
BIOINFORMATICS Vol. 18 Suppl. 1 2002
Pages S164–S171

Evaluating machine learning approaches for
aiding probe selection for gene-expression arrays

J. B. Tobler 1, M. N. Molla 1, 3,∗, E. F. Nuwaysir 3, R. D. Green 3 and
J. W. Shavlik 2

1Department of Computer Science, University of Wisconsin, 1210 West Dayton
Street, Madison, WI 53706,, 2Departments of Computer Science, and Biostatistics
and Medical Informatics, University of Wisconsin, 1210 West Dayton Street, Madison,
WI 53706, and 3NimbleGen Systems, Inc., One Science Ct., Madison, WI 53711,

Received on January 24, 2002; revised and accepted on March 27, 2002

ABSTRACT
Motivation: Microarrays are a fast and cost-effective
method of performing thousands of DNA hybridization
experiments simultaneously. DNA probes are typically
used to measure the expression level of specific genes.
Because probes greatly vary in the quality of their hy-
bridizations, choosing good probes is a difficult task. If
one could accurately choose probes that are likely to
hybridize well, then fewer probes would be needed to
represent each gene in a gene-expression microarray,
and, hence, more genes could be placed on an array of
a given physical size. Our goal is to empirically evalu-
ate how successfully three standard machine-learning
algorithms—naı̈ve Bayes, decision trees, and artificial
neural networks—can be applied to the task of predicting
good probes. Fortunately it is relatively easy to get training
examples for such a learning task: place various probes
on a gene chip, add a sample where the corresponding
genes are highly expressed, and then record how well
each probe measures the presence of its corresponding
gene. With such training examples, it is possible that an
accurate predictor of probe quality can be learned.
Results: Two of the learning algorithms we investigate—
naı̈ve Bayes and neural networks—learn to predict probe
quality surprisingly well. For example, in the top ten pre-
dicted probes for a given gene not used for training, on
average about five rank in the top 2.5% of that gene’s hun-
dreds of possible probes. Decision-tree induction and the
simple approach of using predicted melting temperature
to rank probes perform significantly worse than these two
algorithms. The features we use to represent probes are
very easily computed and the time taken to score each
candidate probe after training is minor. Training the naı̈ve
Bayes algorithm takes very little time, and while it takes
over 10 times as long to train a neural network, that time is

∗To whom correspondence should be addressed.

still not very substantial (on the order of a few hours on a
desktop workstation). We also report the information con-
tained in the features we use to describe the probes. We
find the fraction of cytosine in the probe to be the most
informative feature. We also find, not surprisingly, that the
nucleotides in the middle of the probes sequence are more
informative than those at the ends of the sequence.
Contact: molla@cs.wisc.edu
Keywords: microarrays; probe selection; artificial neural
networks; decision trees; naı̈ve Bayes.

INTRODUCTION
Overview
Oligonucleotide microarrays, commonly known as gene
chips, are a fast and cost-effective method of performing
thousands of DNA hybridization experiments simultane-
ously. The general procedure is quite simple. Short (typi-
cally around 24 base pairs, or 24-bp for short) strands of
known DNA sequence, called probes, are affixed to spe-
cific positions on a chip’s surface. A fluorescently labeled
RNA sample is then washed over this surface. Some of this
RNA will hybridize to complementary strands of DNA.
The amount of RNA hybridized to each position on the
microarray, and therefore in the sample, can be inferred
from fluorescence measurements measured by a laser that
scans the surface of the chip returning a fluorescence in-
tensity value (Snustad and Simmons, 1999).

In order to measure the expression level of a specific
gene in a sample, one must design a microarray containing
DNA strands complimentary to the gene of interest.
Because a typical probe is much shorter than a typical
gene, a probe cannot contain the entire complement of a
gene. In fact, due to issues of dilution and economy, the
total length of probes used to hybridize a gene is typically
only a small fraction of the length of the gene.

Choosing good probes is a difficult task. Different
sequences have different hybridization characteristics

S164 c© Oxford University Press 2002

Using machine learning for probe selection

(Breslauer et al., 1986). Expression levels can only be
accurately measured if a good set of probes is chosen.
Otherwise, inadequate or nonspecific hybridization can
occur, confounding the results of the experiment. Effective
computational aids for probe selection can substantially
improve the design of gene chips, and computationally
aiding the probe-selection task is the focus of this article.

Task definition
We apply three well-established, machine-learning tech-
niques to the problem of probe selection, in order to judge
how well probe quality can be predicted and which learn-
ing algorithm performs best on this important task. Specif-
ically, we compare the performance of artificial neural net-
work (ANN) training, the naı̈ve Bayes algorithm, and a
decision-tree learner (Mitchell, 1997). In order to do this,
we frame the problem of probe selection as a category-
prediction task. Each 24-bp probe is called an example.
An example’s features are derived (as described below)
from the sequence of 24 bases that make up the probe.
The goal is to predict the quality of the probe strictly from
these features. Our set of probes is the set of all possible
24-bp probes from each of the eight genes in the E. coli
and B. subtilis genomes (four genes from each genome),
also known as a tiling of the genes. As a measure of probe
quality, we use the measured fluorescence levels of our
probes after they have been exposed to a sample in which
all eight of these genes are highly expressed. To summa-
rize, our task is to algorithmically learn how to perform
the following:

Given: a 24-bp probe from a gene not used during
training

Do: predict if this probe’s fluorescence level will rank in
the top third of all the possible probes for this gene when
exposed to a sample where this gene is highly expressed

If accurately predicted, this information (when com-
bined with other constraints) can prove highly beneficial
when deciding which probes to use to represent a given
gene when designing a microarray. If we can increase the
probability that a chosen probe will be bound strongly
when the probe’s gene is expressed in the current sample,
then fewer probes will be needed per gene that we wish to
detect by the microarray and, hence, more genes can be
measured by a gene chip of a given physical size.

Related work
Heuristics have been developed to discard probes based
on based on knowledge about hybridization characteristics
(Lockhart et al., 1996) such as self-hybridization and
degenerate repeats. Others have attempted to use melting
point (Tm) equations derived from genetic material in
solution (Kurata and Suyama, 1999; Li and Stormo,
2001). Kurata and Suyama (1999) also investigate the use
of predictions of stable secondary structures and probe

uniqueness to create criteria for selecting good probes.
Our contribution is a successful empirical evaluation of
three standard machine-learning methods applied to the
task of learning to predict good probes.

SYSTEMS AND METHODS
Data
Our experimental data consists of tilings of four genes
from each of E. coli and B. subtilis, measured on ‘mask-
less’ microarrays (Singh-Gasson et al., 1999) produced by
NimbleGen, Inc. In order to standardize the data across the
eight genes, the measured fluorescence intensity for each
probe is normalized such that the bottom and top 2.5% of
the measured intensities are labeled 0 and 1 respectively,
and all other values are linearly interpolated between 0 and
1. Mapping the bottom and top 2.5% to 0 and 1 reduces the
impact of outliers.

Datasets
Supervised machine-learning algorithms like naı̈ve Bayes,
decision trees, and ANNs typically require training on
a set of data with labeled (i.e., categorized) examples;
this set of data is called the training set. The classifier
produced by the learning algorithm after training is then
tested using another dataset, the test set. The predicted
classifications of the trained machine-learning classifier
are compared to the correct outputs in the test set in
order to estimate the accuracy of the classifier. We used
the microarray data for our eight genes to generate eight
training-set and test-set pairs using the commonly applied
leave-one-out method. In this method, each training set
consists of the probes from the tilings of seven genes and
the corresponding test set contains the remaining gene’s
probes.

We use only simple features to describe the 24-bp
probes (also called 24mers) in each data set. The features
we chose are described in Table 1. Certainly much
more expressive data descriptions are possible, but using
these features allow us to determine how much useful
information is contained in the basic 24mer structure.

Using the normalized intensity, we chose to label each
probe example with a discrete output of low, medium,
or high. We sought to roughly evenly distribute the
low’s, medium’s, and high’s. The normalized intensity to
discrete-output mappings we chose are: the interval [0.00–
0.05] maps to low (45% of the examples), (0.05–0.15]
(23% of the data) to medium, and (0.15–1.00] (32%) to
high.

In all of our experiments, during training we discard all
of the probes labeled medium, since those are arguably
ambiguous. Of course it would not be fair to ignore the
medium probes during the testing phase (and we do not
do so), since the objective during testing is to predict the
output value for probes not seen during training.

S165

J.B.Tobler et al.

Table 1. Features used to describe probes

Feature Name Description

f racA, f racC, f racG, f racT The fraction of A, C, G, or T in the 24mer
fracAA, fracAC, fracAG, fracAT, fracCA, fracCC, fracCG,
fracCT, fracGA, fracGC, fracGG, fracGT,
fracTA, fracTC, fracTG, fracTT

The fraction of each of these dimers in the 24mer

n1, n2, . . . , n24 The particular nucleotide (A, C, G, or T) at the specified
position in the 24mer (n1 is the 5′ end)

d1, d2, . . . , d23 The particular dimer (AA, AC, . . . TT) at the specified position
in the 24mer (d1 is the 5′ end)

However, we did remove some probes from the test sets,
namely those that had less than three mismatches with
any other 24-bp region in the full genome containing the
probe’s gene. Such probes are not useful, since that are
insufficiently indicative of a single gene. We did leave
such ‘insufficiently unique’ probes in the training sets
since that may still provide useful information to the
learning algorithms. In any case, the number of discarded
(from the test sets) genes is very small, only a very small
fraction of the probes had at least one close match in their
genome.

Methods
As mentioned above, we evaluate the well-established
machine learning algorithms of naı̈ve Bayes, decision
trees, and artificial neural networks (ANNs) on our task.

Naı̈ve Bayes is a practical, successful machine-learning
algorithm that assumes independence among the features
for a given example. Using this independence assumption,
a simple ratio can be used to compute the relative likeli-
hood that a test example with feature values v1, v2, . . . , vN
should be labeled high or low:

NBratio =
P(high)

∏

i
P(fi = vi |high)

P(low)
∏

i
P(fi = vi |low)

(1)

where P(high) and P(low) are the number of training
examples labeled high and low, respectively. P(fi = vi |
high) is estimated by simply counting the number of
examples in the training dataset with output labeled high
(or low for the terms in the denominator) and feature fi
equal to value vi .

To avoid bias toward underestimating the probability of
a given output when an occurrence of the feature value
is not seen in the training data, we used the m-estimate
of probability. We use the following to actually estimate
probabilities:

P(fi = vi |c = {high, low}) = nc + mp

n + m
(2)

where c is either low or high, nc is the number of
occurrence that have feature value equal to vi and have
output c, n is the number of examples with output c, m is
chosen by us to equal n (we did not experiment with other
settings), and p = 1/k for features with k discrete feature
values (Mitchell, 1997).

We discretized the non-discrete features (fracA, fracAT,
etc.) by binning them into five equally distributed bins.
The naı̈ve Bayes algorithm is a fast algorithm for training
and classification. Training and classification of a given
train/test fold take on average less than 10 minutes on a
standard desktop PC.

The second classifier we evaluate for use in probe
selection is a decision tree. The algorithm most often
used to generate decision trees is ID3 (Quinlan, 1986)
or it successor C4.5 (Quinlan, 1996a). This algorithm
selects the next node to place in the tree by computing
the information gain for all candidate features and then
choosing that feature that gains the most information about
the output category of the current example. Information
gain is a measure of how well the given feature separates
the remaining training examples, and is based on Shannon
(1948) information theory. Information gain is calculated
as described in Equations 3 and 4.

Entropy(S) ≡ −P(low) log2 P(low)

−P(high) log2 P(high) (3)

where S is a set of examples, and P(low) and P(high)
are estimated by computing the fractions of low and high
labeled examples in S.

I n f oGain(S, F) ≡

Entropy(S) − ∑

v∈V alues(F)

|Sv|
|S| Entropy(Sv) (4)

where Values(F) is the set of all possible values for feature
F and Sv is the subset of S for which feature F has value
v (Mitchell, 1997).

S166

Using machine learning for probe selection

We use the University of Waikato’s Weka 3 Machine
Learning Algorithms in Java package (http://www.cs.
waikato.ac.nz/ml/weka/index.html) to run the decision-
tree experiments. The Weka algorithm for decision-tree
learning is named J48, but it uses the same algorithm as
Quinlan’s C4.5. We used Quinlan’s reduced-error-pruning
algorithm to avoid overfitting of the training data (Quinlan,
1996a); this procedure removes those portions of the
initially induced decision tree that seem to be overfitting
the data. At each leaf in the pruned tree, the fraction of
the training set reaching that node that was high and low
is recorded. We slightly modified the Weka code to report
these fractions when classifying each test example; this
provides a crude estimate of the probability that the current
test-set example should be called high. Using the WEKA
software package, training and classification of a decision
tree for a given train-test pair takes under 5 minutes on the
standard PC used in all our experiments.

The third approach we evaluate is to use a multi-
layered ANN trained using backpropagation, which is
the standard algorithm used for training neural networks.
This algorithm attempts to minimize the squared-error†

between the network output values and the target value
for these outputs. The algorithm searches a weight space
(defined by all possible weight values for each arc in
the network) for an error minimum. Because a non-
linear, multi-layered network is used, the algorithm is not
guaranteed to find the global minimum error, but rather it
may find a local minimum (Mitchell, 1997).

The networks we train consist of 485 input units,
produced by using one input unit for each real-valued
feature (e.g., fractA) and a 1-of-N encoding for each
discrete-valued feature (e.g., n1). A 1-of-N encoding
requires one Boolean-valued input unit for each possible
feature value. When an example is input into the network,
only the input unit representing that value for a given
discrete-valued feature is set to 1 with the other inputs
set to 0 (e.g., n1 = A would be represented by 1, 0,
0, and 0 as the values for the four input units associated
with n1). We also use a single layer of hidden units.
In general, too many hidden units leads to overfitting
the training data, while using too few hidden units
can lead to underfitting the data. Hidden units free an
ANN from the constraints of the feature set, and they
allow for the network to discover intermediate, non-linear
representations of the data (Mitchell, 1997). Sarle (1995)
and others assert that using large numbers of hidden units
is necessary to avoid finding bad local minima. Thus we
decided to use 161 hidden units (1/3rd the number of input

† For categorization tasks, Rumelhart et al. (1995) argue that the cross-
entropy error function is more appropriate. However, in other work we found
little difference in predictive accuracy when comparing the squared-error and
cross-entropy error functions and so for this project we selected the more
commonly used squared error.

units), each employing the standard sigmoidal activation
function. Finally, we use two output units with sigmoid
activation functions. The two output units represent the
estimated probability that the output should be high and
low respectively. The network is fully connected with each
input unit connected to each of the hidden units, and each
hidden unit connected to each of the output units. Each arc
in the network is initialized with a random weight between
−0.3 and 0.3, following standard practice.

Training consists of 100 cycles through the training set.
We use early stopping to avoid overfitting the training data
by training too long. To decide when to ‘stop’ training, we
first create a tuning set of data by randomly removing 10%
of the training data, and after each cycle we measure the
current accuracy of the ANN’s predictions on the tuning
set. The ANN’s weight settings for the cycle that performs
the best on the tuning set are the weight settings that we
use to classify the test set. Each training and classification
run takes over an order of magnitude longer than those for
naı̈ve Bayes and decision trees.

RESULTS
After each algorithm is run on training set j , we sort the
predicted scores for each probe in test set j . For the naı̈ve
Bayes and ANN classifiers, the sorting is done from the
highest to lowest according to the ratio:

prob(label = high for testset example x)

prob(label = low for testset example x)

The decision-tree sorting is solely based on prob(label =
high for test-set example x), which, as mentioned above, is
estimated from the distribution of high and low examples
in the leaf of the pruned decision tree that is reached by
test-set example x .

By sorting in this manner, we produce an ordering of
the best test-set examples as predicted by the machine-
learning classifier. The question we would like to answer
is the following:

Assume we want to get at least N ‘good’
probes for a gene, how far down our sorted
list do we need to go?

This question is similar to that asked of information-
retrieval systems (e.g., search engines): in order to get
N relevant articles, how many of the highest-scoring
articles should be returned?

We consider various definitions of a ‘good’ probe in
Figure 1. In Panel (a), we define ‘good’ as measuring at
or higher than 0.5 on our normalized [0–1] scale; about
13.5% of our probes have normalized measured intensities
at or above 0.5. For example, when we look at the test-
set probes with the 10 highest predicted scores, it turns

S167

J.B.Tobler et al.

out that for ANN and naı̈ve Bayes nearly all of them
had normalized measured intensities at or above 0.5. The
‘ideal’ curve is a 45-degree line: if all of the probes in
the top N are considered good, then the results would fall
on the ideal curve. Panels (c) through (d) report the same
information for increasingly strict definitions of ‘good’
(6.3% of the probes have normalized intensities at or
above 0.75, 3.7% at or above 0.9, and, by construction,
2.5% normalize to 1.0). In all cases, the decision-tree
learner performs very poorly. Neural networks and naı̈ve
Bayes perform surprisingly well, with the neural networks
doing slightly better.

Included in Figure 1 is the curve that presents results
from ordering probes simply by their predicted melting
point. We calculated the melting points using the formula
presented by Aboul-ela et al. (1985). As can clearly
be seen, predictors based on neural networks and naı̈ve
Bayes are substantially more accurate than simply using
predicted melting point, at least according to our metric.

Figure 2 presents a visualization of the predicted
intensities by the learning algorithms for a typical gene
region. We generated these curves by manipulating the
ratios used to determine the best probes reported in
Figure 1. It is important to note that this figure is
for visualization purposes only. The functions used to
generate Figure 2s curves are partially fitted to the testing
data, which invalidates their use in quantitative evaluation.
These curves are generated as described below.

For naı̈ve Bayes and ANNs, we use the log of the ratio of
prob(label = high) / prob(label = low) to create a predicted
output for each probe for a given gene. Similarly, decision
trees simply use prob(label = high). We then compute
the squared error between these predicted values and the
normalized measured intensities, across all the probes in a
given gene. We next consider raising the predicted values
to increasing powers from 1 to 20, and the power with
the minimum squared error is chosen for use in these
visualization graphs; the selected power used to generate
the curves is shown in the figure legend. In our quantitative
experiments we are only interested in relative predicted
values for the various probes (e.g. Figure 1), and raising
the scores to increasing exponents has no impact on their
sorted order. However, to better visualize the predictions
we have found it useful to manipulate the predictions.

The naı̈ve Bayes and ANN predicted curves closely fit
the measured probe intensities over high and low intensity
values. The decision-tree curve does not fit the actual
probe curve nearly as well as the other two algorithms over
all intensity ranges. While Figure 2 only shows a short,
50-bp region of probes, the results are typical of what is
produced over all of our eight genes.

Figure 3 offers insight into what features are providing
the most information for classification, where information
gain is computed using Equation 4. This curve is gener-

ated by computing the information gain of each individual
feature over the eight training datasets; values are normal-
ized to the information content of the highest-scoring fea-
ture. FracC is the most informative feature - it provides
nearly double the information of the next most informa-
tive feature. The bell-shaped curves for the n1 − n24 and
d1 − d23 features show that the nucleotides in the middle
of the probe are substantially more informative than those
at either end of the 24mer, as one might expect.

DISCUSSION
The threshold normalized intensity experiments show
that the ANN and naı̈ve Bayes can competently pick
efficiently hybridizing probes. When the normalized-
intensity threshold is 0.50, both algorithms choose probes
whose normalized intensity is above this threshold more
than 90% of the time. On average, at even the strictest
normalized intensity threshold (1.00), four of the first
six probes chosen meet the standard. Though more
experimentation is needed to discern what an appropriate
normalized intensity threshold is and how many probes
are really needed in order to accurately sense a gene, these
results are highly encouraging.

Also encouraging are the results of the ANN and naı̈ve
Bayes on the task of predicting the normalized intensity
across a particular gene. Obviously, the task is very
similar to choosing probes above a threshold. The subtle
difference is that consistency in prediction of the relative
intensities of the weaker probes, not just the top twenty or
so, is required in order to make the landscapes line up.

The decision tree performs consistently worse than the
other two algorithms on these tasks. This suggests that a
more probabilistic representation is preferable to the all-
or-nothing nature of a decision-tree model. However, it is
possible that other variants of decision-tree induction (e.g.
boosting and bagging; Quinlan, 1996b, or regression trees
that learn to predict real values directly; Quinlan, 1996a)
would perform well on this task.

The relative information gain of different features is also
quite interesting. Bases near the ends of the probe are
clearly less important than those in the middle. Intuitively
considering the kinetics of the situation, this makes sense.
Imagine a 24 bp or so strand of ‘target’ RNA bound to a
complimentary 24mer DNA probe by just the four bases at
the very end of the strand. This leaves a 20-base-long RNA
arm free to float, twist, and generate torques that might
break the duplex apart. Now imagine, instead, that it is the
middle four bases of the two complementary strands that
are bound together. In this case, the swinging ends are only
ten bases long and the torques will be much smaller and
less likely to free the RNA. So, in order for the RNA strand
to stay connected to the probe long enough to hybridize
fully, it is most critical that the middle of the probe can
make a good bond to the RNA.

S168

Using machine learning for probe selection

0

2

4

6

8

10

12

14

16

18

20

0 2 4 6 8 10 12 14 16 18 20
Number of Predicted Highest Scoring Probes

Considered

A
ve

ra
g

e
N

u
m

b
er

o
f

T
es

ts
et

P
ro

b
es

w
it

h
M

ea
su

re
d

N
o

rm
al

iz
ed

In
te

n
si

ty
>=

0.
50

ANN
Naive Bayes
DTree
Primer3 Melting Point
Ideal

(a)

0

2

4

6

8

10

12

14

16

18

20

0 2 4 6 8 10 12 14 16 18 20
Number of Predicted Highest Scoring Probes

Considered

A
ve

ra
g

e
N

u
m

b
er

o
f

T
es

ts
et

P
ro

b
es

w
it

h
M

ea
su

re
d

N
o

rm
al

iz
ed

In
te

n
si

ty
>=

0.
75

(b)

0

2

4

6

8

10

12

14

16

18

20

0 2 4 6 8 10 12 14 16 18 20
Number of Predicted Highest Scoring Probes

Considered

A
ve

ra
g

e
N

u
m

b
er

o
f

T
es

ts
et

P
ro

b
es

w
it

h
M

ea
su

re
d

N
o

rm
al

iz
ed

In
te

n
si

ty
>=

0.
90

(c)

0

2

4

6

8

10

12

14

16

18

20

0 2 4 6 8 10 12 14 16 18 20
Number of Predicted Highest Scoring Probes

Considered

A
ve

ra
g

e
N

u
m

b
er

o
f

T
es

ts
et

P
ro

b
es

w
it

h
M

ea
su

re
d

N
o

rm
al

iz
ed

In
te

n
si

ty
=

1.
00

(d)

Fig. 1. Number of Test-set probes in the N highest-scoring predictions that exceed a given threshold for their normalized measured intensity
(per learning algorithm and averaged over the eight test sets

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

650 655 660 665 670 675 680 685 690 695 700
Starting Nucleotide Position for 24-mer Probe

N
o

rm
al

iz
ed

O
u

tp
u

t

NB Predicted Values
(Log Normalized
P(High)/P(Low) ^ 4)

ANN Predicted Values
(Log Normalized
P(High)/P(Low) ^ 4)

DT Predicted Values
(P(High) ^ 11)

Actual Probe Values
(Normalized Probe
Intensity)

Fig. 2. Probe intensity and classifier output versus starting nucleotide position for 24mer probe for gene 8

The relative information gain of overall base content
is also informative. ‘C’ content is, by far, the most
informative feature. Along with ‘G’ content, they are the

two most important single bases. This is not surprising
given the relative stability of the G-C bond over the A-T
bond.

S169

J.B.Tobler et al.

fr
ac

A

f r
ac

C

fr
ac

G

fr
ac

T

fr
ac

A
A

fr
ac

A
C

fr
ac

A
G

fr
ac

A
T

fr
ac

C
A

fr
ac

C
C

fr
ac

C
G

fr
ac

C
T

fr
ac

G
A

fr
ac

G
C

f r
ac

G
G

f r
ac

G
T

f r
ac

T
A

f r
ac

T
C

f r
ac

T
G

f r
ac

T
T

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Features

N
o

rm
al

iz
ed

In
fo

rm
at

io
n

G
ai

n

n1 n2 n3 n4 n5 n6 n7 n8 n9 n1
0

n1
1

n1
2

n1
3

n1
4

n1
5

n1
6

n1
7

n1
8

n1
9

n2
0

n2
1

n2
2

n2
3

n2
4

d1 d2 d3 d4 d5
d6

d7
d8

d9 d1
0 d1

1
d1

2
d1

3
d1

4
d1

5
d1

6
d1

7
d1

8
d1

9
d2

0
d2

1
d2

2
d2

3

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Features

N
o

rm
al

iz
ed

In
fo

rm
at

io
n

G
ai

n

Fig. 3. Normalized average information gain per probe feature over eight training sets (Table 1 contains definitions for these features).

The dimer frequencies are also interesting, but more
difficult to explain. The approximate symmetry (the
importance of the frequency of XY is similar to the
importance of the frequency of YX) probably reflects
the approximate symmetry in stacking energies between
a duplex and its exact reverse (switching 3′ and 5′
ends). These stacking energies have a great influence on
the energetic of characteristics of the hybridization. The
information content of these dimers roughly follows the
relative stacking energies of the dimers with the exception
of the CG and GC dimers that are known to have high
stacking energies, but show low information content as
features. This is a subject that needs further study.

FUTURE WORK
Though we have developed strategies that successfully
find probes that bind with RNA when the RNA is present
in a sample, one limitation of our approach is that it may
not filter out probes that bind non-specifically. The use
of mismatch probes (probes that are the nearly same as
the target probe with only a small number of exceptions)
alongside the target probe is a common method for
identifying this behaviour. If the binding is nonspecific,
the mismatch probes will usually also have high intensity
values.

We currently are extending our experiments to address

non-specific probes. We are also investing the task of
predicting the amount of fluorescence measured when
the sample applied to the microarray does not contain
the RNA for a given probe’s gene. More specifically, we
are now investigating four learning tasks (and are also
converting from categorical to real-valued prediction).
For a given probe, we wish to predict the measured
fluorescence under four conditions:

1. the probe’s fluorescence level when the associated
gene’s RNA is (substantially) present in the sample,

2 the probe’s fluorescence level when the associated
gene’s RNA is absent from the sample,

3. the maximum fluorescence level for the probe’s
mismatch probes when the associated gene’s RNA
is (substantially) present in the sample, and

4. the maximum fluorescence level for the probe’s
mismatch probes when the associated gene’s RNA
is absent from the sample.

The predicted quality of a potential probe will be a
combination of these four predicted values.

We also plan to evaluate the use of machine learning in
conjunction with other methods. For example, we are con-
sidering using a heuristic method to filter out some probes
that the learner did not; if self-complementarity proves to

S170

Using machine learning for probe selection

be a difficult characteristic for the learner to infer, a simple
computational test for self-complementarity could be used
to eliminate some probes.

Another topic we are addressing is evaluating machine
learners on a much larger set of probes, including those for
eukaroyotic genes.

Finally, we are currently considering using enriched
sets of features to represent probes. For instance, we
are using the Zuker et al. (1999) mfold algorithm to
predict secondary structures in the probes (and corre-
sponding targets), and are devising features based on
mfold’s predictions. ANNs and naı̈ve Bayes appear to be
highly accurate even when only using the very simple
(and easy to compute) features of Table 1, so we may not
need richer features in order to obtain an acceptable level
of predictive accuracy. However, we are also interested
in judging which features (and combinations of features)
prove helpful in making accurate computational models
of probe quality, in order to obtain more insight into
improving the probe-design process.

CONCLUSION
We address the important task of predicting the quality
of the various short probes that can be used to represent a
given gene on a microarray. Our approach is to apply three
well-established, machine-learning algorithms to this task
in order to see how well machine learning works on this
problem and also to determine which of the evaluated
learning approaches is most accurate on this task. We ob-
tained training data for our problem by putting all possible
24mers from eight prokaryotic genes on a gene chip, then
measuring the fluorescence of each probe when a sample
where all eight genes were highly expressed was applied
to the microarray. Ideally, all the probes would hybridize
strongly with the sample, but 45% of the probes hy-
bridized very weakly (basically, at the background-noise
level). We trained our learning algorithms to predict which
probes would hybridize strongly and which would not.

Two learning algorithms performed remarkably well
on ‘held aside’ test data: naı̈ve Bayes and artificial neural
networks. Both worked much better than our usage of a
decision-tree-induction algorithm. They also performed
much better than using calculated melting point to predict
the quality of probes. Following training, both naı̈ve Bayes
and neural networks can quickly rate candidate probes;
the time needed to judge probe (quasi-)uniqueness will be
much more than that needed to rate the probe’s hybridiza-
tion quality. Our results strongly suggest that ‘off the
shelf’ machine-learning methods can greatly aid the im-
portant task of probe selection for gene-expression arrays.

ACKNOWLEDGEMENTS
We wish to thank Darryl Roy for helping in creating the
training data. This research was funded by grants NIH
Grant 2 R44 HG02193-02, NLM 1 R01 LM07050-01,
NSF IRI-9502990, NIH 2 P30 CA14520-29, and NIH 5
T32 GM08349.

REFERENCES
Aboul-ela,F., Koh,D. and Tinoco,H. (1985) Base-base mismatches:

thermodynamics of double helix formation for dC A3 X A3G +
dCT3Y T3G(X, Y = A, C, G, T). Nucleic Acids Res., 13, 4811–
4824.

Breslauer,K.J., Frank,R., Blocker,H. and Marky,L.A. (1986) Pre-
dicting DNA duplex stability from the base sequence. Proc. Natl
Acad. Sci. USA, 83, 3746–3750.

Li,F. and Stormo,G. (2001) Selection of optimal DNA oligos for
gene expression arrays. Bioinformatics, 17, 1067–1076.

Lockhart,D.J., Dong,H., Byrne,M.C., Follettie,M.T., Gallo,M.V.,
Chee,M.S., Mittmann,M., Wang,C., Kobayashi,M., Horton,H.
and Borwn,E.L. (1996) Expression monitoring by hybridization
to high density oligonucleotide arrays. Nat. Biotechnol., 14,
1675–1680.

Kurata,K. and Suyama,A. (1999) Probe design for DNA chips. J.
Japanese Soc. Bioinformatics.

Mitchell,T. (1997) Machine Learning. McGraw-Hill, Boston, MA.
Quinlan,J.R. (1986) Induction of decision trees. Machine Learning,

1, 81–106.
Quinlan,J.R. (1996a) C4.5: Programs for Machine Learning. Mor-

gan Kaufman, San Mateo, CA.
Quinlan,J.R. (1996b) Boosting, Bagging, and C4.5. Proceeding

of the National Conference on Artificial Intelligence (AAAI-96).
MIT/AAAI Press.

Rumelhart,D., Durbin,R., Golden,R. and Chauvin,Y. (1995) Back-
propagation: The Basic Theory, In Back-propagation: The-
ory, Architecture, and Applications, Chauvin,Y. and Rumul-
hart,D.E. (eds), Lawrence Erlbaum Associates, Hillsdale, New
Jersey, pp. 1–34.

Sarle,W.S. (1995) Stopped training and other remedies for over-
fitting. Proceedings of the 27th Symposium of the Interface of
Computing Science and Statistics. pp. 352–360.

Shannon,C.E. (1948) A mathematical theory of communication.
Bell System Technical Journal, 27, 379–423 and 623–656, July
and October.

Singh-Gasson,S., Green,R.D., Yue,Y., Nelson,C., Blattner,F.R.,
Sussman,M.R. and Cerrina,F. (1999) Maskless fabrication of
light-directed oligonucleotide microarrays using a digital mi-
cromirror array. Nat. Biotechnol., 17, 974–978.

Snustad,D.P. and Simmons,M.J. (1999) Principles of Genetics, 2nd
Edition, Wiley, New York, NY.

Zuker,M, Mathews,D.H. and Turner,D.H. (1999) Algorithms and
thermodynamics for RNA secondary structure prediction: a
practical guide. In Barciszewski,J. and Clark,B.F.C. (eds), RNA
Biochemistry and Biotechnology, NATO ASI Series, Kluwer
Academic Publishers.

S171

