
Relational Macros for Transfer in Reinforcement Learning

Lisa Torrey, Jude Shavlik, Trevor Walker

University of Wisconsin-Madison

Computer Sciences Department

Richard Maclin

University of Minnesota-Duluth

Computer Science DepartmentSupported by DARPA grant HR0011-04-1-0007
and DARPA IPTO contract FA8650-06-C-7606

We describe an application of inductive logic
programming to transfer learning. Transfer
learning is the use of knowledge learned in a
source task to improve learning in a related
target task. The tasks we work with are in
reinforcement learning domains. Our
approach transfers relational macros, which
are finite-state machines in which the
transition conditions and the node actions are
represented by first-order logical clauses. We
use inductive logic programming to learn a
macro that characterizes successful behavior
in the source task, and then use the macro for
decision-making in the early learning stages of
the target task. Using experiments in the
RoboCup simulated soccer domain, we show
that this transfer method provides a
substantial head start in the target task.

Abstract Transfer Learning

Agent learns Task A

Agent encounters related Task B

Agent recalls relevant knowledge from Task A

Agent uses this knowledge to learn Task B quickly

Goals of Transfer

Training

Pe
rf

o
rm

an
ce with transfer

without transfer

Reinforcement
Learning

Observe the
world state

Receive a
reward

Take an
action

RoboCup Domain
3-on-2 BreakAway3-on-2 BreakAway

4-on-3 BreakAway4-on-3 BreakAway

2-on-1 BreakAway2-on-1 BreakAway

Learning Structure
First learn an action pattern that reasonably
separates good and bad games

macroSequence(Game) :-
 actionTaken(Game, StateA, move, ahead, StateB),
 actionTaken(Game, StateB, pass, _, StateC),
 actionTaken(Game, StateC, shoot, _, gameEnd).

This forms the node structure of the macro

pass(Teammate)move(ahead) shoot(GoalPart)pass(Teammate)move(ahead) shoot(GoalPart)

Learning Conditions
Next learn the conditions for transitioning
between nodes and choosing actions

pass(Teammate)move(ahead) pass(Teammate)move(ahead)

pass(Teammate)pass(Teammate)

transition(State) :-
 feature(State, distance(Teammate, goal)) < 15.

action(State, pass(Teammate)) :-
 feature(State, angle(Teammate, me, Opponent)) > 30.

Choosing Examples to
 Learn Conditions

Positive examples: States in successful games that
followed the macro and took the step being learned

Negative examples: States that followed the macro
until the step being learned and then diverged

Negative examples: States that took the action in
the step being learned and immediately ended badly

Transferring a Macro

Execute the macro strategy for 100 games
in the target task to get a set of Q-value
estimates

Infer low Q-value estimates for actions not
taken by the macro

Compute an initial Q-function and then
continue learning with standard RL

Relational Macros

hold • ! true pass(Teammate) • !
isOpen(Teammate)

isClose(Opponent)

isFar(Opponent)
hold :- true. pass(Teammate) :-

isOpen(Teammate)

isClose(Opponent)

isFar(Opponent)

Relational macros are finite-state machines

Nodes represent internal states of the agent
in which independent policies apply

Conditions for transitions and actions are
sets of rules in first-order logic

Proposed Method

Learn a macro that describes a
successful source-task strategy

Demonstrate the strategy in the
target task by executing the macro

Continue learning the target
task with standard RL

3-on-2 Results

0

0.1

0.2

0.3

0.4

0.5

0.6

0 500 1000 1500 2000 2500 3000
Training Games

Pr
ob

ab
ili

ty
 o

f G
oa

l

Standard RL
Model Reuse
Skill Transfer
Relational Macro

4-on-3 Results

0

0.1

0.2

0.3

0.4

0.5

0.6

0 500 1000 1500 2000 2500 3000
Training Games

Pr
ob

ab
ili

ty
 o

f G
oa

l

Standard RL
Model Reuse
Skill Transfer
Relational Macro

2-on-1
Macro

pass(Teammate)

move(Direction)

shoot(goalRight)

shoot(goalLeft)

pass(Teammate)

move(Direction)

shoot(goalRight)

shoot(goalLeft)

Evaluation
This approach can significantly increase the
initial performance in the target task

It is a good choice if the source and target
tasks have similar strategies

The method can handle new elements
being added to the target task, but not new
objectives

Future work may address transfer between
tasks that share partial strategies

