Policy Transfer via Markov Logic Networks

Lisa Torrey and Jude Shavlik

University of Wisconsin, Madison WI, USA
ltorrey@cs.wisc.edu, shavlik@cs.wisc.edu

Abstract. We propose using a statistical-relational model, the Markov
Logic Network, for knowledge transfer in reinforcement learning. Our
goal is to extract relational knowledge from a source task and use it to
speed up learning in a related target task. We show that Markov Logic
Networks are effective models for capturing both source-task Q-functions
and source-task policies. We apply them via demonstration, which in-
volves using them for decision making in an initial stage of the target
task before continuing to learn. Through experiments in the RoboCup
simulated-soccer domain, we show that transfer via Markov Logic Net-
works can significantly improve early performance in complex tasks, and
that transferring policies is more effective than transferring @Q-functions.

1 Introduction

The transfer of knowledge from one task to another is a desirable property in
machine learning. Our ability as humans to transfer knowledge allows us to learn
new tasks quickly by taking advantage of relationships between tasks. While
many machine-learning algorithms learn each new task from scratch, there are
also transfer-learning algorithms [13] that can improve learning in a target task
using knowledge from a previously learned source task.

In reinforcement learning (RL), an agent navigates through an environment,
sensing its state, taking actions, and trying to earn rewards [12]. The policy of the
agent determines which action it chooses in each step. An agent performing RL
typically learns a wvalue function to estimate the values of actions as a function
of the current state, and its policy typically is to take the highest-valued action
in all except occasional exploration steps.

In complex domains, RL can require many early episodes of nearly random
exploration before acquiring a reasonable value function or policy. A common
goal of transfer in RL is to shorten or remove this period of low performance. Re-
cent research has yielded a wide variety of RL transfer algorithms to accomplish
this goal [13]. In one category of methods, RL agents apply a source-task policy
or value function at some point(s) while learning the target task. Approaches
of this type vary in the representation of the source-task knowledge and in the
timing and frequency of its application.

Appears in the ILP-2009 Springer LNCS Post-conference Proceedings.

Madden and Howley [6] learn a set of rules to represent a source-task policy,
and they use those rules only during exploration steps in the target task. Fernan-
dez and Veloso [2] use the original representation of the source-task policy, and
give the target-task agent a three-way choice between using the current target-
task policy, using a source-task policy, and exploring randomly. Croonenborghs
et al. [1] learn a relational decision tree to represent the source-task policy, and
use the tree as a multi-step action (an option).

Our own work in this area has contributed several relational methods, in
which the knowledge transferred is at the level of first-order logic, and is ex-
tracted from the source task with inductive logic programming (ILP). Using
ILP [8], we transfer several types of relational models. In one recent approach [15],
the transferred model is a first-order finite-state machine that we call a relational
macro, and it represents a successful generalized source-task plan.

In this paper, we propose transfer via a statistical-relational model called a
Markov Logic Network (MLN). An MLN combines first-order logic and proba-
bility [9], and is capable of capturing more source-task knowledge than a macro
can. With experiments in the RoboCup domain [7], we show that MLN transfer
methods can significantly improve initial performance in complex RL tasks.

2 Reinforcement Learning in RoboCup

In one common form of RL called @-learning [12], the value function learned by
the agent is called a @-function, and it estimates the value of taking an action
from a state. The policy is to take the action with the highest @-value in the
current state, except for occasional exploratory actions taken in a small percent
e of steps. After taking an action and receiving some reward (possibly zero), the
agent updates its @Q-value estimates for the current state.

Stone and Sutton [11] introduced RoboCup [7] as an RL domain that is
challenging because of its large, continuous state space and non-deterministic
action effects. Since the full game of soccer is quite complex, researchers have
developed several simpler games within the RoboCup simulator.

In M-on-N BreakAway (see Figure 1), the objective of the M reinforcement
learners called attackers is to score a goal against N — 1 hand-coded defenders
and a goalie. The game ends when they succeed, when an opponent takes the
ball, when the ball goes out of bounds, or after a time limit of 10 seconds. The
learners receive a +1 reward if they score a goal and 0 reward otherwise. The
attacker who has the ball may choose to move (ahead, away, left, or right with
respect to the goal center), pass to a teammate, or shoot (at the left, right, or
center part of the goal).

Figure 2 shows the state features for BreakAway, which mainly consist of
distances and angles between players and the goal. They are shown in logical
notation since we perform transfer learning in first-order logic; our basic RL
algorithm uses grounded literals in a fixed-length feature vector. Capitalized
atoms indicate typed variables, while constants and predicates are uncapitalized.

distBetween(a0, Player)
distBetween (a0, GoalPart)

(0] distBetween(Attacker, goalCenter)

> distBetween(Attacker, ClosestDefender)
ey £ distBetween(Attacker, goalie)

angleDefined By (topRight, goalCenter, a0)
angleDefinedBy(GoalPart, a0, goalie)

O angleDefined By (Attacker, a0, ClosestDefender)
angleDefined By (Attacker, a0, goalie)

timeLeft
Fig.1. Snapshot of a 3-on-2

BreakAway game. The attacking

players have possession of the ball Fig.2. The features that describe a BreakAway
and are maneuvering against the state in their first-order logical form, where variables
defending team towards the goal. are capitalized.

The attackers (labeled a0, a1, etc.) are ordered by their distance to the agent in
possession of the ball (a0), as are the non-goalie defenders (d0, d1, etc.).

Our basic RL algorithm uses a SARSA(N) variant of @-learning [12] and
employs a support vector machine (SVM) for @Q-function approximation [5]. Tt
relearns the SVM @-function after every batch of 25 games. The exploration
rate € begins at 2.5% and decays exponentially over time. Stone and Sutton [11]
found that discretizing the continuous features into Boolean interval features
called tiles is important for learning in RoboCup; following this approach, we
add 32 tiles per feature.

Agents in the games of 2-on-1, 3-on-2, and 4-on-3 BreakAway take between
1000 and 3000 training episodes to reach a performance asymptote in our sys-
tem. Differences in the numbers of attackers and defenders cause substantial
differences in optimal policies, particularly since there is a type of player en-
tirely missing in 2-on-1 (the non-goalie defender). However, there remain strong
relationships between BreakAway games of different sizes, and transfer between
them should improve learning.

3 Markov Logic Networks

The Markov Logic Network (MLN) is a model developed by Richardson and
Domingos [9] that combines first-order logic and probability. It expresses con-
cepts with first-order rules, as ILP does, but unlike ILP it puts weights on the
rules to indicate how important they are. While ILP rulesets can only predict a
concept to be true or false, an MLN can estimate the probability that a concept
is true, by comparing the total weight of satisfied rules to the total weight of vi-
olated rules. This type of probabilistic logic therefore conveys more information
than pure logic. It is also less brittle, since world states that violate some rules
are not impossible, just less probable.

Formally, a Markov Logic Network is a set of first-order logic formulas F,
with associated real-valued weights W, that provides a template for a Markov

Friends(Anna,Bob)
Smokes(Anna) . Smokes(Bob)

Friends(Anna,Anna) Friends(Bob,Bob)
Cancer(Bob)
Friends(Bob,Anna)

Fig. 3. The ground Markov network produced by the MLN described in this section.
This example and this image come from Richardson and Domingos [9]. Each clique in
this network has a weight (not shown) derived from the formula weights.

network. The network contains a binary node for each possible grounding of each
predicate of each formula in F', with groundings determined by a set of constants
C. Edges exist between nodes if they appear together in a possible grounding of
a formula. Thus the graph contains a clique for each possible grounding of each
formula in F'.

The classic example from Richardson and Domingos [9] follows. Suppose the
formulas are:

Weight 1.5: Yy Smokes(y) = Cancer(y)
Weight 0.8: Vy, z Friends(y, z) = (Smokes(y) < Smokes(z))

These rules assert that smoking leads to cancer and that friends have similar
smoking habits. These are both good examples of MLN formulas because they are
often true, but not always; thus they will have finite weights. Given constants
Anna and Bob that may be substituted for the variables y and z, this MLN
produces the ground Markov network in Figure 3. (Note that the convention
for capitalization is opposite here from in ILP; variables here are lower-case and
constants are upper-case.)

Let X represent all the nodes in this example, and let X = z indicate that
among the possible worlds (the true/false settings of those nodes), x is the actual
one. The probability distribution represented by the Markov network is:

PX=z)= % ea;prmi(x) (1)
i€EF
Here Z is a normalizing term, w; is the weight of formula ¢ € F, and n,(x)
is the number of true groundings of formula 4 in x. Based on this equation, one
can calculate the probability of any node in the network given evidence about
the truth values of some other nodes.

Given a set of positive and negative examples of worlds, appropriate for-
mula weights can be learned rather than specified manually. There are several
algorithms for weight learning; the current state-of-the-art is a method called
preconditioned scaled conjugate gradient [4]. This is the default algorithm in the
Alchemy software package [3], which we use for our experiments.

We learn formulas with ILP, and then assign weights to them with Alchemy.
The type of formulas we learn determines the type of source-task knowledge
captured by the MLN. The following sections describe two possible types.

4 MLN Q-Function Transfer

MLN Q-function transfer [14] is a transfer method that learns an MLN to express
the source-task @-function relationally, and allows target-task agents to use it
for an initial demonstration period. This allows the target-task agents to avoid
the slow process of exploration that traditionally occurs at the beginning of RL.

This method uses an MLN to define a probability distribution for the Q-value
of an action, conditioned on the state features. It chooses a source-task batch
and uses its training data to learn an MLN @Q-function for transfer. The choice
of which source-task batch has an impact, as we will discuss.

In this scenario, an MLN formula describes some characteristic of the RL
agent’s environment that helps determine the @-value of an action in that state.
For example, assume that there is a discrete set of @-values that a RoboCup
action can have (high, medium, and low). In this simplified case, one formula in
an MLN representing the Q-function for BreakAway could look like the following;:

IF distBetween(a0, GoalPart) > 10
AND angleDefinedBy(GoalPart, a0, goalie) < 30
THEN levelOfQvalue(move(ahead), high)

The MLN could contain multiple formulas like this for each action. After
learning weights for the formulas from source-task data, one could use this MLN
to infer, given a target-task state, whether action @-values are most likely to
be high, medium, or low. Note that ()-values in RoboCup are continuous rather
than discrete, so I do not actually learn rules classifying them as high, medium,
or low. Instead, the algorithm discretizes the continuous @-values into bins that
serve a similar purpose.

Table 1 gives the algorithm for MLN @-function transfer. The sections below
describe the steps of this algorithm in more detail.

4.1 Learning an MLN Q-function from a Source Task

The first step of the MLN @-function transfer algorithm in Table 1 is to divide
the @Q-values for an action into bins, according to the procedure in Table 2.
The training example @-values could have any arbitrary distribution, so it uses
a hierarchical clustering algorithm to find good bins. Initially every training
example is its own cluster, and it repeatedly joins clusters whose midpoints

Table 1. Algorithm for MLN Relational -Function Transfer.

INPUT REQUIRED

A set of batches B = (b1, ba, ...) to consider for transfer

The Q-function Q® for each batch b € B

The set of games G(b) that trained the Q-function for each batch b € B
A parameter € determining distance between bins

A demonstration-period length D

A validation-run length V/

CREATE Q-VALUE BINS // This is a hierarchical clustering procedure.
For each batch b € B
For each source-task action a
Determine bins(b, a) for action a in batch b using Table 2
(Provide inputs G(b) and €)

LEARN FORMULAS // This accomplishes MLN structure learning.
For each batch b € B
For each source-task action a
For each bin € bins(b,a)
Let P=10 // These will be the positive examples.
Let N =0 // These will be the negative examples.
For each state s in a game g € G(b)
If s used action a and Q% (s) falls into bin

Set P+ PUg // Examples that fall into the bin are positive.
Else if s used action a and Q%(s) does not fall into bin
Set N— NUg // Examples that fall outside the bin are negative.

Learn rules with Aleph to distinguish P from N
Let M (b, a,bin) be the ruleset chosen by the algorithm in Table 3
Let M (b, a) be the union of M (b, a,bin) for all bins

LEARN FORMULA WEIGHTS
For each batch b € B
For each source-task action a
Learn MLN weights W (b, a) for the formulas M (b, a) using Alchemy
Define MLN (b,a) as (M (b,a), W(b,a))
Define M LN (b) as the set of MLNs M LN (b, a)

CHOOSE A BATCH // Do a validation run in the source task to pick the best batch.
For each batch b € B
For V episodes: Use M LN (b) as shown in Table 4 to choose actions in a new source-task run
Let score(b) be the average score in this validation run
Choose the highest-scoring b* € B = argmaxy score(b)

LEARN TARGET TASK
For D episodes: Perform RL but use M LN (b*) to choose actions as shown in Table 4
For remaining episodes: Perform RL normally

Table 2. Algorithm for dividing the @Q-values of an action a into bins, given training
data from games G and a parameter € defining an acceptable distance between bins.

For each state i in a game g € G that takes action a
Create cluster ¢; containing only the Q-value of example ¢
Let C = sorted list of ¢; for all ¢
Let m = min distance between two adjacent c;,c, € C
While m < e // Join clusters until too far apart.
Join clusters ¢, and ¢y into cgzy
C — CUcpy —{Ca,cy}
m « min distance between two new adjacent c, c; el
Let B=10 // These will be the bins for action a.
For each final cluster ¢ € C // Center one bin on each cluster.
Let bin b have midpoint ¢, the average of values in ¢
Set the boundaries of b at adjacent midpoints or Q-value limits
Set B«— BUb
Return B

are closest until there are no midpoints closer than e apart. The final cluster
midpoints serve as the midpoints of the bins.

The value of € should be domain-dependent. For BreakAway, which has Q-
values ranging from approximately 0 to 1, we use ¢ = 0.1. This leads to a
maximum of about 11 bins, but there are often less because training examples
tend to be distributed unevenly across the range. We experimented with € values
ranging from 0.05 to 0.2 and found very minimal differences in the results; the
approach appears to be robust to the choice of € within a reasonably wide range.

The second step of the MLN @Q-function transfer algorithm in Table 1 per-
forms structure-learning for the MLN. The MLN formulas are rules that assign
training examples into bins. We learn these rules using the ILP system Aleph [10].
Some examples of bins learned for pass in 2-on-1 BreakAway, and of rules learned
for those bins, are:

Ir distBetween(a0, GoalPart) > 42
AND distBetween (a0, Teammate) > 39
THEN pass(Teammate) has a Q-value in the interval [0, 0.11]

IF angleDefined By (topRightCorner, goalCenter, a0) < 60
AND angleDefined By (topRightCorner, goalCenter, a0) > 55
AND angleDefinedBy(goalLeft, a0, goalie) > 20

AND angleDefinedBy(goalCenter, a0, goalie) < 30

THEN pass(Teammate) has a @Q-value in the interval [0.11, 0.27]

IF distBetween(Teammate, goalCenter) < 9
AND angleDefinedBy (topRightCorner, goalCenter, a0) < 85
THEN pass(Teammate) has a Q-value in the interval [0.27, 0.43]

From the rules generated by Aleph, our algorithm selects a final ruleset for
each action. It does so using an efficient method shown in Table 3 that ap-

Table 3. Algorithm for selecting a final ruleset from a large set of rules. Rules are
added to the final set if they increase the overall F measure.

Let S = rules sorted by decreasing precision on the training set
Let T =0 // This will be the final ruleset.
For each rule r € S // Select rules.
Let U =T U {r}
If F(U) > F(T)
Then set T' «— U
Return T’

proximately optimizes for both precision and recall. It sorts rules from highest
precision to lowest and greedily adds them to the final ruleset if they improve
its F' score. The combined rulesets for all the actions form the set of formulas
M in the MLN.

The third step of the algorithm learns weights for the formulas using Alchemy’s
conjugate gradient-descent algorithm, as described in Section 3. The fourth step
of the algorithm selects the best batch from among the set of candidates. We
found that the results can vary widely depending on the source-task batch from
which the algorithm transfers, so we use a validation set of source-task data to
select a good batch.

4.2 Applying an MLN Q-function in a Target Task

The final step of the MLN @-function transfer algorithm in Table 1 is to learn
the target task with a demonstration approach, in which the target-task agent
executes the transferred strategy for an initial period before continuing with
standard RL. During the demonstration period, the target-task learner queries
the MLN @Q-function to determine the estimated ()-value of each action, and it
takes the highest-valued action. Meanwhile, it learns normal @-functions after
each batch, and after the demonstration ends, it begins using those normal Q-
functions.

The algorithm in Table 4 shows how to estimate a ()-value for an action in a
new state using an MLN @Q-function. For each action a, the algorithm infers the
probability p, that the @Q-value falls into each bin b. It then uses these probabil-
ities as weights in a weighted sum to calculate the @-value of a:

Qa(s) = Zpr[Qa“)]
b

where E[Q,|b] is the expected @Q-value given that b is the correct bin, estimated as
the average @Q-value of the training data in that bin. The probability distribution
that an MLN provides over the @-value of an action could look like one of the
examples in Figure 4.

Table 4. Algorithm for estimating the @)-value of action a in target-task state s using
the MLN @Q-function. This is a weighted sum of bin expected values, where the expected
value of a bin is estimated from the training data for that bin.

Provide state s to the MLN as evidence

For each bin b € [1,2,...,n]
Infer the probability p, that Q(s) falls into bin b
Collect training examples 71" for which @, falls into bin b
Let E[Qa|b] be the average of Q. (t) for all t € T’

Return Qa(s) = >, (ps * E[Qalb])

) 2z 2
o a S
5} © ©
o) Q0 Q0
e o e
o o o I
Bin Number Bin Number Bin Number

Fig. 4. Examples of probability distributions over @-value of an action that an MLN
Q@-function might produce. On the left, the MLN has high confidence that the @Q-value
falls into a certain bin, and the action will get a high Q-value. In the center, the MLN is
undecided between several neighboring bins, and the action will still get a high @-value.
On the right, there is a high likelihood of a high bin but also a non-negligible likelihood
of a low bin, and the action will get a lower Q-value (this case suggests methods for
intelligent exploration, which could be a direction for future work).

4.3 Experimental Results for MLN Q-function Transfer

To test MLN (-function transfer, we learn MLNs from 2-on-1 BreakAway source
tasks and transfer them to 3-on-2 and 4-on-3 BreakAway. Figure 5 shows the
performance of MLN @-function transfer in 3-on-2 and 4-on-3 BreakAway com-
pared to standard RL and to our previous approach, macro transfer [15]. Each
curve in the figure is an average of 25 runs and has points averaged over the
previous 250 games to smooth over the high variance in the RoboCup domain.
The transfer curves consist of five target-task runs generated from each of five
source-task runs, to account for variance in both stages of learning.

These results show that MLN @-function transfer is comparable to macro
transfer in some cases and less effective in others. In 3-on-2 BreakAway, the area
under the curve for MLN @Q-function transfer is not significantly different than
for macro transfer (p > 0.05). In 4-on-3 BreakAway, the area under the curve
for macro transfer is significantly higher (p < 0.05).

0.6

0.5
0.4
0.3

02|

Probability of Goal

Standard RL
Macro Transfer
MLN Q-function

0.1

Training Games

0 500 1000 1500 2000 2500 3000

Probability of Goal

0.4

0.3

0.2

R

0
0

Standard RL
Macro Transfer
MLN Q-function

500 1000 1500 2000
Training Games

2500 3000

Fig. 5. Probability of scoring a goal in 3-on-2 BreakAway (left) and 4-on-3 Break-
Away (right) with standard RL, macro transfer from 2-on-1 BreakAway, and MLN
Q@-function transfer from 2-on-1 BreakAway. The thin vertical line marks the end of
the demonstration period.

5 MLN Relational Policy Transfer

MLN relational policy transfer is a method that learns an MLN to express the
source-task policy, and allows target-task agents to use it for an initial demon-
stration period. This approach is closely related to MLN @-function transfer,
but it has the potential to transfer more effectively by focusing on policy rather
than @-values.

A policy simply determines which action to take given a state, and does not
require numeric values to be assigned to actions. Thus instead of needing to
create bins for continuous @-values, MLN policy transfer learns an MLN that
simply predicts the best action to take. It is also simpler than MLN @-function
transfer in that it does not need to choose a batch from which to transfer, which
was a significant tuning step in the previous method.

Table 5 gives the algorithm for MLN @Q-function transfer. The section below
describes the steps of this algorithm in more detail.

5.1 Learning and Using an MLN Policy

The first two steps of the MLN policy-transfer algorithm in Table 5 perform
structure-learning and weight-learning for the MLN. These steps are similar to
those in MLN @Q-function transfer. However, the formulas simply predict when
an action is the best action to take, rather than predicting a -value bin for an
action as they do in MLN @Q-function transfer.

Each action may have many formulas with different weights. They are learned
from examples of actions chosen in the source-task. We use only high-reward
source-task episodes since those guarantee good action choices. In 2-on-1 Break-
Away, these are games in which the learner scored a goal.

Table 5. Algorithm for MLN Relational Policy Transfer.

INPUT REQUIRED

Games G from the source-task learning process

A definition of high-reward and low-reward games in the source task
The demonstration-period length D

LEARN FORMULAS
Let G be the set of high-reward source-task games
For each source-task action a
Let P=10 // These will be the positive examples.
Let N=10 // These will be the negative examples.
For each state s in a game g € G
If s used action a

Set P+— PUs // States that use the action are positive.
Else if s used action b # a
Set N— NUs // States that use a different action are negative.

Learn rules with Aleph to distinguish P from N
Let M be the ruleset chosen by the algorithm in Table 3

LEARN FORMULA WEIGHTS
Learn MLN weights W for the formulas M using Alchemy
Define MLN by (M, W)

LEARN TARGET TASK
For D episodes: Perform RL but choose the highest-probability action according to M LN
For remaining episodes: Perform RL normally

Some examples of rules learned for pass in 2-on-1 BreakAway are:

IF angleDefinedBy(topRightCorner, goalCenter, a0) < 70
AND timeLeft > 98

AND distBetween (a0, Teammate) > 3

THEN pass(Teammate)

IF distBetween(a0, GoalPart) > 36

AND distBetween(a0, Teammate) > 12

AND timeLeft > 91

AND angleDefinedBy(topRightCorner, goalCenter, a0) < 80
THEN pass(Teammate)

Ir distBetween(a0, GoalPart) > 27

AND angleDefined By (topRightCorner, goalCenter, a0) < 75
AND distBetween(a0, Teammate) > 9

AND angleDefined By(Teammate, a0, goalie) > 25

THEN pass(Teammate)

Probability of Goal

0.6

0.5

0.4

0.3

02|

0.1

Standard RL
Macro Transfer
MLN Q-function
MLN Policy

500 1000 1500 2000 2500 3000

Training Games

Probability of Goal

0.4

0.3

0.2

0.1 f]-

0
0

,,,,,

Standard RL
Macro Transfer
MLN Q-function
MLN Policy

500 1000 1500 2000
Training Games

2500 3000

Fig. 6. Probability of scoring a goal in 3-on-2 BreakAway (left) and 4-on-3 BreakAway
(right) with standard RL, macro transfer from 2-on-1 BreakAway, MLN @Q-function
transfer from 2-on-1 BreakAway, and MLN policy transfer from 2-on-1 BreakAway.
The thin vertical line marks the end of the demonstration period.

The final step of the MLN policy-transfer algorithm in Table 5 learns the
target task via demonstration. During the demonstration period, the target-
task learner queries the MLN to determine the probability that each action is
best, and it takes the highest-probability action. Meanwhile, it learns normal
Q-functions after each batch, and after the demonstration ends, it begins using
those normal @-functions.

5.2 Experimental Results for MLN Policy Transfer

To test MLN policy transfer, we learn MLNs from the same 2-on-1 BreakAway
source tasks as before and transfer them to 3-on-2 and 4-on-3 BreakAway. Fig-
ure 6 shows the performance of MLN policy transfer in 3-on-2 and 4-on-3 Break-
Away compared to standard RL, macro transfer, and MLN @-function transfer.

These results show that transferring an MLN policy is more effective than
transferring an MLN @-function, and that it can also outperform macro transfer
in some cases. In 3-on-2 BreakAway, the area under the curve for MLN policy
transfer is significantly higher than for both other transfer approaches (p < 0.05).
In 4-on-3 BreakAway, it is higher than MLN @Q-function transfer but still lower
than macro transfer (p < 0.05).

6 Comparing an MLN Policy to a Ruleset Policy

The ILP rulesets that we learn for MLN policy transfer could themselves repre-
sent a policy, without the addition of an MLN. Here we perform an experiment
to determine whether the MLN provides any additional benefit.

In order to use rulesets as a policy, we need a way to decide which rule to
follow if multiple rules recommending different actions are satisfied in a state.
To do this, we assign each rule a score. The score of a rule approximates the

0.6 T T T T T 0.4

< T 03
O] O]
S S
2 £ o2
o o
© @
o) =)
S S oaf
o Standard RL o = Standard RL
0.1 MLN Policy ------- MLN Policy -------
y Ruleset Policy - Ruleset Policy -
0 - . - . - (R - . - . -
0 500 1000 1500 2000 2500 3000 0 500 1000 1500 2000 2500 3000
Training Games Training Games

Fig. 7. Probability of scoring a goal in 3-on-2 BreakAway (left) and 4-on-3 BreakAway
(right) with standard RL, regular MLN policy transfer from 2-on-1 BreakAway, and
ruleset policy transfer from 2-on-1 BreakAway. The thin vertical line marks the end of
the demonstration period.

probablity that following the rule will lead to a successful game, as estimated
from the source-task data. At each step in the target task, we have our agents
check all the rules and take the action recommended by the highest-scoring
satisfied rule.

Figure 7 shows the performance of this approach in 3-on-2 and 4-on-3 Break-
Away, compared with standard RL and regular MLN policy transfer. The area
under the curve for rulesets is significantly less than for MLNs in 3-on-2 Break-
Away (p < 0.05). Thus MLNs can provide an additional benefit over ILP alone.
In some cases, they may be comparable; the areas are not significantly different
in 4-on-3 BreakAway (p > 0.05).

7 MLN Policies with Action Sequence Information

MLN policy transfer assumes the Markov property, in which the action choice
depends only on the current environment and is independent of previous envi-
ronments and actions. However, it need not do so; the MLN formulas for action
choices could use such information. Here we examine the benefit of doing so by
adding predicates to the ILP hypothesis space that specify previous actions. We
add predicates for one, two, and three steps back in a game. Like macros, this
approach allows transfer of both relational information and multi-state reason-
ing.

In these experiments, Aleph only chose to use the predicate for one previous
step, and never used the ones for two and three previous steps. This indicates
that it is sometimes informative to know what the immediately previous action
was, but beyond that point, action information is not useful.

Figure 8 shows the performance of multi-step MLN policy transfer in 3-on-2
and 4-on-3 BreakAway, compared with standard RL and regular MLN policy
transfer. The area under the curve for the multi-step version is significantly

0.6 T T T T T 0.4

K g 03
O] O]
S S
2 £ o2
o o
© @
o) =)
2 < 1 B
o Standard RL a O Standard RL
0.1 MLN Policy ------- MLN Policy -------
y Multi-step MLN Poligy - Multi-step MLN Poligy -
0 - . - . - (R - . - . -
0 500 1000 1500 2000 2500 3000 0 500 1000 1500 2000 2500 3000
Training Games Training Games

Fig. 8. Probability of scoring a goal in 3-on-2 BreakAway (left) and 4-on-3 BreakAway
(right) with standard RL, regular MLN policy transfer from 2-on-1 BreakAway, and
multi-step MLN policy transfer from 2-on-1 BreakAway. The thin vertical line marks
the end of the demonstration period.

less than for the regular version in 3-on-2 BreakAway (p < 0.05) and is not
significantly different in 4-on-3 BreakAway (p > 0.05). These results suggest
that adding action-sequence information does not improve MLN policy transfer.

The Markov property appears to be a valid assumption in the BreakAway
domain. While action patterns do exist in 2-on-1 BreakAway policies, and macro
transfer takes advantage of them, there is apparently enough information in the
current state to make action choices independently in MLN transfer. A multi-
step MLN policy is therefore unnecessary in this domain, though it could be
helpful in different domains where the Markov property does not hold.

8 Conclusions and Future Work

We propose algorithms for transfer in reinforcement learning via Markov Logic
Networks and evaluate them in a complex domain. In MLN @Q-function transfer,
we represent the source-task @-function relationally with an MLN. In MLN
policy transfer, we represent the source-task policy with an MLN.

Transferring a policy with an MLN is a more natural and effective method
than transferring a Q-function. Rulesets expressing a policy can be demonstrated
effectively as well, but using an MLN to combine the rulesets provides additional
benefits. An MLN captures complete enough information about the source task
that adding knowledge about actions previously taken provides no additional
benefit.

MLN policies outperform relational macros in some transfer scenarios, be-
cause they capture more detailed knowledge from the source task. However,
they can perform worse in more distant transfer scenarios; in these cases they
are likely capturing too much detail from the source task. This is a phenomenon
that we call overspecialization, which is related to overfitting, but is specific to
the context of transfer learning.

Future work in this area could focus on revision of a transferred model af-
ter the initial demonstration episodes. Our methods currently revert to standard
RL, but they could instead learn by incrementally revising the source-task knowl-
edge. Applying MLN knowledge in ways other than demonstration may also be
effective.

A related area of potential work is MLN-based relational reinforcement learn-
ing. Domains like RoboCup could benefit from relational RL, which would pro-
vide substantial generalization over objects and actions. The main challenge to
overcome in performing relational RL in such a complex domain is the compu-
tational cost of learning MLN structures and weights.

9 Acknowledgements

This research is supported by DARPA grants HR0011-07-C-0060 and FA8650-
06-C-7606.

References

1. T. Croonenborghs, K. Driessens, and M. Bruynooghe. Learning relational skills
for inductive transfer in relational reinforcement learning. In ILP, 2007.

2. F. Fernandez and M. Veloso. Probabilistic policy reuse in a reinforcement learning
agent. In AAMAS, 2006.

3. S. Kok, P. Singla, M. Richardson, and P. Domingos. The Alchemy system for
statistical relational AI. Technical report, University of Washington, 2005.

4. D. Lowd and P. Domingos. Efficient weight learning for Markov Logic Networks.
In KDD, 2007.

5. R. Maclin, J. Shavlik, L. Torrey, and T. Walker. Knowledge-based support vector
regression for reinforcement learning. In IJCAI Workshop on Reasoning, Repre-
sentation, and Learning in Computer Games, 2005.

6. M. Madden and T. Howley. Transfer of experience between reinforcement learning
environments with progressive difficulty. AI Review, 21:375-398, 2004.

7. 1. Noda, H. Matsubara, K. Hiraki, and I. Frank. Soccer server: A tool for research
on multiagent systems. Applied Artificial Intelligence, 12:233-250, 1998.

8. L. De Raedt. Logical and Relational Learning. Springer, 2008.

9. M. Richardson and P. Domingos. Markov logic networks. Machine Learning,
62:107-136, 2006.

10. A. Srinivasan. The Aleph manual, 2001.

11. P. Stone and R. Sutton. Scaling reinforcement learning toward RoboCup soccer.
In ICML, 2001.

12. R. Sutton and A. Barto. Reinforcement Learning: An Introduction. MIT Press,
1998.

13. L. Torrey and J. Shavlik. Transfer learning. In E. Soria, J. Martin, R. Magdalena,
M. Martinez, and A. Serrano, editors, Handbook of Research on Machine Learning
Applications. IGI Global, 2009.

14. L. Torrey, J. Shavlik, S. Natarajan, P. Kuppili, and T. Walker. Transfer in rein-
forcement learning via Markov Logic Networks. In AAAI Workshop on Transfer
Learning for Complex Tasks, 2008.

15. L. Torrey, J. Shavlik, T. Walker, and R. Maclin. Relational macros for transfer in
reinforcement learning. In ICML, 2007.

