Appears in the Proceedings of the Eighth National Conference on Artificial Intelligence (AAAI-90, pp. 861-866)

Refinement of Approximate Domain Theories by
Knowledge-Based Neural Networks*

Geoffrey G. Towell

Jude W. Shavlik

Michiel O. Noordewier

University of Wisconsin — Madison
1210 West Dayton Street
Madison, Wisconsin 53706

Abstract

Standard algorithms for explanation-based learning re-
quire complete and correct knowledge bases. The
KBANN system relaxes this constraint through the use
of empirical learning methods to refine approximately
correct knowledge. This knowledge is used to deter-
mine the structure of an artificial neural network and
the weights on its links, thereby making the knowledge
accessible for modification by neural learning. KBanNN
is evaluated by empirical tests in the domain of molec-
ular biology. Networks created by KBaANN are shown
to be superior, in terms of their ability to correctly
classify unseen examples, to randomly initialized neural
networks, decision trees, “nearest neighbor” matching,
and standard techniques reported in the biological lit-
erature. In addition, KBANN’s networks improve the
initial knowledge in biologically interesting ways.

Introduction

Explanation-based learning (EBL) (Mitchell et al.
1986; DeJong & Mooney 1986) provides a way of in-
corporating pre-existing knowledge into a learning sys-
tem. However, the basic algorithms suffer from the fact
that the pre-existing knowledge cannot contain imper-
fections (Mitchell et al. 1986). Conversely, empirical
learning is a method for learning solely from training
examples (e.g., Quinlan 1986). Empirical learning sys-
tems have problems such as misclassification due to spu-
rious correlations in the training data.

Recent work (e.g., Flann & Dietterich 1989; Shavlik
& Towell 1989) combines empirical and explanation-
based learning to overcome the problems of each ap-
proach by using training examples to inductively re-
fine pre-existing knowledge. Beyond overcoming the
problems of each approach, hybrid systems should, af-
ter training, be superior to EBL systems in terms of the
range of examples over which they are correct. More-
over, given the same set of training examples, hybrid
systems should be superior, in terms of classification
accuracy, to empirical learning systems.

*This research was partially supported by a grant from
the University of Wisconsin Graduate School.

This paper describes the KBanN (Knowledge-Based
Artificial Neural Networks) hybrid learning system
and demonstrates its superiority to empirical and
explanation-based learning systems along these di-
mensions. Briefly, KBANN uses a knowledge base of
hierarchically-structured rules which may be both in-
complete and incorrect to form an artificial neural net-
work (ANN). In so doing, KBANN makes it possible to
apply neural learning techniques to the empirical, in-
cremental improvement of knowledge bases.

At present, KBANN is restricted to non-recursive,
propositional (i.e., variable-free) domain theories. Un-
der these restrictions, the ability of EBL to speedup
a problem solver (Minton 1988) is not utilized. While
this speedup is the primary strength of EBL, the sec-
ondary strengths of this form of learning are directly
applicable. Specifically, the domain theory indicates
the features which are believed to be important to an
example’s classification. The theory also specifies im-
portant derived features; through their deduction the
complexity of an ANN’s final decision is reduced.

The following section presents the KBaNN algorithm.
In the subsequent section, KBANN is applied to a real-
world problem in the domain of molecular biology.
KBANN is shown to produce results better than those
reported in the biological literature. Additionally,
KBANN’s results are shown to be superior to randomly
started ANNs, ID3 (Quinlan 1986) - a symbolic empir-
ical learning system, and “nearest neighbor” classifica-
tion. Moreover, ANNs created by KBaANN are shown to
have improved upon the original domain theory in bio-
logically interesting ways. The paper concludes with a
discussion of research related to KBANN and the areas
which our research is currently pursuing.

The KBANN Algorithm

KBANN uses a knowledge base of domain-specific infer-
ence rules in the form of Prorog-like clauses to define
what is initially known about a topic. The knowledge
base need be neither complete nor correct; it need only
support approximately correct explanations. KBANN
translates the knowledge base into an ANN in which

units and links' in the ANN correspond to parts of
the knowledge base, as described in Table 1. The next
section presents the approach KBANN uses to translate
rules into neural networks. Subsequent sections present
the KBANN algorithm and provide an example of its op-
eration.

Table 1: Knowledge Base — ANN Correspondences
Knowledge Base Neural Network
Final Conclusions Output Units
Supporting Facts Input Units
Intermediate Conclusions Hidden Units
Dependencies Weighted Connections

Translation of rules

This section describes how KBANN translates rules con-
taining AND, OR and NOT into an ANN. Rules are
assumed to be conjunctive, nonrecursive and variable-
free; disjuncts are encoded as multiple rules. (To sim-
plify discussion in this section, only binary-valued fea-
tures are assumed to exist. Handling of non-binary fea-
tures is described on the next page.)

The KBANN method sets weights on links and biases
of units so that units have significant activation only
when the corresponding deduction could be made us-
ing the knowledge base. For example, assume there
exists a rule in the knowledge base with n mandatory
antecedents (i.e., antecedents which must be true) and
m prohibitory antecedents (i.e., antecedents which must
not be true). The system sets weights on links in the
ANN corresponding to the mandatory and prohibitory
dependencies of the rule to w and —w, respectively. The
bias on the unit corresponding to the rule’s consequent
is set to n *x w — ¢. ¢ is a parameter chosen so that
units have activation ~ 0.9 when their antecedents are
satisfied and activation ~ 0.1 otherwise.?

This mapping procedure is sufficient only for a purely
conjunctive knowledge base. Disjuncts cannot be han-
dled because there is no way to set the bias of a unit
that can be “deduced” in multiple ways such that no
unintended combinations are allowed. For example, as-
sume there exists a consequent Y which can be proven
by two rules, R; and R,. Further assume, that there
are 7 antecedents (labeled to 0, ..., 6) to Y and that an-
tecedents [0 1 2] are mandatory for R; while antecedents
[3 4 5 6] are mandatory for R,. If the antecedents of Ry
and R are all connected to YT such that either [0 1 2]
or [34 5 6] can activate Y, then there is no way to set
the bias of T such that unwanted combinations (e.g., [0
1 3 4]) cannot also activate Y.

KBANN handles disjuncts by creating units Y; and
T4, which correspond to Ry and Rs, using the approach

1 Unit refers to a processing element in a neural network.
Link refers to a connection between units.

2Currently, we use w = 3.0 and ¢ = 2.3, values empiri-
cally found to work well on several domains.

for conjunctive rules described above. These units will
only be active when their corresponding rule is true.
KBANN then connects Y; and Yo to YT by a link of
weight w and sets the bias of T to w — ¢. Hence, T
will be active when either T; or Y4 is active.

Algorithm specification

Three additional steps are required to complete ANN
following the initial translation of the knowledge base.
First, input units corresponding to features of the en-
vironment that do not appear as an antecedent of any
rule must be added to the network. These units are
necessary because an approximately correct knowledge
base may not have used some features that are neces-
sary to accurately express a concept. Second, links must
be added to the network to give existing rules access to
items not mentioned in the knowledge base. These links
initially have weight equal to zero. They are placed by
grouping units according to their maximum path length
from an input unit and adding links between all units
in successive groups. Third, the network must be per-
turbed by adding random numbers within e of zero to
all link weights and biases to avoid symmetry breaking
problems (Rumelhart et al. 1986).3

The KBANN algorithm is summarized in Table 2.
Once the network is produced, it is refined by providing
training examples which are processed using backprop-
agation (Rumelhart et al. 1986).

Table 2: Overview of the KBANN Algorithm
Translate rules to set initial network structure.
Add units not specified by translation.

Add links not specified by translation.

Perturb the network by adding near zero ran-
dom numbers to all link weights and biases.

s

Example of the algorithm

As an example of the KBANN method, consider the ar-
tificial knowledge base in Figure 1a which defines mem-
bership in category A. Figure 1b represents the hier-
archical structure of these rules: solid and dotted lines
respectively represent necessary and prohibitory depen-
dencies. Figure 1c represents the ANN that results from
the translation into a neural network of this knowledge
base. Units X and Y in Figure 1c do not correspond
directly to consequents in the knowledge base. Rather,
the units are introduced to handle the disjunction in
the knowledge base as described above. The thick lines
in Figure 1c represent the links in the ANN that corre-
spond to dependencies in the explanation. Thus, with
w = 3, the weight on thick solid lines is 3, while the
weight on thick dotted lines is -3. The lighter solid
lines represent the links added to the network to allow
refinement of the domain theory.

3We currently use € = 0.01.

A:-B,C.

B:-notF, G.
B :- not H.
c:-1,J

(@)

Figure 1: Translation of a Knowledge Base into an ANN

Numbers beside the unit names in Figure lc are bi-
ases of the units. So, with ¢ = 2.3, the bias of unit B
is set to 0.7 so it is activated when either Y or Z is ac-
tive. The bias of unit A is set to 3.7 so it is active only
when both C and B are active. Conversely, the bias of
unit X is set to 0.7 so that it will be active when input
is received from unit G and not from unit F. Lacking
any mandatory antecedents, the bias of Y is set to -2.3.
Hence, Y will be active except when H is active.

Handling non-binary features

Currently, the system can handle three types of fea-
tures: nominal, linear and hierarchical. Discussions of
the exact approach used to handle these feature types,
and the added information they require, follows.

Nominal Nominally valued features (i.e., features
whose possible values can be listed and have no struc-
ture) are handled by assigning one input unit to each
value of the feature. To do this, KBANN must be given
a list of the possible values a feature can have. For ex-
ample, if the feature color is stated to have three values:
red, green and blue, then three input units: color-is-blue,
color-is-red and color-is-green, will be created.

Linear Linear features may take on an infinite
number of values within some region of the number
line. As a result, the method for handling nominal
features cannot be used. Instead, KBANN requires a
user-defined partitioning of the range over which the
feature varies. The partitioning provides a nominal
representation (e.g., small, medium, and large) which
may be used by rules in a knowledge base. In addi-
tion, each partition is assigned an input unit in the
ANN. For values within the partition of a particu-
lar unit, the unit has an activation of one. Outside
the partition, the unit should still be active accord-
ing to how close the value is to the partition. This
allows the network to learn subranges that are not
among those initially specified. To implement this,
units for linear features have the activation function
U(MAX(0,(ABS(Midpoint— Actual)—Range/2))/Range)
where: Midpoint is the midpoint of the subrange, Range
is the width of the subrange, Actual is the the exact
value of the feature, and ¥ is a function based upon

the standard normal distribution.*

Hierarchical Hierarchical features are handled,
with one exception, as if a set of rules defined the ISA
hierarchy. The exception is that whenever a rule in the
knowledge base refers to an element in a hierarchy, in
addition to the high weight link from that element, low
weight links are created from all ancestors and descen-
dants of the element. So, looking at Figure 2, if a rule
contains non-insulating as an antecedent, the unit cor-
responding to the consequent of this rule would be given
low weight links to material, paper and ceramic. In this
way, the network is given the capability to specialize or
generalize the initial rule according to the hierarchy.

Materia
N
Non-insulating Insulating
N I

Ceramic Paper Styrofoam Open-cell foam

Figure 2: A Hierarchy of Cup Materials

Experimenting with KBANN

This section reports a study of the utility of the KBANN
algorithm. The real-world task of recognizing biological
concepts in DNA sequences was investigated. In par-
ticular, the task was to recognize promoters in strings
that represent nucleotides (one of A, G, T, or C). A pro-
moter is a genetic region which initiates the first step
in the expression of an adjacent gene (transcription).
Table 3 contains the initial domain theory used in
the promoter recognition task. The first rule says that
a promoter involves two subcategories: a contact and
a conformation region. The second rule states that a
contact involves two regions, while subsequent rules de-
fine alternative ways these regions can appear. This set
of rules was easily derived, by one of us (Noordewier,
who is also a biologist) from the biological literature
(Harley & Reynolds 1987; Hawley & McClure 1983). It

4The standard normal distribution is a common statisti-
cal probability distribution.

should be noted that this domain theory fails to cor-
rectly classify any positive example in the training set.

Table 3: A Domain Theory For Promoters

promoter :-contact, conformation.
contact --minus_35, minus_10.
minus_35 -@-37 “cttgac”.
minus_35 -@-36 “ttgxca”.
minus_35 -@-36 “ttgaca”.
minus_35 -@-36 “ttgac”.
minus_10 -@-14 “tataat”.
minus_10 -@-13 “taxaxt”.
minus_10 -@-13 “tataat”.
minus_10 -@-12 “taxxxt”.

conformation:-@-45 “aaxxa’.

conformation:-@-45 “axxxa”, @-4 “t”,
@-28 “txxxtxaaxxtx”.

conformation:-@-49 “axxxxt”, Q-1 “a
@-27 “txxxxaxxtxtg”.

conformation:-@-47 “caaxttxac”, @-22 “gxxxtxc”,
@-8 “gcgeexcec”.

”
?

The input features are 57 sequential DNA nu-
cleotides. A special notation is used to simplify spec-
ifying locations in the DNA sequence. The biological
literature counts locations relative to the site where
transcription begins. Fifty nucleotides before and six
following this location constitute an example. When
a rule’s antecedents refer to input features, they first
state the starting location, then list the sequence that
must follow. In these specifications, “x” indicates that
any nucleotide will suffice. Hence, the first rule for
conformation says that there must an “a” 45 nu-
cleotides before the site where transcription begins. An-
other “a” must be at position -44, then any two nu-
cleotides can appear, and finally there must be a “t” at
location -41.

promoter
O

conformation

DNA sequence

Figure 3: The Initial ANN for Promoter Recognition

This domain theory is translated by KBANN into a
neural network with the topology shown in Figure 3.
Recall that the algorithm adds additional low-weighted
links (not shown) so that if additional sequence infor-
mation is relevant, the algorithm can capture that in-
formation during training.

Fifty-three sample promoters and 53 nonpromoter se-
quences were used to refine the initial neural network.
The 53 sample promoters were obtained from a com-
pilation produced by Hawley and McClure (1983). An
initial concern of ours was the construction of nega-
tive training examples (i.e., sequences that contained no
promoters). Most studies randomly permute sequences
in an effort to derive examples that do not meet con-
sensus criteria described below, but nonetheless retain
the correct nucleotide frequencies (Lapedes et al. 1989
). DNA, however, is known to be highly non-random.
Negative training examples were thus derived by select-
ing contiguous substrings from a 1.5 kilobase sequence
provided by Prof. T. Record of the Univ. of Wisconsin’s
Chemistry Dept. This sequence is a fragment from F.
coli bacteriophage T'7 isolated with the restriction en-
zyme Haelll. By virtue of the fact that the fragment
does not bind RNA polymerase, it is believed to not
contain any promoter sites [Record, personal communi-
cation].

In order to get an estimate of how well the algorithm
learned the concept of promoter, a standard experi-
mental methodology called “leave-one-out” (or “cross-
validation”) was used. This technique operates by
training using N — 1 examples, then testing using the
example left out. The procedure is repeated N times
(N =106 here), so that each example is excluded once
from the training set. The error rate is the number of er-
rors on the single test cases, divided by N. This proce-
dure was repeated 10 times for neural-based algorithms
because they use random numbers during initialization
and training.

Using the same methodology, three other learning
algorithms were applied: standard backpropagation,
Quinlan’s ID3 (1986), and “nearest neighbor.” For
standard backpropagation, the same number of hidden
units (16) was used as was used in the ANNs created
by KBANN .5 All of the input units were connected to
each hidden unit and every hidden unit was connected
to the output unit. All weights were randomly initial-
ized to a number near zero. ID3 is a non-connectionist
empirical learning algorithm. It uses training data to
construct a decision tree for determining the category
of an example. At each step, a new node is added to
the decision tree by partitioning the training examples
based on their value along a single, statistically most-
informative feature. “Nearest neighbor” compares the
current instance to all known instances, locating exact
matches or the k£ most similar. The classification of the
instance is the classification of the majority of the k
most similar neighbors. With distance defined as the
number of mismatched nucleotides, £k = 3 was found to
work best on this task.

Table 4 contains the number of errors on the 106

SNetworks with 16 hidden units were locally superior to
networks with a greater (21) or lesser (11) number of hidden
units.

training examples for the three learning algorithms.% In
all cases, each algorithm correctly classified all members
in the training sets. Hence, although each algorithm
fully accounted for the training data, KBann did a bet-
ter job of generalization, in that its error rate on previ-
ously unseen examples was substantially lower. Finally,
Table 4 contains the results of O’Neill’s (1989b) ad hoc
partial pattern matching approach for promoter recog-
nition that is the best method reported in the biological
literature.

Table 4: Error Rates in the Promoter Experiment

System Error Rates
KBANN 4/106
Standard Backpropagation 8/106
O’Neill 12/106
Nearest Neighbor 13/106
D3 19/106

As KBANN and standard backpropagation were each
run 10 times, the respective error rates can be statisti-
cally compared. The t-test indicates that on individual
runs KBANN is superior to Standard Backpropagation
with 99.95% certainty (t = 5.29,d.f. = 18).

Human inspection of the network after learning
clearly showed which input positions were most impor-
tant for recognizing promoters. Combinations of as few
as six nucleotides were found to be sufficient to dis-
criminate promoters from nonpromoters. By contrast,
a recent study using more conventional techniques sug-
gested using a minimum of twelve nucleotides (O’Neill
1989a). This “consensus sequence” was determined
by noting which positions displayed the same base in
greater than 50% of the class of promoters under study.
Unfortunately, such a consensus fails to recognize any
true promoters, due to excessive stringency if exact
matches are required at each position. Furthermore,
KBANN’s neural network assigned particular importance
to bases in certain positions. These highlighted posi-
tions correspond exactly to the most conserved bases in
(Hawley & McClure 1983). Finally, the network learned
that certain values for some base pairs indicate that a
promoter is probably not present. For instance, a C'in
base pair -8 and an A4 in base pair -36 both strongly sug-
gest that a promoter is not present. This ability may be
useful to address the problem that promoters lose their
biological activity when specific single nucleotides are
mutated (Youderian et al. 1982). O’Neill notes that
this is an unresolved problem for consensus methods,
since the alteration of a single base does not degrade
the quality of the match very much. A neural network,

®Rather than simply taking the average of the error rates
over 10 runs for the neural learning algorithms, the acti-
vation of the output for each test example in each of the
10 runs was averaged. This average output was then used
to determine the classification of each example. This tech-
nique slightly reduced the error rates of both neural-based
approaches.

on the other hand, is capable of severely penalizing in-
dividual bases, by attaching large negative weights to
the input units representing those positions.

This experiment demonstrates, using an important
real world problem, the promise of the KBANN ap-
proach. It produced a more accurate recognizer of pro-
moters, demonstrating the value of incorporating pre-
existing knowledge about the task being learned.

Related Work

This paper extends and realistically tests the ideas first
presented in (Shavlik & Towell 1989).

One problem, specific to neural networks, addressed
by KBANN is topology determination. In relatively early
work on ANNs, topological decisions were restricted
to the size of a single layer of hidden units in fully-
connected networks (e.g., Rumelhart et al. 1986).
This decision is important, because an ANN with too
few units will be unable to learn a concept, and an
ANN with too many hidden units may generalize poorly
(Kruschke 1988). More recently, full connectivity has
been shown to hinder learning on some tasks (Rueckl et
al. 1988). Moreover, different random settings of link
weights can result in radically different learning rates
and generalization (Shavlik et al. in press). Thus, de-
termining the topology of an ANN requires deciding
about: the pattern of connectivity, the number and dis-
tribution of hidden units, and the link weights.

In general, two approaches have been taken to this
problem. The first approach, similar in spirit to KBANN,
makes most or all topological decisions prior to training
(Rueckl et al. 1988; Katz 1989). The second approach
modifies network structure as a part of the learning
process. This approach includes recruitment learning
(e.g., Honavar & Uhr 1988) in which hidden units are
added to the network as during learning and methods
for removing excess hidden units (e.g., Kruschke 1988).

A second problem specific to neural networks is the
integration of existing information into the network.
Complex, hand-designed networks (e.g., Rueckl et al.
1988) can be viewed as an attempt to give networks
some implicit knowledge of a problem domain. How-
ever, little work other than KBANN, has been done on
how to explicitly give ANNs background information.
The work that has been done is similar in approach to
KBANN but does not focus on improving incorrect do-
main theories. For example, Katz’ (1989) work stresses
improving the execution speed of neural networks by
adding links that effectively reduce the depth of the
network.

ANNs have been essentially unused as a tool for im-
proving approximately correct domain theories. How-
ever, much work has been done on the use of other
empirical learning techniques to modify and correct do-
main theories. For instance, the IOE system (Flann &
Dietterich 1989) uses conventional inductive learning to
empirically analyze a collection of explanations, thereby
refining the domain theory.

Current Research Issues

An extension to KBANN being pursued is automatic in-
terpretation of networks after training. As pointed out
in the molecular biology experiments, interpretation of
ANNs after learning can be helpful in understanding
why the ANN behaves as it does. Automatic transla-
tion is expected to take advantage of the meaningful
starting configuration of the ANN to allow the post-
learning ANNs to be understood. Preliminary inves-
tigations suggest that analysis of the changes in link
weights and biases in combination with observation of
activations over several inputs can provide an accurate
picture of how the network arrives at its conclusions.
Another extension currently receiving attention is the
use of reasoning by explanation failure to constrain er-
ror propagation in the network. The method, based
upon work by Hall (1988), makes directed changes to
link weights when false negative answers are generated.
A further extension to KBann is the addition of hid-
den units to the network beyond those specified by the
knowledge translation. These added units would allow
the network to learn relations not anticipated in the
pre-existing knowledge. Currently we are considering
adding hidden units as a fixed percentage of the existing
hidden units at each layer in the ANN. Other methods
for adding hidden units such as recruitment learning
(e.g., Honavar & Uhr 1988) are also being investigated.

Conclusions

The KBANN approach has been shown to make it pos-
sible to use ANNs to refine pre-existing knowledge. In
addition, it was demonstrated that the KBANN method
can automatically generate ANNs that are well-suited
to the task they are intended to learn. KBANN does
this by using a knowledge base of approximately cor-
rect, domain-specific rules to determine the structure
and set the initial weights for an ANN.

An experiment in molecular biology demonstrated
the effectiveness of the KBaNN approach. Taking ad-
vantage of a knowledge-based initialization, networks
created by KBANN were superior in terms of their gener-
alization ability to randomly initialized networks, classi-
fication trees, “nearest neighbor” methods, and the best
technique reported in the biological literature. Further,
neural learning improved the accuracy of the provided
domain theory. Thus, the KBANN method provides a
technique both for automatically generating ANNs with
good initial topologies and for empirically improving
domain theories.

References

DelJong, G. and Mooney, R. 1986. Explanation-based learn-
ing: An alternative view. Machine Learning, 1:145-176.

Flann, N. and Dietterich, T. 1989. A study of explanation-
based methods for inductive learning. Machine Learning,
4:187-226.

Hall, R. 1988. Learning by failing to explain: Using partial
explanations to learn in incomplete or intractable domains.
Machine Learning, 3:45-77.

Harley, C. and Reynolds, R. 1987. Analysis of E. coli pro-
moter sequences. Nucleic Acids Research, 15:2343-2361.

Hawley, D. and McClure, W. 1983. Compilation and analysis
of Escherichia coli promoter DNA sequences. Nucleic Acids
Research, 11:2237-2255.

Honavar, V. and Uhr, L. 1988. A network of neuron-
like units that learns to perceive by generation as well as
reweighting of links. In Proc. Connectionist Models Sum-
mer School, pages 472-484.

Katz, B. 1989. EBL and SBL: A neural network synthesis. In
Proc. Eleventh Conference of the Cognitive Science Society
Conference, pages 683—689.

Kruschke, J. 1988. Creating local and distributed bottle-
necks in hidden layers of back-propagation networks. In
Proc. 1988 Connectionist Models Summer School, pages
357-370.

Lapedes, A.; Barnes, C.; Burkes, C.; Farber, R.; and
Sirotkin, K. 1989. Application of neural networks and other
machine learning algorithms to DNA sequence analysis. In
Computers and DNA, SFI Studies in the Science of Com-
plezity VII. Addison-Wesley, Reading, MA.

Minton, S. 1988. Quantitative results concerning the util-
ity of explanation-based learning. Artificial Intelligence,
42:363-391.

Mitchell, T.; Keller, R.; and Kedar-Cabelli, S. 1986.
Explanation-based generalization: A unifying view. Ma-
chine Learning, 1:47-80.

O’Neill, M. 1989a. Escherichia coli promoters: 1. Consensus
as it relates to spacing class, specificity, repeat substructure,
and three dimensional organization. Journal of Biological
Chemistry, 264:5522-5530.

O’Neill, M. 1989b. Escherichia coli promoters: II. A spac-
ing class-dependent promoter search protocol. Journal of
Biological Chemistry, 264:5531-5534.

Quinlan, J. 1986. Induction of decision trees. Machine
Learning, 1:81-106.

Rueckl, J.; Cave, K.; and Kosslyn, S. 1988. Why are “what”
and “where” processed by separate cortical visual systems?
Journal of Cognitive Neuroscience, 1(2).

Rumelhart, D.; Hinton, G.; and Williams, J. 1986. Learning
internal representations by error propagation. In Rumel-
hart, D. and McClelland, J., editors, Parallel Distributed
Processing, Vol. 1, pages 318-362. MIT Press, Cambridge,
MA.

Shavlik, J. and Towell, G. 1989. An approach to combining
explanation-based and neural learning algorithms. Connec-
tion Science, 1:233-255.

Shavlik, J.; Mooney, R.; and Towell, G. in press. Symbolic
and neural net learning algorithms: An empirical compari-
son. Machine Learning. Forthcoming.

Youderian, P.; Bouvier, S.; and Susskind, M. 1982. Sequence
determinants of promoter activity. Cell, 10:843-853.

