]

to recognize whether a region will match any template in my data set. Non-linear
Svms are a supervised learning method that learns a set of weights, αi, for each
example (corresponding to some distance – or kernel – function K(xi, xj)); when a
new example x is encountered, the weighted sum of distances

∑
i αiK(x, xi) is used

to classify the example. Thresholding this sum at different values allows me to trade
off the precision and recall of the classifier.

7.3.2 Results and Discussion

I divide my experiments into two sections; the first compares the simple density
filters against one another. “Simple” here refers to the fact that these methods do
not require any training set to learn parameter weights. The second experiment
compares the top-performing simple filter against my proposed method of using the
bispectrum of spherical harmonics to train a support vector machine. Each method
discussed evaluates each grid point in the density map and decides if the location is
likely to contain a Cα (and thus should be part of the search in Acmi-SH) or not.

7.3.2.1 Simple Density Filters

As specified in Section 7.3.1, there are four simple filters which rely on only the map
in question: point density, skeletonization, average over 2 Å sphere, and average
over 3 Å sphere. Each of these filters outputs a real value score, normalized between
0 and 1 with higher scores indicating a great chance that a grid location contains a
Cα. Jointly with Frank DiMaio, I compared the performance of these four simple
filters using the model-phased maps from Section 4.1.1. The results at both 3 Å and
4 Å resolution are shown in Figure 7.4. To create these plots, all grid-points were
first sorted according to the filter value, with higher values going closer to the top of
the list. These plots show, on the x-axis, the portion of the entire map we consider as
we move the threshold further down the sorted list. The y-axis shows the fraction of
true Cα locations above the threshold. For example, a point at coordinates (0.2, 0.9)
means a filter for which – at some threshold value – we look at only 20% of the
density map and still find 90% of the true Cα locations. This is similar to an ROC
curve, except the x-axis measures all points considered (i.e., false positives plus true
positives). An optimal method places all true Cα locations at the top of the sorted
list, yielding a value of 1 on the y-axis with an x-axis value close to 0.

106

0

0.2

0.4

0.6

0.8

1.0

0 0.1 0.2 0.3 0.4 0.5

Dist. to skel.
Point dens
2A-sphere dens
3A-sphere dens

C e
urt f

o
n

oitcarF
α

t
pek s

Fraction of 3Å resolution
map considered

Fraction of 4Å resolution
map considered

C e
urt f

o
n

oitc arF
α

t
pek s

0

0.2

0.4

0.6

0.8

1.0

0 0.1 0.2 0.3 0.4 0.5

(a) (b)

Figure 7.4: A comparison of four different filters for quickly eliminating some
portion of points in the density map. Filter performance is compared on (a) 3 Å and
(b) 4 Å resolution density maps from the model-phased test set.

Somewhat surprisingly, the simplest filter, the point density, performs the best at
both resolutions at all thresholds. This is surprising considering the point-density
filter ignores features in the region surrounding a grid point and would seem more
susceptible to noise. The other methods, however, are likely smoothing out distinc-
tive features by averaging the density and thus losing important information. The
experiments in Section 7.2 used the point-density as a first-pass filter in the Acmi-SH
method, eliminating a conservative 80% of the density map from rotational search.

7.3.2.2 Svm Filter Using Bispectrum Features

As a followup experiment, I compare the point-density first-pass filter above to a
filter using a trained Svm model, as motivated in Section 7.3.1. For each point in the
density map, I extract Kondor’s real-valued numeric features, similar to Equation 7.4,
from the spherical-harmonic decomposition of R = 5 concentric spheres of density
centered at that point. I use a bandwidth of B = 8 and shell width of 1 Å, producing
a set of features of size RB3 for each point in the grid, plus the density value of
the point. These values were chosen based on previous results for Acmi-SH and
also to prevent an explosion in the feature set size. If the grid point lies within a
short distance of a true Cα (≤

√
3

2 grid units, the maximum distance from a Cα
to its closest grid point), it is labeled as positive for being a place to search for a
template, otherwise it is considered negative when I evaluate ground truth. Features
are normalized per map.

107

An Svm model, unlike the four previous simple filters, requires training to learn a
decision boundary. To properly evaluate my Svm filter, I employ the commonly used
10-fold cross validation procedure. As is typical, 10-fold cross validation divides my
initial data set of examples into 10 subsets of examples. Of these 10 subsets, 9 are
pooled together to train the Svm model – the algorithm takes these examples along
with their ground truth labels and builds a model that learns how to separate the
positive examples from the negative examples. I use the last subset for validation
(i.e., testing). The ground truth labels are held aside while the examples are given to
the model to predict a label. I refer to this subset as the test set. I can then compare
the predicted labels against the ground truth labels to evaluate the accuracy of the
model. This is repeated 10 times such that each subset is used exactly once for
validation. In my experiment, each map constitutes one subset of examples since
I have 10 maps (e.g., I train on 9 maps and use one as the test set). Since there are
much fewer Cα’s than points in the grid, I have a large skew in the ratio of negative
to positive examples in the training partition. This can cause problems in training a
model, so I modify the procedure by removing enough negative examples in the
training partition to create an equal balance. This is neither necessary nor desired
for the test set.

Classification is done using an RBF kernel in an Svm using the SVM light [43]
package. To set the complexity parameter C as well as the kernel width γ, the
training examples in each fold are divided into two sets, 80% for actual training
(called training set) and 20% for evaluating the parameters (called tuning set). The
set of values considered for C are 1, 10, 100, and 1000 while γ ranges over 0.0001,
0.001, 0.01, and 0.1. The pair of values for C and γ that produce the largest area
under the curve of the function described in Figures 7.4 and 7.5 for the tuning set is
chosen for evaluation of the current fold’s test set.

Figure 7.5a plots the averaged results for both the Svm filter and point-density
filter on the 3 Å maps in my data set. The Svm filter outperforms the density filter
over the entire graph in 3 Å maps. This result is consistent across all maps. To
analyze the relative speedup of Svms over a simple filter, I look at the fraction of
the map needed to acquire 95% of the correct Cα locations (0.95 on the y-axis of
Figure 7.5). Using this metric, Svms provide a 31% reduction in number of examples
needed to be analyzed by Acmi-SH, relative to a simple point-density filter alone.
In fact, the difference in area under the curve and number of examples evaluated
is statistically significantly better for the Svm filter with a p-value less than 0.001
according to a two-tailed t-test.

108

0

0.2

0.4

0.6

0.8

1.0

0 0.1 0.2 0.3 0.4 0.5

SVM filter
Point dens.

Fr
ac

ti
o

n
 o

f t
ru

e
C
αs

 k
ep

t

(a)

(b)

Fraction of 3Å resolution
map considered

Fraction of 4Å resolution
map considered

Fr
ac

ti
o

n
 o

f t
ru

e
C
αs

 k
ep

t

0

0.2

0.4

0.6

0.8

1.0

0 0.1 0.2 0.3 0.4 0.5

(c) Fraction of experimentally
phased map considered

Fr
ac

ti
o

n
 o

f t
ru

e
C
αs

 k
ep

t

0

0.2

0.4

0.6

0.8

1.0

0 0.1 0.2 0.3 0.4 0.5

Figure 7.5: A comparison of two different filters: the best simple filter from Figure 7.4 –
the point-density filter – and a filter based on a support vector machine (Svm). Filter
performance is compared on model-phased maps at (a) 3 Å and (b) 4 Å resolution,
as well as (c) varied resolution, experimentally phased density maps.

109

The results for 4 Å maps, shown in Figure 7.5b, are not as convincing. While the
Svm filter does better at most levels of Cα’s kept, the performance only matches that
of the density filter above the 90% level. The area under the curve is slightly better
for the Svm filter, but the percentage of examples evaluated when 95% of Cα’s are
kept actually goes up slightly, although the values are statistically insignificant. It
seems likely that in lower resolution maps – where few fine details are visible – the
bispectrum features provide little additional information over the density values
alone. In some cases, using these additional features may even hurt performance by
overfitting the data.

So far in this chapter, the maps in my data set are all well-phased density maps
with poor resolution. Section 4.1.2 describes in detail a set of ten experimentally
phased (as opposed to model-phased) density maps from the Center for Eukaryotic
Genomics at the University of Wisconsin–Madison. Figure 7.5c shows the results
of running the point-density filter and Svm filter on this data set. Both filters show
decreased performance relative to the well-phased maps. The Svm filter, however,
shows a similar improvement in performance, relative to a point-density filter, as
in the 3 Å data set (Figure 7.5a). It produces a 31% relative reduction in number
of examples needed to be analyzed, filtering more than 75% of grid points while
keeping 95% of Cα’s. This implies that Acmi-SH would run in 31% less time with
an Svm filter compared to a point-density filter, and in roughly 75% of the time for
a full search, all while eliminating false positives at a similar rate. The filter does
come at a cost of throwing out false negatives, but a conservative filter can maintain
95% of correct locations while capturing these significant gains.

7.4 Structural Homology Search in Electron-Density Maps

In this section, I explore extending the local template-matching algorithm described
in Algorithm 7.1 to handle matching large macromolecules, such as entire proteins,
against an electron-density map. Rather than score a probability distribution over
likely centers of a template match, I use the fast rotational-alignment function [52, 83]
to quickly compare a database of protein structures against an electron-density
map of the target protein to find the best matching whole structures. Such a tool
would be useful in finding structural homologs to the target protein, even when no
solved structure exists. In particular, such an algorithm may be able to detect remote
homologs – proteins with similar structure but low sequence similarity. Sequence-only
methods, such as Blast [2] fail in these cases since they rely solely on sequence-

110

 MAILT...

Database of
Solved Structures

Target Sequence &
Electron-Density Map

A
A
N
M
C
.
.
.

M A I L T . . .

alignment scores
ID Score
1 64.1
2 2.3

ID Score
1 0.61
2 0.21

Sampling & SHED alignmentBLAST alignment

Computed Density Map

 AANMC...

Figure 7.6: A comparison of two homology-search algorithms. Shed (right) com-
pares a target protein’s electron-density map against a database of solved protein
structures. This algorithm is similar to that in Figure 7.1, except I compare the whole
protein structure against the density map instead of just small fragments. Blast
(left) considers the sequences of the solved structures and target protein, using a
dynamic programming model to measure similarity between two sequences. Black
arrows show the movement of density information, while grey arrows indicate the
use of sequence information from the inputs.

111

Algorithm 7.2: Structural Homology using Electron Density (Shed)
input : directory of structures PDB,

(masked) density map M,
number of centers of mass to consider K

output : correlation coefficient CCi between M
and each structure in directory i = 1 . . . |PDB|

// Calculate SH coefficients for the density map
COMmap← center-of-mass(M)
signal← sample-sphere-around(COMmap)
sigCoef ← SH-transform(signal)
foreach structure PDBi ∈ PDB do

CCi ← 0
// Consider several possible centers of mass
for k = 1 . . .K do

Ck ←multiple-COMs(PDBi, k)
// For each center of mass and offsets, calculate SH coefficients for
// the PDB structure and score the maximum match across rotations
foreach COMtemplate ∈ Ck do

foreach offset o ∈ {−1, 0, 1}3 do
template← compute-density(PDBi, COMtemplate+ o)
templCoef ← SH-transform(template)
templCC←fast-rotate(templCoef, sigCoef)
maxCC ← maxrot templCC
CCi ← max{CCi,maxCC}

end
end

end
end

based information. Having such structural homologs available may greatly aid a
crystallographer in map interpretation. Finally, determining structural homologs
may give key insights into a protein’s function even if the density map is too poor of
quality to produce an atomic model. This work appears in DiMaio et al. [23].

7.4.1 Methods

My approach considers the spherical-harmonic decomposition of a set of concentric
spheres of density that cover the majority of each solved density map (i.e., a template)
in a database. This database may contain experimental as well as computed density

112

data. Assuming I know the translational correspondence between each template
and the target density map, I may compute similarity between the two. I use our
fast rotational alignment to quickly match an entire protein to the density map, as
demonstrated in Figure 7.6. I formalize the problem as follows:

Given an electron-density map and a set of previously solved pro-
tein structures, find the solved structures that match the density
map best and are thus candidates for structural homologies to the
target protein.

Algorithm 7.2 provides the details of my structure-database search procedure,
which I refer to as Shed (Structural Homology using Electron Density). Figure 7.6
contrasts my method with Blast [2], which compares the sequence of a target protein
against a database of known proteins and their sequence. When no structure is
available for a target protein, sequence homologies can be used to imply structural
homologies. Shed, on the other hand, uses the target protein’s non-interpreted
density map to detect potential structural homologies. Both return alignment scores
indicating the degree of similarity between the (nonstructured) target protein and
each protein in the solved-structure database.

Shed begins with an unsolved target protein’s electron-density map and a database
of previously solved protein structures (e.g., the PDB). I convert this structure
database to a solved density-map database by simulating the expected electron-
density of the protein’s atomic coordinates. Ideally, each solved structure in the
PDB would come with its original electron-density map. Unfortunately, this data
is not always readily available, so – as with pentapeptide matching methods – I
calculate the density I would expect to see given an atomic model. As done by
the Ccp4 program Sfall [11], I model the scattering of each atom using a five-term
Gaussian approximation. A complication with density maps is that most unit cells
contain many copies of the protein structure. For my evaluation, I assume that a
crystallographer masks the target density map such that only the density values of
one copy of the protein remain. Ideally, this would be done automatically.

Given these inputs, Shed performs a spherical-harmonic decomposition on a
sphere centered at the center of mass of the (masked) target density map, sampling
density in 16 concentric spherical shells extending to 32 Å from the center. For each
solved density map in the database, Shed grabs a similar set of coefficients. The
inner-most loop in Algorithm 7.2 uses the fast rotation function to quickly computer
the correlation coefficients between the two density maps across all rotations. Shed

113

takes the maximum score across these rotations as the homology alignment score.
To account for a potential mismatch in mass distribution between the two objects,

I perform a small gridsearch around the center of mass of the structure from the
database. For each offset, the template map obtains a new set of coefficients and
calculates its maximum correlation with the target density map across rotations.

Additionally, in homology detection, a match structure may be much larger than
than the target protein, but share a domain of its structure (e.g., the active site in
a reaction). To account for these structures with multiple domains, I use k-means
clustering [60] to choose the best set of centers in the solved structures assuming
each input structure contains 1, 2, or 3 domains. Briefly, k-means clustering divides
the density map into k partitions, each represented by its center of mass. Each grid
point joins a partition based on which of the k center of masses (initialized randomly)
it is closest to. The k centers are updated and the process is repeated until the values
converge.

Overall, Shed’s optimal alignment score between a target density map and a
template density map is the maximum correlation coefficient over all center of
masses, over all offsets in the grid search, and across all rotations of the two objects.

7.4.2 Results and Discussion

To test the algorithm, I download a list of 6529 protein chains from the Pisces protein-
sequence culling server [85]. The database contains all PDB entries with resolution
≤ 3.0 Å, percentage amino-acid identity cutoff of 30%, and R-factor cutoff of 1.0.
Each of our ten 3 Å resolution maps is part of the test set and aligned against each
chain in the culled PDB data set, using the search method from Algorithm 7.2 and
the methodology above. As mentioned, one difficulty for handling the test-set maps
is that the density map may contain many molecules in the asymmetric unit. To
overcome this issue, I assume that a human isolated the area of the map where one
molecule exists and masks the rest of the map out. There are automated methods,
such as Findmol [61], which attempt to do this, but results on our low resolution
maps were not reliable. For our purposes, I manually masked the density map by
keeping density values for all grid points within 7 Å of a Cα in one monomer of the
protein. An additional problem is that noise in the density map may skew the center
of mass. To account for this, I searched a 2 Å×2 Å×2 Å grid around each center of
mass.

As a comparison, I use Blast [2] to see if the performance of Shed is better
than a sequence-only method. While structural-homology detection is not Blast’s

114

0

1

2

3

4

7

5 10 25

SHED
BLAST

N
ea

r-
h

o
m

o
lo

g
s

fo
u

n
d

Results Returned

5

6

Figure 7.7: The average number of homologous structures found by Shed and Blast
when considering the top 5, 10, and 25 results returned. A near-homolog is a returned
result that is also returned in the top 5, 10, or 25 results of DaliLite. Test-set proteins
came from Section 4.1.2’s experimentally phased density maps.

original intent, it does return detected sequence homologies. Sequence homology is
a reasonable proxy to structural homology when structural coordinates do not exist.
For ground truth, the held-aside solved PDB structure for our test maps is aligned
to each query chain using DaliLite [39], a dynamic-programming method which
finds the optimal alignment between two PDB files taking into account sequence
and structure.

Results are shown in Figure 7.7 and Table 7.1. For each map, I sort the alignment
scores from all PDB structures for both Shed and Blast. Figure 7.7 displays, for each
method, the average number of results in the top 5/10/25 results for that method
that are also ranked in DaliLite’s top 5/10/25 results. In other words, how many of
true top 5/10/25 results are found in Shed’s and Blast’s top 5/10/25 results? This
can be thought of as a measure of recall. Table 7.1 shows the same metric, but for
each map individually. For example, Shed’s top 5 scores for alignments on Map 1
were respectively ranked 2,3,4,6,1 in the DaliLite ground-truth calculation, meaning
that 4 of Shed’s top 5 results were in DaliLite’s top 5.

On average, my Shed method finds more structural homologs than Blast. If
you consider only the top 5 results returned by each method, Shed returns one
extra correct structure on average. This advantage grows larger as more results are
returned, although both methods begin to return many more false positives. Looking
at the specific results, with the exception of Map 5, my method does better than or

115

Top 5 Top 10 Top 25
Map Shed Blast Shed Blast Shed Blast

1 4 4 10 9 14 11
2 2 1 2 1 3 2
3 1 1 1 1 1 1
4 2 1 2 1 2 1
5 3 3 4 5 4 10
6 3 1 3 1 3 1
7 3 1 7 1 17 1
8 1 1 2 1 2 1
9 3 2 3 3 3 4
10 4 1 7 1 13 1

Wins 6 0 7 1 7 2

Table 7.1: Recall results broken down by map and size of overlap between a method’s
top 5/10/25 results and the true top homologous alignments. The “Wins” are the
number of maps over which one method outperforms the other, shown in bold.

equal to Blast, demonstrating that a density map does provide clues to the three-
dimensional structure of a protein that can aid in detecting homologous structures.
The bottom row in the table shows the number of “wins” each method has over the
other. When 5 results are returned, Shed identifies more correct structures 6 times
but never fewer. This advantage stays relatively the same, winning 7 to 1 when 10
results are returned and 7 to 2 when 25 results are returned.

Several maps, however, did not give great results for either algorithm. While
both methods consistently found the single best match, maps 2, 3, 4, and 8 did not
find many other matches. Looking at the DaliLite results, the alignment scores drop
significantly after the top match indicating there were no more significant results to
find. Another shortcoming is that the my method did not seem to find many domain,
or substructure, matches. That is, most results detected only global similarity in
structure. This could be addressed by isolating smaller spheres around the various
center of masses. Also, the density map should also be broken into many small
domains to match against possible domains in the solved structure. My algorithm
does run slower than Blast, but can perform a large database search in a few hours
on one CPU.

116

7.5 Summary

In this chapter, I described three contributions that utilize spherical-harmonic de-
compositions to provide an efficient representation of three-dimensional protein
fragments. Spherical harmonics describe a three-dimensional object with a set of
spherical basis functions and coefficients. This representation proves advantageous
in Acmi, primarily for the ability to use a fast rotation function [52, 83] to efficiently
match two objects across all rotations.

In Section 7.2, I described a new method for Phase 1 of Acmi’s pipeline – scoring
the probability of an amino acid being at a certain location in the density map
using proxy fragments (or templates) from the PDB. Previous work used Fourier
convolutions to quickly search over all (x, y, z) coordinates for some rotation of a
template. While efficient over translations, Acmi-FF still requires an exhaustive search
over rotations. Instead, we propose the use of a spherical-harmonic decomposition
of a template to rapidly search all rotations of some fragment at a single (x, y, z)
location. Results show that our proposed method, Acmi-SH, produces more accurate
protein-backbone solutions than Acmi-FF, Textal, and Resolve in terms of both Cα
RMS error and completeness of protein structure.

This new method flips the search efficiency of FFTs by being efficient over ro-
tations but not translations. This, however, turns to be an advantage as Acmi-SH
can use an initial filtering algorithm to “mask out” locations in the density map
unlikely to contain any Cα locations. In Section 7.3, I showed that a simple filter
using local density values is able to eliminate large portions of the density map
from the Acmi-SH search with very few false negatives. I also propose generalizing
spherical-harmonic decompositions to a set of rotation-invariant features, which I
use in training an Svm classifier for improved filtering of density points. My pro-
posed filter offers both improved efficiency and accuracy, compared to previous
work, finding substantially better models while reducing running time by about
75%.

Finally, I extend Acmi’s template-matching method to handle large protein align-
ments to a density map. My framework, Shed, demonstrates that electron-density
maps can be used in structural-homology search. In the absence of a solved struc-
ture, Shed produces more structural homologs than methods that only use protein
sequences alone, such as Blast. Shed can be useful in the early stages of structure
determination and can provide important information from maps which prove too
difficult to solve. Future work would need to address the limitations of needing to

117

isolate a single monomer in the density map before the search is performed. One
possible solution involves using our k-means procedure to isolate the center of each
monomer and then varying the radius of our sphere of sampling.

An interesting future direction involves template searching and Acmi’s prob-
abilistic inference. Acmi-SH makes it possible to efficiently search for a fragment
at a single location. This suggests an approach where Acmi-SH initially searches
very few locations. As Phase 2 performs inference, new locations that appear to be
promising Cα locations may emerge. Acmi-SH runs a search on these new proposals,
and the process iterates with Phase 1 and Phase 2 providing constant feedback. In
essence, this is using the first few iterations of the Phase 2 inference algorithm as
a first-pass filter. Another area of further work is to extend my Svm first-pass filter
to quickly estimate the observation potentials for Phase 1. If the rotation-invariant
features maintain a high-level of fidelity, classification should be able to estimate the
match score between a template and a location in the map. This would completely
eliminate the need for a rotational search, reducing Phase 1 to a three-dimensional,
translational-search problem.

118

8 Statistical-Sampling Methods to Produce
All-Atom Protein Models

In Section 3.2, I described the state of Acmi prior to the contributions of this thesis.
In that section, Acmi’s last step takes the Phase 2 posterior marginal probabilities
and creates a Cα backbone structure of a protein (Equation 3.8). While useful as an
intermediate product, biochemists are interested in the location of all of the (non-
hydrogen)1 atoms in the structure including the side chain and non-Cα backbone
atoms. In addition, Equation 3.8 independently calculates the most probable location
for each amino acid’s Cα on a 3D grid, resulting in a trace that is not guaranteed to
be physically feasible.

In this chapter, I describe a new method for producing all-atom, physically
feasible protein structures using a sampling technique known as particle filtering. This
new framework, titled Acmi-PF (for Particle Filtering), replaces the previous version
of Phase 3 in the Acmi roadmap. Results show that the resulting structures from this
technique are substantially higher in quality relative to other methods in the field on
a set of difficult protein structures. Furthermore, I present an additional extension to
Acmi-PF that incorporates domain knowledge into the sampling algorithm. While
the results of this later work failed to meet expectations, the framework introduced
suggests many areas of further exploration to improve the model. The first part of
this work was done jointly with Frank DiMaio and appears in DiMaio et al. [19], while
the later work on incorporating domain knowledge into Acmi-PF is independent,
unpublished work.

8.1 Introduction

In prior work, DiMaio et al. [21] developed the foundation of Acmi, summarized
in Section 3.2. In that work, Acmi was a two-phase process: first, a local template-
matching algorithm (Acmi-FF in Section 3.2.1) and, second, a graphical model to
enforce global constraints on the results from the first phase (Acmi-BP in Section 3.2.3).
The results of experiments show that Acmi outperforms other methods in the field,
including Textal, Resolve, and ARP/wARP [21], in tracing backbone structure in
low-resolution electron-density maps.

1In this chapter, “all-atom” actually means “all non-hydrogen atom”. X-ray crystallography, in
most protein crystals, cannot resolve hydrogen atoms. Thus, most PDB-deposited structures produced
via X-ray crystallography do not model hydrogen atoms in the protein structure.

119

(a) (b)

Figure 8.1: Interpretation of an electron-density map with a) only a backbone trace
and b) all-atom trace of both backbone and side-chain atoms.

However, Acmi makes several simplifications that inhibit the usefulness of these
results. For one, Acmi’s Markov random field (MRF) model reduces each amino
acid to a single atom in its representation – the Cα atom. The other methods tested
are able to not only trace Cα chains through a map, but construct all-atom protein
models including side-chain atoms. Figure 8.1 demonstrates, for a given electron-
density map, the difference between a backbone trace and an all-atom protein model.
Second, Equation 3.8 assigns the maximum probability location independently for
each amino acid, meaning that the location of two adjacent amino acids are not
necessarily biochemically consistent. Furthermore, Acmi restricts the locations of
each Cα atom to a coarse 3D grid, further reducing the physical feasibility of the
model.

In DiMaio et al. [19], I helped introduce Acmi-PF (for Particle Filtering), a statistical-
sampling method for sequentially constructing an all-atom protein structure. This
chapter will provide a brief overview of our method, which utilizes particle filter-
ing [25], a sequential analog to Markov Chain Monte Carlo (MCMC) methods. Specif-
ically, we employ statistical importance resampling (SIR), detailed in Section 2.2.5,
which extends a partial protein model in a stepwise fashion by drawing from the
posterior marginal probabilities produced by Phase 2 of Acmi. This new method
forms Phase 3 of the Acmi pipeline from the roadmap in Section 3.3. The results of ex-
periments on this new method show that Acmi’s Phase 3 produces physically feasible

120

structures containing both backbone and side-chain atoms. When we compare Acmi
to competing methods in the field on a test set of difficult protein structures, Acmi
excels in both completing the protein structure accurately and yielding structures
that explain the original electron-density map according to the Rfree metric.

In Section 8.5, I describe my work that attempts to improve Acmi-PF by incorpo-
rating biochemical domain knowledge into the sampling framework. Specifically, I
describe the use of secondary-structure prediction to provide more detailed and in-
formed sampling distributions for each sequential extention of the protein structure.
This work utilizes the wealth of data available in previously solved structures in the
PDB to show that secondary structure has a large influence on the bond angles and
torsion angles a protein backbone takes. While incorporating this information yields
mediocre results, my framework provides the building blocks for representing estab-
lished biochemical knowledge into a probabilistic sampling algorithm, suggesting
several avenues of future work.

8.2 Limitations of Acmi-BP

As described in Section 3.2, Acmi-BP’s probabilistic inference returns, for each amino
acid i in the protein’s primary sequence, the marginal probability distribution, p̂i(~ui),
of amino acid i’s Cα location. The distribution is over all grid locations in the electron-
density map, ~ui = (xi, yi, zi). As outlined in Equation 3.8, the backbone trace is than
taken as the position of each Cα that maximizes Acmi-BP’s belief,

~ui
∗ = arg max

~ui

p̂i(~ui). (8.1)

While results were favorable relative to other methods for producing backbone
traces [21], Acmi-BP has several shortcomings. First, biologists are interested in not
just the position ~ui

∗ of each Cα, but in the location of every atom in the protein.
Figure 8.1 demonstrates, for a sample electron-density map, the difference between
a backbone trace and an all-atom protein model.

Second, Acmi-BP represents the probability of a Cα location over a 3D grid,
meaning the maximum marginal location is assigned to grid points. By forcing
locations to be at discrete grid locations, Acmi-BP often produces out-of-range bond-
lengths (i.e., too short or too long).

The last issue arises from the independent nature of Equation 8.1. While Acmi-
BP produces probability distributions by enforcing global constraints, Equation 8.1

121

A

B

prob=0.40

A

B

prob=0.35

A

B

prob=0.25

A

max marginal

Figure 8.2: Illustration of an infeasible backbone trace produced using Equation 3.8.
In the first three panels, Phase 2 of Acmi infers that there are three likely confor-
mations for amino acid A and B. By choosing the maximum likelihood location
independently for each, however, the backbone trace places both amino acids in the
same location as shown in the last panel.

chooses the maximum location independently for each residue. Figure 8.2 shows
one possible resulting error, where inference places high probability in three feasible
traces, but the maximum marginal path results in an overlap in the chain trace.
Equally problematic, two adjacent residues may be placed on opposite sides of the
map because there are multiple copies of the protein chain in the sequence.

8.3 Producing All-Atom Protein Structures using Acmi-PF

Section 2.2.5 provides an overview of particle filters. In particular, I describe the
general theory behind statistical importance resampling (SIR), a sequential Monte Carlo
method for sampling variable states in a probabilistic model. Extending SIR to the
task of protein-structure tracing requires us to modify the notation.

Recall that particle filters represent a probability distribution with a set of
(weighted) point estimates, as in Equation 2.13. To restate:

p(x1:K | y1:K) ≈
N∑
i=1

w(i)δ(x1:K − x(i)
1:K) (8.2)

where k is an index into the amino-acid sequence and i is the particle index. Each
particle represents one estimate of the protein structure with K amino acids, x1:K .
An individual variable in this structure, xk, represents the location of all atoms for
amino acid k – side chain and backbone. The evidence variable, yk, represents the
electron-density map. Since the density map is the same for all amino acids, we can
drop the subscript and use y.

To simplify, we parametrize xk as a Cα location bk (the same as ~ui in Equation 3.8,

122

sample M bk+1’s

from ψ(bk ,bk+1)

. . .
Σ

pick weighted sample
from distribution

(b)p̂ *m
k+1

wk wk+1

update particle weights as
sum of sample weights

1 3

4

b (i)
k−1

b (i)
k

(i)

*m

weight samples
by belief pk+1

2

(b)p̂ *M
k+1k+1

(b)p̂ *1
k+1k+1

(b)p̂ *2
k+1k+1

b (i)
k−1

b (i)
k

b (i)
k+1

Figure 8.3: An overview of the backbone forward-sampling step. Given positions
bk−1 and bk, we sample M positions for bk+1 using the empirically derived distri-
bution of Cα–Cα–Cα pseudoangles. Each potential bk+1 is weighted by the belief
p̂(b∗mk+1) – Phase 2’s marginal posterior probability. We choose a single location from
this distribution of weights; the particle weight is multiplied by the sum of sample
weights.

where our vector notation has been dropped), and a side-chain placement sk; that
is, xk = {bk; sk}. The side-chain placement identifies the 3D location of every non-
hydrogen side-chain atom in amino acid k, as well as the position of backbone atoms
C, N, and O.

Given this parametrization, the Markov process, as outlined in Algorithm 8.1,
alternates between placing: (a) a Cα position and (b) a set of side-chain atoms
Accompanying each step is an update to the particle’s weight, reflecting how well
the produced sample matches the evidence. The following two subsections describe
the backbone and side-chain steps, respectively, for a single particle given a partially
sampled structure xj:k. Without loss of generality, I’ll describe the sampling step
as moving forward (i.e., sample xk+1 given xj:k). The algorithm can also sample
backwards (i.e., sample xj−1), requiring only a change in indices.

8.3.1 Sampling Cα’s Using Phase 2 Marginal Probabilities

In our algorithm’s backbone step, our goal is to sample the Cα position b(i)k+1, given
our growing trace b(i)j:k, for each particle i. From Section 2.2.5, a particle filter needs
a proposal distribution from which to draw new variable states (e.g., backbone
location). The optimal sampling function is the transition probability, p(bk+1 | b

(i)
k ,y)

123

Algorithm 8.1: All-Atom Structure Sampling with Acmi-PF
input : density map y,

amino-acid marginals p̂k(bk)
output : set of protein models x(i)

1:K and weights w(i)
K

// start at amino acid with highest certainty
choose k such that p̂k(bk) has minimum entropy
foreach particle i = 1 . . . N do

choose b(i)k at random from p̂k(b
(i)
k)

w
(i)
k ← 1/N

end
foreach residue k do

foreach particle i = 1 . . . N do
// choose bk+1 given b(i)k
{b∗mk+1} ← choose M particles from ψadj(b

(i)
k , bk+1)

w∗m ← p̂i(b∗mk+1)
b
(i)
k+1 ← choose b∗mk+1 with probability ∝ w∗m

w
(i)
k+1 ← w

(i)
k ·

∑M
m=1w

∗m

// choose sk given bk−1:k+1
{s∗lk } ← all side-chain conformations for amino acid k
p∗lnull ← prob cc(s∗lk , EDM [bk]) occurred by chance
sk ← choose s∗lk with probability ∝ 1/p∗lnull − 1
w

(i)
k+1 ← w

(i)
k ·

∑L
l=1 1/p∗lnull − 1

end
end

from Equation 2.16. Particle filtering, however, is based on the assumption that this
distribution is too difficult to sample from directly. Fortunately, it is straightforward
to estimate using Acmi-BP’s produced marginals.

First, by definition of conditional probabilities, our sampling function becomes:

p(bk+1 | b
(i)
k ,y) = p(b(i)k , bk+1 | y)

p(b(i)k | y)
. (8.3)

That is, the distribution of locations for Cαk+1 given Cαk and the density map, y,
is equal to the joint distribution of both Cαs’ locations given the map divided by
the probability of Cαk’s already sampled location. Fortunately, we can approximate
both quantities using the posterior marginal probabilities from Phase 2. Recall that

124

the belief for amino acid k, p̂k(bk), is an approximation to the quantity p(bk |y). Thus,
our sampling function becomes:

p(bk+1 | b
(i)
k ,y) ≈ p̂k(b

(i)
k) · p̂k+1(bk+1) · ψadj(b

(i)
k , bk+1)

p̂k(b
(i)
k)

≈ p̂k+1(bk+1) · ψadj(b
(i)
k , bk+1). (8.4)

Here, p̂k+1(bk+1) is the result of Phase 2 – the probability of amino acid k + 1’s Cα-
atom location given the density map as evidence. The adjacency potential function,
ψadj(b

(i)
k , bk+1), is used here to represent the joint distribution between two adjacent

Cα atoms. In other words, we sample the location of Cαk+1 from the product of
(a) amino acid k + 1’s marginal distribution and (b) the adjacency potential between
Cαk and Cαk+1.

The optimal weight update for each particle is also intractable to compute, but
can be approximated using Acmi’s marginals,

wik+1 ∝ wik ×
∫
p̂k+1(bk+1) · ψadj(b

(i)
k , bk+1) dbk. (8.5)

Equations 8.4 and 8.5 suggest a sampling approach to the problem of choosing loca-
tion of Cαk+1 and reweighting each particle. This sampling approach is illustrated
pictorially in Figure 8.3 for sampling the location of bk+1 for one particle.

Briefly, given the locations of the Cα atoms for amino acids k and k − 1 for
some particle i, we sample M putative locations for bk+1 according to the adjacency
potential function, ψadj(b

(i)
k , bk+1)2. Each of these M locations is then weighted by

the Phase 2 marginal probability score, p̂(bk+1). The sum of all of these weights
and locations approximates the integral in Equation 8.5, thus our weight-update
function is

wik+1 = w
(i)
k ·

M∑
m=1

w∗m. (8.6)

Finally, this procedure must return a single estimate for b(i)k+1. The collection
of M estimates and their weights approximates our defined sampling distribution
from Equation 8.4, so we sample and return one of the M estimates with probability
proportional to each estimate’s weight.

2This function encodes the distribution of Cα-Cα bond lengths and Cα-Cα-Cα angles as seen in
solved structures in the PDB.

125

pick weighted sample
from distribution

update particle weights as
sum of sidechain probs

3

4

Σ (s)p̂ *ℓ
k

wk wk

b (i)
k−1

b (i)
k b (i)

k+1

sample L sk ’s from

sidechain database

1 *ℓ

weight samples using

p(sk) = p(EDM[bk] | sk)

2

b (i)
k−1

b (i)
k b (i)

k+1

s (i)
k

*ℓ(i)ˆ

(s)p̂ *3
k

*ℓ

(s)p̂ *2
k

(s)p̂ *1
k

Figure 8.4: An overview of the side-chain sampling step. Given positions bk−1:k+1,
we consider L side-chain conformations slk. Each potential conformation is weighted
by the probability of the map given the side-chain conformation. We choose a side
chain from this distribution; the particle weight is multiplied by the sum of these
weights.

8.3.2 Sampling Side-Chain Atoms Using PDB Templates

Once our particle filter has placed Cαk+1 at the location bk+1, it is ready to place all the
side-chain atoms in amino acid k. We denote the position of these side-chain atoms
sk. This lag in placing a side chain after the next backbone atom is located allows
us to easily place a template in the map. By aligning a template with bk−1 through
bk+1, we avoid performing an expensive search around the backbone. Given the
amino-acid sequence around k, we consider all previously observed conformations
of side chain k by sampling from the PDB. Details of this subprocedure can be found
in Frank DiMaio’s thesis [18]. Briefly, our sampling and weight update equations
for placing side chains are very similar to Equations 8.4 and 8.5, with the difference
being that side-chain placements do not contain a distribution analogous to the
Phase 2 probabilities. Instead, we use the cross-correlation measure from Phase 1
(discussed in Section 7.2.1) to estimate the probability that a chosen side-chain
placement explains the electron density in a region of the map.

As illustrated in Figure 8.4, side-chain sampling uses a method similar to the
backbone sampling of the previous section. We consider extending our particle
by each of the L side-chain conformations {s(1)

k , . . . , s
(L)
k } sampled from our side-

chain database. After computing the cross correlations between each side chain

126

and the density map around bk, each side-chain conformation is weighted by the
probability the cross-correlation score was not produced by chance. We choose a
single conformation at random from this weighted distribution of L subsamples.
Lastly, we update our particle’s weight by the sum of weights of all the side-chain
conformations considered to approximate the optimal weight update function –
similar to the backbone weight update in Equations 8.5 and 8.6.

8.4 Experiments and Results

We compare Acmi including our new Phase 3 algorithm (Acmi-PF) to three other
automated-interpretation methods across the set of ten experimentally phased density
maps from Section 4.1.2. These approaches, described in Section 2.1.3, are the
commonly used density-map interpretation algorithms ARP/wARP, Textal, and
Resolve. Refinement for all algorithms uses the same protocol, refining the predicted
models for 10 iterations in Refmac5 [68]3. Acmi uses a three-phase protocol with
the implementation of Phase 1 from Section 7.2, the Phase 2 implementation from
the prior work (Section 3.2.3), and the Phase 3 proposal in this section using 100
particles. In the results below, Acmi refers to this three phase pipeline.

To assess the prediction quality of each algorithm, we consider three different
performance metrics: (a) backbone completeness (see Section 4.2.1), (b) side-chain
identification, and (c) Rfree factor (Section 4.2.3). The first metric measures: of all
possible Cα’s to predict, what percentage is within 2 Å of any Cα atom in the true
PDB solution? The second measure counts the fraction of Cα’s both correctly placed
within 2 Å and whose amino-acid type (e.g., tryptophan) matches the PDB-deposited
structure’s amino-acid type. Side-chain identification is stricter than completeness –
its value will always be less than or equal to completeness. Finally, the Rfree factor,
described in Section 4.2.3, is a measure of how well the predicted structure matches
the electron-density map. A lower Rfree factor indicates a better model.

Figure 8.5 compares all four methods in terms of backbone completeness and
side-chain identification, averaged over all ten test-set proteins. Under both of these
metrics, Acmi locates a much greater fraction of the protein than the other approaches.
Acmi performs particularly well at side-chain identification, correctly identifying
close to 80% of side chains over these ten poor-quality maps. In particular, in almost
every instance Acmi correctly lays a backbone atom, it also identifies the correct
amino-acid type of that atom. This is most likely the result of Acmi’s maintenance of

3ARP/wARP, which integrates refinement and model-building, was not further refined.

127

% backbone complete

% side chain identified

Pe
rc

en
t

o
f t

ru
e

m
o

d
el

0

20

40

60

80

100

ACMI ARP/wARP Resolve Textal

Figure 8.5: A comparison of Acmi to three other automatic-interpretation methods
in terms of average backbone completeness and side-chain identification. Each bar
represents the average score over our test set of ten experimentally phased density
maps in Section 4.1.2.

a specific probability distribution for each amino acid in the sequence. Competing
methods tend to identify generic protein structure first, and then register the amino-
acid sequence to the structure post-hoc.

The three versus plots in Figure 8.6 compare the Rfree of Acmi’s complete model
to each of the three alternative approaches, for each density map. Any point below
the diagonal (shaded grey) corresponds to a map for which Acmi’s solution has
a lower Rfree, and thus a better protein structure. These plots show that for all
but one map, Acmi’s solution has the lowest Rfree factor. The lone exception, in
Figure 8.6a, corresponds to ARP/wARP having a lower Rfree factor on the protein
2NXF. This protein has a fairly high resolution value of 1.9 Å. It was included in our
set because the map is poorly phased, making it difficult to interpret. ARP/wARP
automatically traces 90%, while Acmi correctly predicts only 74%. While Acmi can
handle difficult maps, ARP/wARP is able to iteratively recalculate a map given its
previous predictions, thus improving the phase quality. In these experiments, Acmi
does not have this capability4, explaining its relatively poor performance in this
instance.

4Work on recalculating phases in Acmi can be found in Section 5.5 of Frank DiMaio’s thesis [18].

128

(a) ARP/wARP 7 Rfree
A

C
M

I R
fr

ee

0.25

0.35

0.45

0.55

0.65

0.25 0.35 0.45 0.55 0.65

(b) Textal Rfree

A
C

M
I R

fr
ee

0.25

0.35

0.45

0.55

0.65

0.25 0.35 0.45 0.55 0.65

(c) Resolve Rfree

0.25

0.35

0.45

0.55

0.65

0.25 0.35 0.45 0.55 0.65

A
C

M
I R

fr
ee

Figure 8.6: A comparison of the Rfree factor of Acmi’s interpretation for each of the
ten experimentally phased density maps versus (a) ARP/wARP, (b) Textal, and
(c) Resolve. The scatterplots show each interpreted map as a point, where the x-axis
measures the Rfree factor of Acmi and the y-axis the alternative approach. Points
below the line indicate better quality models by Acmi.

8.5 Incorporating Biochemical Domain Knowledge into
Acmi-PF

In this section, I describe my explorations into incorporating sequence-specific
information into the protein-structure sampling algorithm, Acmi-PF. Specifically, I
analyze the effect of using secondary-structure prediction to specify theψadj(~bk,~bk+1)
function of Section 8.3, which I use to sample Cα atoms.

8.5.1 Motivation

Section 8.3 introduces a method for producing all-atom protein structures using a
statistical-sampling technique called particle filtering. Algorithm 8.1 describes how
Acmi-PF creates a set of protein structures by extending an initial structure where,
on each iteration, one backbone atom is placed followed by the side-chain atoms

129

c

d 1

2

2

3

1

θ

1

2 3

4

φ

(a)

(b)

(c)

Figure 8.7: Components for sampling a new atom location. Given the distance d
to the previous atom, angle θ formed with the previous two atoms, and dihedral
φ formed with the previous three atoms, the new atom location can be exactly
determined.

of the previous residue. The method for sampling the backbone atom relies on a
subsampling procedure, shown in Figure 8.3. First, Acmi-PF samples potential Cα
locations for amino acid k+1 based on the adjacency potential functionψadj(~b

(i)
k ,
~bk+1)

where ~b(i)k is the already sampled location of residue k’s Cα in particle i. While
Acmi-PF showed success in producing feasible protein models, much of the primary-
sequence information – biochemically crucial to determining the protein fold – is
ignored in sampling. Research in the protein-structure community has shown that
a great deal of predictive information is available by considering sequence-specific
information. An example is Ramachandran plots [73], which specify the distribution
of dihedral angles that backbone atoms exhibit in known structures. These plots
show that amino-acid type, as well as secondary structure, has a strong influence on
the bond angles a protein forms in its backbone.

In this work, I analyze the value of incorporating secondary-structure information
in modeling the adjacency function, ψadj , for sampling a new backbone location in
Acmi-PF. Recall that this adjacency function is the same as the adjacency potential
from Acmi-BP in Section 3.2.3, which enforces constraints in the Markov random
field between adjacent amino acids. Specifically, the potential function between two
adjacent Cα’s k and k+1 is modeled based on three components: a pairwise distance
function d(xk, xk+1), an angular function θ(xk−1, xk, xk+1) and a dihedral, or torsion

130

3.6 3.93.83.7 4.03.6 3.93.83.7 4.0

Fr
ac

ti
o

n

(a) (b)

Angstroms
3.6 3.93.83.7 4.0

Angstroms
3.6 3.93.83.7 4.0

Fr
ac

ti
o

n

(c) (d)

Angstroms Angstroms

All Strands

Helices Loops

Figure 8.8: The length of Cα–Cα bonds in the PDB for a) all residues, b) residues in
strands, c) residues in helices, and d) residues in loops. I created each histogram
by collecting structures from the PDB, and then assigning a secondary-structure
assignment to each residue using Dssp. In b), c), and d), I also show, in gray, the
distribution for all residues from a) for comparison.

function φ(xk−2, xk−1, xk, xk+1). This formulation is based on vector mathematics –
given a dihedral angle, a bond angle, a bond distance, and two vectors (i.e., the
previous two peptide bonds), the fourth point in the sequence can be uniquely
determined. Figure 8.7 demonstrates the effect of each measurement on determining
a fourth point.

Acmi, prior to this section, represents each of these as independent parametric
functions, where we learn the parameter values (e.g., mean, variance, prior, distri-
bution type) from solved structures in the PDB. Acmi ignores all residue-specific
information when obtaining these values. Thus, the assumption underlying each
parameter is that bond length, angle, and torsion distributions are independent of
any sequence-specific traits. For example, Acmi models the backbone angles between

131

0 1359045 1800 1359045 180

Fr
ac

ti
o

n

(a) (b)

Degrees
0 1359045 180

Degrees
0 1359045 180

Fr
ac

ti
o

n

(c) (d)

Degrees Degrees

All Strands

Helices Loops

Figure 8.9: The angle of Cα–Cα–Cα bonds in the PDB for a) all residues, b) residues
in strands, c) residues in helices, and d) residues in loops. Values were obtained as
in Figure 8.8.

two Cα’s in an α-helix the same as if they were in a β-sheet.
Figures 8.8, 8.9, and 8.10 show that this assumption, in some cases, does not hold.

To produce these distributions, I determine the secondary-structure information for
each protein structure in the PDB using the Dictionary of Protein Secondary Structure
(Dssp) definitions [47], a standardized protocol for assigning secondary-structure
labels to deposited PDB structures. Dssp assigns one of nine secondary-structure
types to each residue in the PDB entry. These nine types generalize into one of three
majority categories – helices, strands, or loops – which I present in these figures.

Figure 8.8 compares the distribution of bond lengths for all Cα–Cα bonds in the
PDB versus the same information conditioned on secondary-structure type. As the
figure shows, modeling bond lengths as invariant of secondary structure does not
lose much information. The means of each distribution are roughly 3.8 Å. Helices,

132

0 27018090 3600 27018090 360

C
o

u
n

ts

(a) (b)

Degrees
0 27018090 360

Degrees
0 27018090 360

C
o

u
n

ts

(c) (d)

Degrees Degrees

All Strands

Helices Loops

Figure 8.10: The torsion angle of Cα–Cα–Cα–Cα bonds in the PDB for a) all residues,
b) residues in strands, c) residues in helices, and d) residues in loops. Values were
obtained as in Figure 8.8.

however, do show a tighter distribution of lengths around this mean with a standard
deviation of 0.047 Å compared with 0.078 Å for loops and 0.060 Å for strands.

While bond lengths seem invariant of secondary structure, secondary-structure
type shows a significant influence on both bond-angle and dihedral-angle distri-
butions. Figure 8.9 shows the distribution of Cα–Cα–Cα angles conditioned on
secondary-structure type. When all pseudoangles are considered in one distribution,
as in Figure 8.9a, bond angles show a characteristic mixture of two Gaussians. The
distribution for loops shows a similar characteristic, although with different mixture
parameters and variances for the two Gaussians. The key difference occurs when
we consider angles occurring in helices or strands. Helices tend to group tightly
around 92.2◦ while strands have a wider distribution centered at 123.5◦. These two
figures show that simply modeling all bond angles as the same ignores valuable

133

information, particularly if a residue is in a helix or strand motif. Figure 8.10 shows
a similar story with Cα–Cα–Cα–Cα dihedral angles.

These distributions justify incorporating secondary-structure information into
modeling backbone traces. Intuitively, helices demonstrate tight, spiral conforma-
tions. One should expect angles to be acute and dihedral planes to be non-parallel.
The angle distributions do in fact concentrate on the smaller end of feasible angles
and dihedral planes lie at acute angles to one another, according to my histograms.
For strands, one would expect the opposite since biochemists describe them as rela-
tively flat and parallel chains of amino acids. Again, the figures show that angles
between amino acids in sheets tend to be much larger and dihedral planes are close
to parallel.

8.5.2 Methods

Acmi-PF generates a new Cα location for residue k + 1 by sampling a value from
each component of the adjacency function I described in the previous section –
length d, angle θ, and torsion φ. These functions model statistics from deposited
structures in the Protein Data Bank using parametric functions. For instance, we
originally parametrize d(xk, xk−1) as a Gaussian distribution with mean µd and
standard deviation σd. Then, to sample the distance from Cαk to Cαk+1, I randomly
sample from a Gaussian distribution using these parameters:

d ∼ N (µd, σ2
d). (8.7)

To generate an angle θ, Acmi-PF in Algorithm 8.1 samples from θ(xk−1, xk, xk+1),
which models the angle between three consecutive Cα’s as a mixture of two Gaus-
sian distributions. Each Gaussian is parametrized with a prior probability (π1, π2),
mean (µ1, µ2), and standard deviation (σ1, σ2). Acmi-PF fits these parameters to an-
gular data from the PDB using Expectation Maximization (EM) [16, 62], a standard
technique for learning parameters in Gaussian mixture models. Acmi-PF models
φ(xk−2, xk−1, xk, xk+1) as a uniform distribution, sampling values from 0 to 2π.

While this original algorithm for Acmi-PF is invariant to the actual amino-acid
type being sampled, I propose instead to condition each parametrized function
on the secondary structure of the amino acid, based on the discussion associ-
ated with Figures 8.8, 8.9, and 8.10. The distance function for sampling becomes
d(xk, xk+1, ss(k + 1)) where ss(k + 1) is the secondary-structure type (e.g., helix,
strand, or loop) of residue k+1. This is similarly done for θ(xk−1, xk, xk+1, ss(k+1))

134

and φ(xk−2, xk−1, xk, xk+1, ss(k + 1)).
Given this framework, I could characterize each function by the same parameters

as before, but with parameter values for each secondary-structure type. For example,
the distance function would become:

d ∼ N (µd,ss(k+1), σ
2
d,ss(k+1)). (8.8)

Instead, I consider sampling directly from the distributions in Figures 8.8, 8.9,
and 8.10; that is, sampling a new backbone location utilizing a nonparametric rep-
resentation for each function. While this requires more storage of information, this
method represents the true distributions more accurately since, in many cases, they
are not exactly Gaussian. When sampling for b(i)k+1, I now sample the distance, angle,
and dihedral angle necessary to compute the new Cα using secondary-structure
specific distributions.

8.5.3 Results and Discussion

This section presents results on the use of secondary-structure knowledge in sam-
pling. One complication in using secondary-structure information is that secondary
structure is a function of the final 3D trace of a protein. Since I do not yet have the
3D trace, I instead choose to use secondary-structure prediction based on a protein’s
primary sequence to condition backbone sampling. Specifically, I use PHDsec [76]
to predict the secondary structure for each residue in the sequence. In the results, I
denote the modified Acmi-PF backbone sampling using predicted secondary struc-
ture as “PHDsec.” Since there may be errors in predicted secondary structure, I
also consider using the ground truth secondary-structure information from the
deposited structure in the PDB. While this is not a realistic scenario in practice, it
allows me to gauge if performance is effected by errors in PHDsec. I use the Dssp
protocol discussed in Section 8.5.1 to make these assignments. I refer to Acmi-PF
backbone sampling conditioned on the true secondary structure as “DSSP” in the
results below. In addition to these protocols, I consider using no secondary-structure
information at all, marked “None.” Note that this is the original Acmi-PF protocol
from Algorithm 8.1.

For all three variations of Acmi-PF, I use the same Phase 1 and Phase 2 techniques
(i.e., the same posterior marginals are given as input) and run Phase 3 with the modi-
fied backbone sampling step. I omit the side-chain sampling step from Algorithm 8.1
to simplify the comparison. I run these methods on the set of ten of experimentally

135

% backbone complete
% side chain identified

Pe
rc

en
t

o
f t

ru
e

m
o

d
el

0

20

40

60

80

100

None DSSP PHDSec

Secondary Structure Input for ACMI-PF

Figure 8.11: A comparison of three methods for producing sampled backbone traces
in Acmi-PF across the test set of experimentally phased electron-density maps. The
three methods vary in the type of knowledge added for sampling – “None” for not
taking secondary structure into account (i.e., the Acmi-PF protocol in Section 8.3),
“DSSP” for using the ground-truth secondary structure to determine sampling dis-
tributions, and “PHDsec” for using predicted secondary structure.

phased maps described in Section 4.1.2. To measure accuracy of the backbone trace,
I measure the backbone completeness and average side-chain identification over all
structures produced for each method. See the results in Section 8.4 for a definition
of these terms.

The results are shown in Figure 8.11. Despite expectations, the results show
no statistically significant differences between the methods. Using no information
(i.e., the original algorithm) actually performs slightly better than DSSP, and the
results are equivalent to PHDsec. Interestingly, using predicted secondary structure
(PHDsec) outperforms using the ground truth (DSSP) in almost all proteins. This
is most likely due to random chance, but could arise from secondary-structure
prediction providing a smoother classification that exists in reality. For example,
while the amino acid immediately following an α-helix may actually be a loop,
labeling it as an α-helix may more accurately reflect it’s true conformation.

These results suggest further work is needed. Briefly, one issue is that despite the
modified sampling protocol, the weights of each particle are still determined by the
Phase 2 posteriors, which does not take secondary-structure information into account.
This means, for example, that the over sampling of large parallel dihedral angles for
strands receive small weights since the posteriors put little weight in these regions

136

SS Potential
Basic Potential

bk

Figure 8.12: Sampled candidate Cα locations for an amino acid from one of the
experimentally phased proteins. Given the previous three Cα’s for an amino acid i
in an alpha-helix, 1000 candidate Cα locations were sampled from (blue) a potential
function that did not consider secondary-structure information and (red) one that
did.

during Phase 2. Figure 8.12 shows that the secondary-structure sampling protocol
does produce a different distribution of samples, and suggests the posterior weights
may hinder the influence of secondary-structure information. This example shows
the results of the first step of the backbone subsampling procedure in Figure 8.3
for a helix residue in one of our test-set proteins. Recall that this step samples M
potential locations for backbone bk+1 given the previous backbone atoms in the
sequence. The red dots show the sampled Cα locations for bk+1 when ψadj is given
the secondary-structure type (i.e., the PHDsec variation of Acmi-PF). Here, bk is
located in the lower right corner. The blue dots show the sampled Cα locations
under the original protocol (i.e., no secondary-structure information). As the figure
shows, the distribution of samples becomes much tighter and focused when Acmi-
PF considers the residue is in a helix. Using the helical information, in this case,
prevents the wasteful attempts at locating the Cα at the wider angles.

8.6 Summary

In prior work, Acmi was shown to outperform other methods in automated in-
terpretation of electron-density maps on a set of difficult protein structures [21].
Acmi, however, only produced a Cα-backbone trace of the protein structure. In
these traces, atoms were independently placed leading to physically infeasible bond

137

lengths. Crystallographers, instead, are interested in producing an all-atom model
of a protein – with side chain and backbone atoms – and maintaining biochemical
feasibility.

In this chapter, I reviewed joint work with Frank DiMaio on Acmi-PF, our novel
Phase 3 algorithm for generating protein structures from the posterior marginal
probabilities of Phase 2. Acmi-PF produces all-atom protein structures, utilizing
a sampling algorithm which ensures physically feasible protein structures free of
the constraints of a discrete grid. Specifically, we employ statistical importance
resampling (SIR), a sequential Monte Carlo method that grows a protein structure
by alternately placing a Cα atom for the next residue in the chain and then placing
the side-chain and other backbone atoms for the current residue.

The results of our experiments show that Acmi with this new Phase 3 algorithm
is the state-of-the-art method for determining protein structures in difficult electron-
density maps. In almost every instance, Acmi produces more complete protein
structures that correctly identify amino-acid type. In addition, these structures that
provide a better explanation of the diffraction data underlying the electron-density
map according to Rfree values.

These results suggested exploring the idea of eliminating Phase 2, instead using
the Phase 1 prior probabilities to weight samples. Initial exploration and analsis
shows that the prior probabilities are too noisy/distributed to guide sampling well
enough. As discussed with RBP in Chapter 5, Acmi-PF requires tight probability
distributions to ensure sampling covers the entire probability space. An avenue of
future work is to dedicate more resources to Phase 3 in this scenario, in combination
with more domain knowledge (see below). More particles (e.g., 10000 instead of
100) increases the computational time of Acmi-PF dramatically, but should allow
coverage of a more distributed probability space. The added domain knowledge
will help guide the trajectories with better scoring functions.

In Section 8.5, I presented my extension of Acmi-PF which incorporates domain
knowledge. First, I analyzed the influence of secondary structure on the forma-
tion of backbone bond lengths, angles, and torsions. The distribution of values
demonstrated the amount of valuable information Acmi ignored by not considering
secondary-structure information, particularly in angle and torsions of backbone
atoms. I modified the sampling framework for backbone placement to utilize non-
parametric representations of observed backbone formations in the PDB, conditioned
on secondary-structure type.

The results of this later work did not improve Acmi-PF’s accuracy. While back-

138

bone completeness was unaffected by the new framework, the results did demon-
strate that Acmi-PF’s backbone sampling procedure produced more focused dis-
tributions of estimates when given secondary-structure information. Future work
could build on this development by also incorporating secondary structure into the
adjacency potentials of Phase 2. Additionally, domain knowledge could play an
important role in improving the assignment of weights to particles. By only using
Phase 2 weights, Acmi-PF is heavily reliant on the accuracy of Phase 2, which only
considers Cα relationships and ignores known influences on protein structure, such
as hydrophobicity of side chains.

139

9 Conclusion

The increasing need for protein structures in many areas – including disease research
and drug design – makes progress in structural genomics critical for the future of
biomedical advancements. While ab initio methods [89], such as Rosetta [77], receive
a lot focus in structural genomics, X-ray crystallography remains the best source for
obtaining protein structures [72]. As such, developing automated techniques for
determining protein structures via X-ray crystallography remains a crucial computa-
tional task.

This thesis presents my original work on the development of a set of probabilistic
techniques for the automated interpretation of electron-density maps produced via
X-ray crystallography. The summation of my work, building upon prior work by
Frank DiMaio et al., is the Acmi package1, which is the state-of-art technique for
determining protein structure in poor-resolution maps. The automated techniques
presented in this work are essential to increasing the throughput of protein-structure
determination via X-ray crystallography. More importantly, by focusing on methods
for the most difficult maps, my work pushes the envelope of structures that crystal-
lographers can determine. Proteins that were previously shelved due to difficulty
can now be reexamined.

As an example, Acmi played an important role in the structural determination
of UCH37 (PDB: 3IHR) [8], a human de-ubiquitylating enzyme that is functionally
linked with multiple protein complexes and signal-transduction pathways. Its
electron-density map has poor resolution (2.95 Å) as well as large regions of protein
disorder. These two qualities contributed to other automated techniques failing to
obtain a structure [E. Sethe Burgie and Craig Bingman, personal communication,
2011].

In addition to my work’s importance in the field of biochemistry, this thesis
describes several contributions to the area of artificial intelligence, and in particular,
probabilistic graphical models. The highly connected nature of protein structures
necessitates complex modeling solutions. To produce structures from these models,
the key computational challenge confronting my work is to reason over the large
number of hidden, highly connected variables in the model. This problem is part of
a general trend in probabilistic reasoning to develop advanced inference methods.

The main computational contributions of this thesis come in this area of approxi-
1Available at http://pages.cs.wisc.edu/∼dimaio/acmi/get_acmi.htm.

140

mate inference. First, in Chapter 5, I introduced a novel technique for improving
the performance of loopy belief propagation through the use of domain knowledge.
Chapter 6 presented further improvement in inference by using an ensemble of
approximate-inference solutions, combined with novel aggregation functions, to
produce multiple probabilistic perspectives for each variable. Both of these contri-
butions are general inference methods. Lastly, Chapter 8 described my work on the
use of statistical-sampling methods to produce protein-structure estimates from the
approximate marginal probabilities of each amino acid’s location.

A further contribution of my work is the development of techniques for incor-
porating biochemical domain knowledge into a probabilistic framework. Ideally,
artificial-intelligence methods can be applied “off the shelf” to problems in compu-
tational biology. With most tasks, however, this is not the case as modelers require
methods that can incorporate expert-level knowledge in an elegant manner. The
use of disorder prediction in Chapter 5 is such an example, using a fairly simple
domain-knowledge function to guide inference through a complex graphical model.
In Chapter 8, I introduced further motivation for incorporating biochemical infor-
mation into structure sampling. While results did not improve, the framework
opens up many avenues of further exploration, such as using hydrophobocity [66]
or protein-structure scoring functions [69] to further improve structure placement
in the most difficult portions of protein structures.

9.1 Contributions

In this section, I recap the contributions of my thesis, grouping the discussions by
the different phases of Acmi outlined in Section 3.3.

Phase 1 – 3D Shape Matching
Phase 1 estimates the observation potential function – a distribution of the prob-

able location of each amino acid in the density map independent of information
about other amino acids. This phase is conceptually an “amino-acid finder” and
my contributions in this area apply generally to the subfields of 3D shape matching
and object recognition from the computer-vision community. My contributions
include:

• In Section 7.2, I described a new method for Phase 1 of Acmi’s pipeline, Acmi-
SH (Spherical Harmonics). Previous work [21] used Fourier convolutions to
quickly search over all (x, y, z) coordinates for some rotation of a template.

141

Instead, in joint work with Frank DiMaio, we propose the use of a spherical-
harmonic decomposition of a template to rapidly search all rotations of some
fragment at a single (x, y, z) location. Results show that Acmi-SH produces
more accurate protein-backbone solutions than Acmi-FF, Textal, and Resolve
in terms of both Cα RMS error and completeness of protein structure. This
work appears in two publications by DiMaio et al. [22, 23].

• In Section 7.3, I proposed a series of first-pass filters to a priori eliminate large
portions of the map from consideration in the expensive Phase 1 template
search. Results showed that a simple filter using local density values is able
to eliminate large portions of the density map from the Acmi-SH search with
very few false negatives, and actually improves protein-structure solutions by
eliminating potential false positives. This work appears in DiMaio et al. [22, 23].

• In developing these filters, I also proposed generalizing spherical-harmonic
decompositions to a set of rotation-invariant features, which I use in training a
machine-learning method called an Svm classifier for improved filtering of
density points. My proposed filter offers improved efficiency, compared to
previous work, by reducing the running time of Phase 1 by about 75%, while
eliminating very few correct locations. This work appears in DiMaio et al. [23]

• In Section 7.4, I extended our template-matching method from a) amino-
acid detection to b) large-protein alignments to a density map. My frame-
work, Structural Homology using Electron Density (Shed), demonstrates
that electron-density maps can be used in structural-homology search. In
the absence of a solved structure, Shed, produces more structural homologs
than methods that use only a protein’s sequences, such as Blast [2]. This
contribution lies outside the Acmi framework, but is most closely related to
Phase 1. This work appears in DiMaio et al. [23].

Phase 2 – Approximate Inference in Markov Random Fields
Phase 2 of Acmi builds a pairwise Markov random field model to represent

the structure of a protein, combining local features from Phase 1 with biochemical
constraints. The complexity of this model makes exact inference computational in-
feasible, and thus the contributions of my thesis seek to build approximate-inference
techniques that are accurate and efficient at estimating each amino acid’s location
in the density map. My work applies generally to the problem of approximate
probabilistic inference. My contributions include:

142

• In Chapter 5, I introduced guided belief propagation using domain knowl-
edge, a general message-passing protocol that utilizes a priority function
informed by expert knowledge to guide (loopy) belief propagation. I apply
this to Phase 2 of Acmi by using protein-disorder prediction [26] to favor mes-
sage passing between amino acids predicted to be well-structured. My results
indicate that guiding Phase 2 using this function improves Acmi’s overall per-
formance. Across most maps, the rank and log-likelihood of the true locations
of each residue improve. In addition, Acmi is able to build protein structures
with improved completeness and correctness from these more accurate ap-
proximate marginal probabilities, with the greatest improvement coming in
the most difficult test cases. This contribution appears in Soni et al. [78].

• A secondary contribution of Chapter 5 was the implementation of Elidan
et al.’s [27] residual belief propagation in Acmi. This function guides be-
lief propagation using an message’s residual value – an information-theoretic
measure indicating the magnitude of change in value for a message from the
previous time it was sent. The results show that this technique fails to produce
adequate marginal probabilities for use in Phase 3, primarily due to its inability
to sufficiently refine the large state space of Acmi. This contribution appears
in Soni et al. [78].

• In Chapter 6, I developed a new approximate-inference method based on the
concept of ensemble methods from the supervised machine-learning commu-
nity. My framework, Probabilistic Ensembles in Acmi (Pea), executes several
independent runs of inference to provide multiple, diverse solutions to the
problem. This involves running Phase 2 several times, varying the inference
protocol each time to produce a diverse set of results. The experiments show
improvement in the accuracy of the inference process, where the probability
distributions from Pea are statistically significantly better in terms of both
percentile rank and probability value assigned to the correct location of each
amino acid. The results can not be explained by either the extra CPU resources
utilized or by using the single-best component of Pea. More importantly,
Pea’s improved inference translates into more complete and correct protein
structures. This contribution appears in Soni and Shavlik [79].

143

Phase 3 – Statistical Sampling
Phase 3 is the final phase of Acmi and estimates a protein-structure model. While

Acmi is a probabilistic framework, biologists are interested in an actual protein
structure, not the probability space of possible structures. Thus, Phase 3’s output
is a point estimate of the most likely structure given the probability model. Ideally,
biologists want a physically feasible structure with all backbone and side-chain
atoms located. My work on this task applies generally to the problem of statistical
sampling. My contributions to this phase include:

• In Chapter 8, I reviewed joint work with Frank DiMaio on Acmi-PF (Particle
Filtering), our novel Phase 3 algorithm for generating protein structures from
the posterior marginal probabilities of Phase 2. We employed statistical im-
portance resampling (SIR) [25], a sequential Monte Carlo method that grows a
protein structure by alternately placing a Cα atom for a residue in the chain
and then placing the side-chain and other backbone atoms. The results of our
experiments showed that Acmi with this new Phase 3 algorithm is the state-of-
the-art method for determining protein structures in difficult electron-density
maps, producing more complete protein structures than all other methods
in the field. In addition, these structures provide a better explanation of the
diffraction data underlying the electron-density map according toRfree values.
This contribution appears in DiMaio et al. [19].

• In Section 8.5, I presented my work on Acmi-PF incorporating domain knowl-
edge. First, I analyzed the influence of secondary structure on the formation
of backbone bond lengths, angles, and torsions. The distribution of values
demonstrated the amount of valuable information Acmi ignored by not con-
sidering secondary-structure information, particularly in angle and torsions of
backbone atoms. I modified the sampling framework for backbone placement
to utilize nonparametric representations of observed backbone formations
in the PDB, conditioned on secondary-structure type. Unfortunately, the re-
sults of this work did not improve Acmi-PF’s accuracy. Acmi-PF’s backbone
sampling procedure produced more focused distributions of estimates when
given secondary-structure information, indicating further work is needed.
This contribution is not published elsewhere.

• In addition to the contributions for Phase 2, my work on Pea in Chapter 6
included several proposed protocols for ensemble aggregation in statistical
sampling. With Pea producing multiple Phase 2 estimates, Phase 3’s algorithm

144

needed a new weighted-sampling function for backbone-atom placement. I
suggest three protocols in Section 6.2.2, including an averaging function, maxi-
mum function, and sub-sampling function. Results show that the averaging
aggregator performed the best of the three, most likely due to its ability to han-
dle the noisy artifacts of the approximate-inference process. This contribution
appears in Soni and Shavlik [79].

9.2 Future Work

This chapter outlines some future directions of research building of my thesis work.
For my work on shape matching (i.e., Phase 1), I believe there is a lot of potential in
advancing the work on filters. One idea is to develop a feedback loop from Phase 2
as a first-pass filter. Here, I could make Phase 1’s initial search very conservative,
selecting only the top suggestions from a simple filter. As Phase 2 performs infer-
ence, new locations may be suggested since they “fit” the data well. Phase 1 will
then perform a template-search at these locations, and repeat the process, slowly
expanding the number of possible locations for amino acids to be found.

Another idea would extend the developed machine-learning filter to estimate
the template-search scores directly. With the success of Kondor’s bispectrum fea-
tures [51] in developing an Svm model to classify Cα locations, the next step is to
attempt to replace the entire Phase 1 search process using the same bispectrum of
features, but with a different objective. If the rotation-invariant features maintain a
high-level of fidelity, regression should be able to estimate the match score between
a template and a location in the map. This would completely eliminate the need for
a rotational search, reducing Phase 1 to a three-dimensional, translational-search
problem. While this seems a tall order, an intermediate goal would be to train an
unique first-pass filter for each amino-acid type; that is, 20 SVM classifiers trained
to detect if a particular amino acid’s Cα is likely to be found at a certain point. This
would allow a more finely tuned Phase 1 search.

My work on Phase 2 suggests many avenues of future work. First, I believe
the methods I developed in Chapters 5 and 6 are general enough to apply in other
domains. As such, a good future project would be to test these methods in other ap-
plications. This would involve non-trivial design choices. Guided belief propagation,
for one, requires a priority function as input that is based on domain knowledge.
The criteria for this function is that there is a correlation between priority values
and the accuracy of evidence (or priors) for a variable. The function, in other words,

145

should reflect the importance of a messenger node. For example, one could utilize
edge detection in image restoration [29]. If a pixel is close to an edge, it is more
difficult to determine if its deviation from its neighbors is an indication of noise or
an edge. Therefore, early iterations of belief propagation should concentrate on in
internal regions, slowly pushing out towards the edges.

Pea, in contrast, does not require domain knowledge. In fact, Pea is general
enough to apply to any approximate-inference algorithm, including MCMC meth-
ods [3] or variational methods [46]. Other methods have utilized a similar concept,
but generated ensembles by simplifying the graph structure to create a collection
of exact inference solutions [84, 86]. Pea does not require this, and should be able
to apply to any approximate method where there is stochasticity in the model, or
parameters that can be varied. Future work would also address situations where pa-
rameter learning is paired with inference, as is typical in natural language processing
and statistical relational learning.

In terms of improving the accuracy of protein structures, the largest potential
comes in further development on Phase 3. In particular, the scoring function for
particle filtering could benefit from the use of more domain knowledge. Currently,
only the marginal probabilities of Phase 2 and the side-chain density match effect
the weight of a particle. In instances where Acmi fails, it is a result of poor Phase 2
probabilities for amino acids, usually in loopy regions of the structures with poor
density features. In these instances, a scoring function that relies on other available
evidence, including structure dynamics, could fill in the information.

For example, to score a side-chain placement for a particle2, I could use the
weight update:

wk ∝ wk ·
M∑
m=1

p(smk |M) · score(sk, x1:k−1) (9.1)

where the only addition to the original update function is the value score(sk, x1:k−1).
This function calculates the match between the new side chain, sk, and the rest
of the placed structure, x1:k−1. This scoring function can be independent of the
density map. In the simplest case, one could take the scoring functions used to
describe protein energetics in ab initio methods, such as Rosetta [77]. These methods
sample structures with no visual evidence and judge the sample using probabilistic
tendencies seen in the PDB.

I believe a better option is to develop unique scoring functions specific to my task.
For example, biochemists have described the general tendencies of amino acids to

2The particle index has been dropped for simplicity.

146

favor being on the surface of a protein [10]. This includes concepts such as accessible
surface area and hydrophobicity. I could, for example, use accessible surface area
prediction [64] to score a side-chain placement. If the side-chain is hydrophobic, or
predicted to be in the core, than a particle that places it on the surface will receive a
poor weight. Contact-map prediction [58] could be used to evaluate the pairwise
placement of side chains to ensure favorable interactions receive high scores.

All of these suggestions are particularly important to Phase 3 since the Phase 2
probabilities only consider backbone dynamics, not side chains. In current work, I am
attempting to use the solvent mask of a map – a description of where water molecules
are found in the unit cell, produced in density-map modification in CCP4 [11] – to
label grid points that contain water. During particle filtering, amino acids that are
hydrophobic should down grade samples close to these grid points since this places
them on the surface. These suggested scoring functions only scratch the surface
of knowledge from biochemistry and bioinformatics. Future work should explore
these different options and find an elegant scoring function for weighing the relative
merits of different features.

Lastly, an important area of future work on this application is to create a larger test
bed of structures. Specifically, discussions on this topic with my collaborators have
centered around membrane proteins [32, 57, 88], which present many difficulties for
crystallographers. Membrane proteins account for approximately 25% of all proteins,
but only 150 unique structures of membrane proteins exist [9]. Membrane proteins
tend to lack stability in structure, and obtaining quality crystals out of solution is
difficult in most cases. If Acmi truly can push the boundaries of solvable structures,
membrane proteins are a prime source for future testing.

9.3 Final Wrap-up

In this thesis, I present my contributions to the fields of artificial intelligence and
structural biology, as well as suggestions for possible directions of future research.
My work demonstrates that probabilistic graphical models are a good approach for
protein-structure determination via electron-density maps and that, reciprocally,
structural biology presents a good, challenging domain for graphical models. In
particular, my work demonstrates the challenges (and potential solutions) presented
by scaling graphical models to large, complex problems. In general, my work also
demonstrates that graphical models are a good approach for computational biology
applications, particularly those involving a high level of interactions among variables

147

and those benefitting from the modeling of domain knowledge. The result of my
work has been the advancement of the the state-of-the-art in structural biology.

148

references

[1] Adams, Paul, Pavel Afonine, Gábor Bunkóczi, Vincent Chen, Ian Davis,
Nathaniel Echols, Jeffrey Headd, Li-Wei Hung, Gary Kapral, Ralf Grosse-
Kunstleve, Airlie McCoy, Nigel Moriarty, Robert Oeffner, Randy Read, David
Richardson, Jane Richardson, Thomas Terwilliger, and Peter Zwart. 2010.
PHENIX: A comprehensive Python-based system for macromolecular structure
solution. Acta Crystallographica Section D 66(2):213–221.

[2] Altschul, Stephen, Warren Gish, Webb Miller, Eugene Myers, and David Lip-
man. 1990. Basic local alignment search tool. Journal of Molecular Biology 215:
403–410.

[3] Andrieu, Christophe, Nando de Freitas, Arnaud Doucet, and Michael Jordan.
2003. An introduction to MCMC for machine learning. Machine Learning 50(1-2):
5–43.

[4] Arulampalam, M. Sanjeev, Simon Maskell, Neil Gordon, and Tim Clapp. 2001.
A tutorial on particle filters. IEEE Transactions of Signal Processing 50:174–188.

[5] Bauer, Eric, and Ron Kohavi. 1999. An empirical comparison of voting classifi-
cation algorithms: Bagging, boosting, and variants. Machine Learning 36(1-2):
105–139.

[6] Bishop, Charles. 2006. Pattern Recognition and Machine Learning. Springer.

[7] Blum, Harry. 1967. A transformation for extracting new descriptions of shape.
In Models for the Perception of Speech and Visual Form, ed. Weiant Wathen-Dunn,
362–380. Cambridge, MA: MIT Press.

[8] Burgie, E. Sethe, Craig Bingman, S. Leigh Grundhoefer, Ameet Soni, and George
Phillips. In Press. Structural characterization of UCH37 reveals the basis of
its auto-inhibitory mechanism. Protein: Structure, Function, and Bioinformatics.
PDB ID: 3IHR.

[9] Carpenter, Elisabeth, Konstantinos Beis, Alexander Cameron, and So Iwata.
2008. Overcoming the challenges of membrane protein crystallography. Current
Opinion in Structural Biology 18(5):581–586.

[10] Chothia, Cyrus. 1976. The nature of the accessible and buried surfaces in
proteins. Journal of Molecular Biology 105(1):1–12.

149

[11] Collaborative Computational Project, Number 4. 1994. The CCP4 suite: Pro-
grams for protein crystallography. Acta Crystallographica Section D 50:760–763.

[12] Cowtan, Kevin. 2001. Fast Fourier feature recognition. Acta Crystallographica
Section D 57:1435–1444.

[13] ———. 2006. The Buccaneer software for automated model building. Acta
Crystallographica Section D 62(9):1002–1011.

[14] Cristianini, Nello, and John Shawe-Taylor. 2000. An Introduction to Support Vector
Machines and Other Kernel-Based Learning Methods. 1st ed. Cambridge University
Press.

[15] Crowther, R. Anthony. 1972. The Molecular Replacement Method, vol. 13. Gordon
and Breach.

[16] Dempster, Arthur, Nan Laird, and Donald Rubin. 1977. Maximum likelihood
from incomplete data via the EM algorithm. Journal of the Royal Statistical Society
B39(1):1–38.

[17] Dietterich, Thomas. 2000. Ensemble methods in machine learning. Lecture
Notes in Computer Science 1857:1–15.

[18] DiMaio, Frank. 2007. Probabilistic methods for interpreting electron-density
maps. Ph.D. thesis, Department of Computer Sciences, University of Wisconsin–
Madison.

[19] DiMaio, Frank, Dmitry Kondrashov, Eduard Bitto, Ameet Soni, Craig Bingman,
George Phillips, and Jude Shavlik. 2007. Creating protein models from electron-
density maps using particle-filtering methods. Bioinformatics 23:2851–2858.

[20] DiMaio, Frank, and Jude Shavlik. 2006. Belief propagation in large, highly
connected graphs for 3D part-based object recognition. In Proceedings of the Sixth
International Conference on Data Mining, 845–850. Hong Kong: IEEE Computer
Society.

[21] DiMaio, Frank, Jude Shavlik, and George Phillips. 2006. A probabilistic ap-
proach to protein backbone tracing in electron-density maps. Bioinformatics
22(14):e81–89.

150

[22] DiMaio, Frank, Ameet Soni, George Phillips, and Jude Shavlik. 2007. Improved
methods for template matching in electron-density maps using spherical har-
monics. In Proceedings of the 2007 International Conference on Bioinformatics and
Biomedicine, 258–265. Washington, DC: IEEE Computer Society.

[23] ———. 2009. Spherical-harmonic decomposition for molecular recognition in
electron-density maps. International Journal of Data Mining and Bioinformatics
3(2):205–227.

[24] DiMaio, Frank, Ameet Soni, and Jude Shavlik. 2008. Machine learning in
structural biology: Interpreting 3D protein images. In Introduction to Machine
Learning and Bioinformatics, ed. Sushmita Mitra, Sujay Datta, Theodore Perkins,
and George Michailidis, chap. 8, 237–276. Chapman & Hall/CRC Press.

[25] Doucet, Arnaud, Simon Godsill, and Christophe Andrieu. 2000. On sequential
Monte Carlo sampling methods for Bayesian filtering. Statistics and Computing
10(3):197–208.

[26] Dunker, A. Keith, Ethan Garner, Stephen Guilliot, Pedro Romero, Kurt Al-
brecht, John Hart, Zoran Obradovic, Charles Kissinger, and J. Ernest Villafranca.
1998. Protein disorder and the evolution of molecular recognition: Theory,
predictions and observations. Pacific Symposium on Biocomputing 473–484.

[27] Elidan, Gal, Ian McGraw, and Daphne Koller. 2006. Residual belief propagation:
Informed scheduling for asynchronous message passing. In Proceedings of the
Twenty-Second Conference on Uncertainty in Artificial Intelligence.

[28] Emsley, Paul, and Kevin Cowtan. 2004. Coot: Model-building tools for molecu-
lar graphics. Acta Crystallographica Section D 60(12 Part 1):2126–2132.

[29] Felzenszwalb, Pedro, and Daniel Huttenlocher. 2006. Efficient belief propaga-
tion for early vision. International Journal of Computer Vision 70(1).

[30] Ferron, Francois, Sonia Longhi, Bruno Canard, and David Karlin. 2006. A
practical overview of protein disorder prediction methods. Proteins: Structure,
Function, and Bioinformatics 65(1):1–14.

[31] Friedman, Nir. 2004. Inferring cellular networks using probabilistic graphical
models. Science 303(5659):799–805.

151

[32] Gao, Cen, and Harry Stern. 2007. Scoring function accuracy for membrane
protein structure prediction. Proteins 68:67–75.

[33] Geman, Stuart, and Donald Geman. 1984. Stochastic relaxation, Gibbs distri-
butions, and the Bayesian restoration of images. IEEE Transactions on Pattern
Analysis and Machine Intelligence 6:721–741.

[34] Getoor, Lisa, and Ben Taskar. 2007. Introduction to Statistical Relational Learning.
Cambridge, MA: MIT Press.

[35] Greer, Jonathan. 1974. Three-dimensional pattern recognition. Journal of Molec-
ular Biology 82:279–301.

[36] Healy, Dennis, Harrie Hendriks, and Peter Kim. 1993. Spherical deconvolution
with application to geometric quality assurance. Technical Report, Department
of Mathematics and Computer Science, Dartmouth College.

[37] Healy, Dennis, Dan Rockmore, Peter Kostelec, and Sean Moore. 2003. FFTs
for the 2-sphere – improvements and variations. Journal of Fourier Analysis and
Applications 9:341–385.

[38] Heckerman, David. 1990. Probabilistic similarity networks. Networks 20(5):
607–636.

[39] Holm, Liisa, and Jong Park. 2000. DaliLite workbench for protein structure
comparison. Bioinformatics 16:566–567.

[40] Huang, Heng, Li Shen, Rong Zhang, Fillia Makedon, Bruce Hettleman, and
Justin Pearlman. 2005. Surface alignment of 3D spherical-harmonic models:
Application to cardiac MRI analysis. In Proceedings of the Eighth International
Conference on Medical Image Computing and Computer-Assisted Intervention, vol. 8,
67–74. Palm Springs, CA.

[41] Ioerger, Thomas, and James Sacchettini. 2002. Automatic modeling of protein
backbones in electron-density maps via prediction of Cα coordinates. Acta
Crystallographica Section D 58(12):2043–2054.

[42] ———. 2003. The TEXTAL system: Artificial intelligence techniques for auto-
mated protein model building. Methods in Enzymology 374:244–270.

152

[43] Joachims, Thorsten. 1999. Making large-scale SVM learning practical. In
Advances in Kernel Methods - Support Vector Learning, ed. Bernhard Schlokopf,
Christopher Burges, and Alexander Smola. Cambridge, MA: MIT Press.

[44] Jones, T. Alwyn, Jin-yu Zou, Sandra Cowan, and Morten Kjeldgaard. 1991.
Improved methods for building protein models in electron density maps and
the location of errors in these models. Acta Crystallographica Section A 47(2):
110–119.

[45] Joosten, Krista, Serge Cohen, Paul Emsley, Wijnand Mooij, Victor Lamzin, and
Anastassis Perrakis. 2008. A knowledge-driven approach for crystallographic
protein model completion. Acta Crystallographica Section D 64(4):416–424.

[46] Jordan, Michael, Zoubin Ghahramani, Tommi Jaakkola, and Lawrence Saul.
1999. An introduction to variational methods for graphical models. In Learning
in Graphical Models, ed. Michael Jordan. Cambridge, MA: MIT Press.

[47] Kabsch, Wolfgang, and Christian Sander. 1983. Dictionary of Protein Secondary
Structure: Pattern recognition of hydrogen-bonded and geometrical features.
Biopolymers 22:2577–2637.

[48] Karmali, Anjum, Tom Blundell, and Nicholas Furnham. 2009. Model-building
strategies for low-resolution X-ray crystallographic data. Acta Crystallographica
Section D 65(2):121–127.

[49] Kirillov, Alexandre. 1994. Representation Theory and Noncommutative Harmonic
Analysis, vol. 22. Springer.

[50] Koller, Daphne, and Nir Friedman. 2009. Probabilistic Graphical Models: Prin-
ciples and Techniques - Adaptive Computation and Machine Learning. Cambridge,
MA: MIT Press.

[51] Kondor, Risi. 2007. A complete set of rotationally and translationally invari-
ant features for images. CoRR abs/cs/0701127. http://arxiv.org/abs/cs/
0701127.

[52] Kostelec, Peter, and Dan Rockmore. 2003. FFTs on the rotation group. Technical
Report 03-11-060, Santa Fe Institute’s Working Paper Series.

[53] de La Fortelle, Eric, and Gérard Bricogne. 1997. Maximum-likelihood heavy-
atom parameter refinement for the multiple isomorphous replacement and

http://arxiv.org/abs/cs/0701127
http://arxiv.org/abs/cs/0701127

153

multiwavelength anomalous diffraction methods. Methods in Enzymology 276:
472–494.

[54] Lafferty, John, Andrew McCallum, and Fernando Pereira. 2001. Conditional
random fields: Probabilistic models for segmenting and labeling sequence data.
In Proceedings of the Eighteenth International Conference on Machine Learning, 282–
289. San Francisco, CA: Morgan Kaufmann Publishers Inc.

[55] Leherte, Laurence, Janice Glasgow, Kim Baxter, Evan Steeg, and Suzanne Fortier.
1994. Analysis of three-dimensional protein images. Journal of AI Research 7:
122–159.

[56] Linding, Rune, Lars Juhl Jensen, Francesca Diella, Peer Bork, Toby Gibson, and
Robert Russell. 2003. Protein disorder prediction: Implications for structural
proteomics. Structure 11(11):1453–1459.

[57] Lundstrom, Kenneth. 2006. Structural genomics for membrane proteins. Cellular
and Molecular Life Sciences 63:2597–2607.

[58] MacCallum, Robert. 2004. Striped sheets and protein contact prediction. Bioin-
formatics 20 Suppl 1:i224–231.

[59] Maclin, Richard, and David Opitz. 1997. An empirical evaluation of bagging
and boosting. In Proceedings of the Fourteenth National Conference on Artificial
Intelligence, 546–551.

[60] MacQueen, James. 1967. Some methods for classification and analysis of multi-
variate observations. In Proceedings of Fifth Berkeley Symposium on Mathematical
Statistics and Probability, vol. 1, 281–297.

[61] McKee, Erik, Lalji Kanbi, Kevin Childs, Ralf Grosse-Kunstleve, Paul Adams,
James Sacchettini, and Thomas Ioerger. 2005. FINDMOL: Automated identifica-
tion of macromolecules in electron-density maps. Acta Crystallographica Section
D 61(11):1514–1520.

[62] Mclachlan, Geoffrey, and Thriyambakam Krishnan. 1996. The EM Algorithm
and Extensions. 1st ed. Hoboken, NJ: Wiley-Interscience.

[63] Mitchell, Tom. 1997. Machine Learning. McGraw-Hill.

154

[64] Momen-Roknabadi, Amir, Mehdi Sadeghi, Hamid Pezeshk, and Sayed-Amir
Marashi. 2008. Impact of residue accessible surface area on the prediction of
protein secondary structures. BMC Bioinformatics 9:357.

[65] Morris, Richard, Anastassis Perrakis, and Victor Lamzin. 2003. ARP/wARP
and automatic interpretation of protein electron density maps. Methods in
Enzymology 374:229–244.

[66] Muppirala, Usha, and Zhijun Li. 2006. A simple approach for protein struc-
ture discrimination based on the network pattern of conserved hydrophobic
residues. Protein Engineering Design and Selection 19:265–275.

[67] Murphy, Kevin, Yair Weiss, and Michael Jordan. 1999. Loopy belief propagation
for approximate inference: An empirical study. In Proceedings of the Fifteenth
Conference on Uncertainty in Artificial Intelligence, 467–475.

[68] Murshudov, Garib, Alexei Vagin, and Eleanor Dodson. 1997. Refinement of
macromolecular structures by the maximum-likelihood method. Acta Crystal-
lographica Section D 53:240–255.

[69] Ngan, Shing-Chung, Michael Inouye, and Ram Samudrala. 2006. A knowledge-
based scoring function based on residue triplets for protein structure prediction.
Protein Engineering Design and Selection 19:187–193.

[70] Pearl, Judea. 1988. Probabilistic Reasoning in Intelligent Systems: Networks of Plau-
sible Inference. San Mateo, CA: Morgan Kaufman Publishers.

[71] Perrakis, Anastassis, Richard Morris, and Victor Lamzin. 1999. Automated
protein model building combined with iterative structure refinement. Nature
Structural and Molecular Biology 6(5):458–463.

[72] Protein Data Bank (PDB). 2011. PDB current holdings breakdown. http:
//www.rcsb.org/pdb/statistics/holdings.do.

[73] Ramachandran, Gopalasamudram Narayana, Chandrasekharan Ramakrishnan,
and V. Sasisekharan. 1963. Stereochemistry of polypeptide cain configurations.
Journal of Molecular Biology 7:95–99.

[74] Rhodes, Gale. 2000. Crystallography Made Crystal Clear: A Guide for Users of
Macromolecular Models. New York; London: Academic Press.

http://www.rcsb.org/pdb/statistics/holdings.do
http://www.rcsb.org/pdb/statistics/holdings.do

155

[75] Risbo, Torben. 1996. Fourier transform summation of Legendre series and
D-functions. Journal of Geodesy 70:383–396.

[76] Rost, Burkhard, and Chris Sander. 1993. Prediction of protein secondary struc-
ture at better than 70% accuracy. Journal of Molecular Biology 232:584–599.

[77] Simons, Kim, Ingo Ruczinski, Charles Kooperberg, Brian Fox, Chris Bystroff,
and David Baker. 1999. Improved recognition of native-like protein structures
using a combination of sequence-dependent and sequence-independent fea-
tures of proteins. Proteins 34:82–95.

[78] Soni, Ameet, Craig Bingman, and Jude Shavlik. 2010. Guiding belief propaga-
tion using domain knowledge for protein-structure determination. In Proceed-
ings of the First ACM International Conference on Bioinformatics and Computational
Biology. Niagara Falls, NY.

[79] Soni, Ameet, and Jude Shavlik. 2011. Probabilistic ensembles for improved
inference in protein-structure determination. In Proceedings of the Second ACM
International Conference on Bioinformatics and Computational Biology. Chicago, IL.

[80] Sutton, Charles, and Andrew McCallum. 2007. Improved dynamic schedules for
belief propagation. In Proceedings of the Twenty-Third Conference on Uncertainty
in Artificial Intelligence.

[81] Terwilliger, Thomas. 2000. Structural genomics in North America. Nature
Structural Biology 7:935–939.

[82] ———. 2003. Automated main-chain model building by template matching
and iterative fragment extension. Acta Crystallographica Section D 59(1):38–44.

[83] Trapani, Stephano, and Jorge Navaza. 2006. Calculation of spherical harmonics
and Wigner D functions by FFT: Applications to fast rotational matching in
molecular replacement and implementation into AMoRe. Acta Crystallographica
Section A 62:262–269.

[84] Wainwright, Martin, Tommi Jaakkola, and Alan Willsky. 2003. Tree-reweighted
belief propagation algorithms and approximate ML estimation by pseudo-
moment matching. In Workshop on Artificial Intelligence and Statistics.

[85] Wang, Guoli, and Roland Dunbrack. 2003. PISCES: A protein sequence culling
server. Bioinformatics 19:1589–1591.

156

[86] Weiss, David, Benjamin Sapp, and Ben Taskar. 2010. Sidestepping intractable
inference with structured ensemble cascades. In Advances in Neural Information
Processing Systems 23, ed. John Lafferty, Chris Williams, John Shawe-Taylor,
Richard Zemel, and Aron Culotta, 2415–2423.

[87] Weiss, Yair, and William Freeman. 2001. Correctness of belief propagation
in Gaussian graphical models of arbitrary topology. Neural Computation 13:
2173–2200.

[88] White, Stephen. 2009. Biophysical dissection of membrane proteins. Nature
459:344–346.

[89] Zhang, Yang. 2008. Progress and challenges in protein structure prediction.
Current Opinion in Structural Biology 18(3):342 – 348.

	Contents
	List of Figures
	List of Tables
	List of Algorithms
	Nomenclature
	Glossary
	Abstract
	Introduction
	Protein-Structure Determination in Electron-Density Maps
	Probabilistic Reasoning
	Thesis Statement
	Thesis Organization

	Background
	Biochemical Background
	Protein Structures
	Protein X-Ray Crystallography
	Related Work in Automated Density-Map Interpretation

	Algorithmic Background
	Probability
	Undirected Graphical Models
	Ensemble Methods
	Spherical-Harmonic Decomposition and the Fast Rotation Function
	Particle Filtering

	The Acmi System
	Introduction
	Prior Work on Acmi
	Local Matching with Acmi-FF
	Enforcing Global Constraints with Acmi-BP
	Approximate Inference in Acmi-BP

	Roadmap for Acmi and Thesis Contributions
	Analogy to Face Detection

	Data Sets and Protein-Structure Validation Methods
	Protein Sets for Algorithm Evaluation
	Model-Phased Structures
	Experimentally Phased Structures

	Assessing Protein-Structure Quality
	Correctness and Completeness
	Root-Mean-Squared (RMS) Error
	R-factor

	Assessing Accuracy of Probability Distributions
	Log-Likelihood Probability
	Percentile Rank

	Guiding Belief Propagation using Domain Knowledge for Protein-Structure Determination
	Introduction
	Message Scheduling in Phase 2 of Acmi (Belief Propagation)
	Guiding Phase 2 using Domain Knowledge
	Related Work on Guided Belief Propagation
	Experimental Methodology
	Results and Discussion
	Approximate Marginal Probabilities
	Protein Structures

	Summary

	Probabilistic Ensembles for Improved Inference in Protein-Structure Determination
	Introduction
	Probabilistic Ensembles in ACMI
	Generating Ensemble Components
	Aggregating Ensemble Components

	Experimental Methodology
	Results and Discussion
	Approximate Inference
	Protein Structures
	Ensemble Learning Curve

	Summary

	Spherical-Harmonic Decomposition for Molecular Recognition in Electron-Density Maps
	Introduction
	Local Template Matching with Acmi-SH
	Methods
	Results and Discussion

	Filtering Methods to Prune Acmi-SH Search Space
	Methods
	Results and Discussion

	Structural Homology Search in Electron-Density Maps
	Methods
	Results and Discussion

	Summary

	Statistical-Sampling Methods to Produce All-Atom Protein Models
	Introduction
	Limitations of Acmi-BP
	Producing All-Atom Protein Structures using Acmi-PF
	Sampling C-alpha's Using Phase 2 Marginal Probabilities
	Sampling Side-Chain Atoms Using PDB Templates

	Experiments and Results
	Incorporating Biochemical Domain Knowledge into Acmi-PF
	Motivation
	Methods
	Results and Discussion

	Summary

	Conclusion
	Contributions
	Future Work
	Final Wrap-up

	References

