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We describe an application of inductive logic 
programming to transfer learning.  Transfer 
learning is the use of knowledge learned in a 
source task to improve learning in a related 
target task.  The tasks we work with are in 
reinforcement learning domains.  Our 
approach transfers relational macros, which 
are finite-state machines in which the 
transition conditions and the node actions are 
represented by first-order logical clauses.  We 
use inductive logic programming to learn a 
macro that characterizes successful behavior 
in the source task, and then use the macro for 
decision-making in the early learning stages of 
the target task.  Using experiments in the 
RoboCup simulated soccer domain, we show 
that this transfer method provides a 
substantial head start in the target task.

Abstract Transfer Learning

Agent learns Task A

Agent encounters related Task B

Agent recalls relevant knowledge from Task A

Agent uses this knowledge to learn Task B quickly
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Reinforcement
Learning

Observe the 
world state

Receive a 
reward

Take an 
action

RoboCup Domain
3-on-2 BreakAway3-on-2 BreakAway

4-on-3 BreakAway4-on-3 BreakAway

2-on-1 BreakAway2-on-1 BreakAway

Learning Structure
First learn an action pattern that reasonably 
separates good and bad games

macroSequence(Game) :-
   actionTaken(Game, StateA, move, ahead, StateB),
   actionTaken(Game, StateB, pass,  _,        StateC),
   actionTaken(Game, StateC, shoot, _,       gameEnd).

This forms the node structure of the macro

pass(Teammate)move(ahead) shoot(GoalPart)pass(Teammate)move(ahead) shoot(GoalPart)

Learning Conditions
Next learn the conditions for transitioning 
between nodes and choosing actions

pass(Teammate)move(ahead) pass(Teammate)move(ahead)

pass(Teammate)pass(Teammate)

transition(State) :-
   feature(State, distance(Teammate, goal)) < 15.

action(State, pass(Teammate)) :-
   feature(State, angle(Teammate, me, Opponent)) > 30.

Choosing Examples to
     Learn Conditions

Positive examples: States in successful games that 
followed the macro and took the step being learned

Negative examples: States that followed the macro 
until the step being learned and then diverged

Negative examples: States that took the action in 
the step being learned and immediately ended badly

Transferring a Macro

Execute the macro strategy for 100 games 
in the target task to get a set of Q-value 
estimates

Infer low Q-value estimates for actions not 
taken by the macro

Compute an initial Q-function and then 
continue learning with standard RL

Relational Macros

hold • ! true pass(Teammate) • !
isOpen(Teammate) 

isClose(Opponent)

isFar(Opponent)
hold :- true. pass(Teammate) :-  

isOpen(Teammate) 

isClose(Opponent)

isFar(Opponent)

Relational macros are finite-state machines

Nodes represent internal states of the agent 
in which independent policies apply

Conditions for transitions and actions are 
sets of rules in first-order logic

Proposed Method

Learn a macro that describes a 
successful source-task strategy

Demonstrate the strategy in the 
target task by executing the macro

Continue learning the target 
task with standard RL

3-on-2 Results
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4-on-3 Results
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2-on-1
Macro

pass(Teammate)

move(Direction)

shoot(goalRight)

shoot(goalLeft)

pass(Teammate)

move(Direction)

shoot(goalRight)

shoot(goalLeft)

Evaluation
This approach can significantly increase the 
initial performance in the target task

It is a good choice if the source and target 
tasks have similar strategies

The method can handle new elements 
being added to the target task, but not new 
objectives

Future work may address transfer between 
tasks that share partial strategies


