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Abstract

The previously-reported KBANN system integrates ex-
isting knowledge into neural networks by defining the
network topology and setting initial link weights. Stan-
dard neural learning techniques can then be used to
train such networks, thereby refining the information
upon which the network is based. However, standard
neural learning techniques are reputed to have diffi-
culty training networks with multiple layers of hidden
units; KBANN commonly creates such networks. In ad-
dition, standard neural learning techniques ignore some
of the information contained in the networks created
by KBANN. This paper describes a symbolic inductive
learning algorithm for training such networks that uses
this previously-ignored information and which helps to
address the problems of training “deep” networks. Em-
pirical evidence shows that this method improves not
only learning speed, but also the ability of networks to
generalize correctly to testing examples.

Introduction

KBANN is a “hybrid” learning system; it combines rule-
based reasoning with neural learning to create a system
that is superior to either of its parts. Using both theory
and data to learn categorization tasks, KBANN has been
shown to be more effective at classifying examples not
seen during training than a wide variety of machine
learning algorithms (Towell et al., 1990; Noordewier et
al., 1991; Towell, 1991).

However, recent experiments (briefly described on
the next page) point to weaknesses in the algorithm.
In addition, neural learning techniques are commonly
thought to be relatively weak at training networks that
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have several layers of hidden units. Unfortunately, the
networks created by KBANN (KBANN-nets) frequently
have this “deep network” property. Hence, algorithms
such as backpropagation (Rumelhart et al., 1986) may
not be well suited to training KBANN-nets.

To address both this problem with the training of
KBANN-nets and KBANN’s empirically discovered weak-
nesses, this paper introduces the DAID (Desired An-
tecedent IDentification) algorithm. Following a descrip-
tion of DAID, we present results which empirically verify
that DAID achieves both of its goals.

The KBANN Algorithm

KBANN, illustrated in Figure 1, is an approach to com-
bining rule-based reasoning with neural learning. The
principle part of KBANN is the rules-to-network trans-
lation algorithm, which transforms a knowledge base of
domain-specific inference rules (that define what is ini-
tially known about a topic) into a neural network. In
so doing, the algorithm defines the topology and con-
nection weights of the networks it creates. Detailed ex-
planations of this rules-to-network translation appear
in (Towell et al., 1990; Towell, 1991).

As an example of the KBANN rules-to-network trans-
lation method, consider the small rule set in Figure 2a
that defines membership in category A. Figure 2b rep-
resents the hierarchical structure of these rules: solid
and dotted lines represent necessary and prohibitory
dependencies, respectively. Figure 2c represents the
KBANN-net that results from the translation of this do-
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Figure 1: The flow of information through KBANN.



A:-B,C.

B - notH.

B:-notF, G

C:-1J
F

@

Figure 2: Translation of a domain theory into a KBANN-
net.

main knowledge into a neural network. Units X and Y
in Figure 2c are introduced into the KBANN-net to han-
dle the disjunction in the rule set (Towell et al., 1990).
Otherwise, each unit in the KBANN-net corresponds to
a consequent or an antecedent in the domain knowledge.
The thick lines in Figure 2c represent heavily-weighted
links in the KBANN-net that correspond to dependen-
cies in the domain knowledge. Weights and biases in
the network are set so that the network’s response to
inputs is exactly the same as the domain knowledge.
The thin lines represent links with near zero weight
that are added to the network to allow refinement of
the domain knowledge. More intelligent initialization
of the weights on these thin lines is the focus of this
paper.

This example illustrates the two principal benefits of
using KBANN. First, the algorithm indicates the fea-
tures that are believed to be important to an example’s
classification. Second, it specifies important derived
features, thereby guiding the choice of the number and
connectivity of hidden units.

Initial Tests of KBANN

The tests described in this section investigate the effects
of domain-theory noise on KBANN. The results of these
tests motivated the development of DAID.

These tests, as well as those later in this paper, use
real-world problems from molecular biology. The pro-
moter recognition problem set consists of 106 training
examples split evenly between two classes (Towell et
al., 1990). The splice-junction determination problem
has 3190 examples in three classes (Noordewier et al.,
1991). Each dataset also has a partially correct domain
theory.

Earlier tests showing the success of KBANN did not
question whether KBANN is robust to domain-theory
noise. The tests presented here look at two types of
domain-theory noise: deleted antecedents and added an-
tecedents. Details of the method used for modifying
existing rules by adding and deleting antecedents, as
well as studies of other types of domain-theory noise,
are given in (Towell, 1991).
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Figure 3: Effect of antecedent-level noise on the classi-
fication accuracy in the promoter domain.

Figure 3 presents the results of adding noise to the
promoter domain theory. All results represent an av-
erage over three different additions of noise. Eleven
randomized runs of ten-fold cross-validation (Weiss and
Kulikowski, 1990) are used to test generalization. Not
surprisingly, this figure shows that test set error rate
increases directly with the amount of noise. More in-
teresting is that the figure shows the effect of delet-
ing antecedents is consistently larger than the effect of
adding antecedents.

Clearly, irrelevant antecedents have little effect on
KBANN-nets; with 50% noise! the performance of
KBANN-nets is still superior to that of a fully-connected
standard ANN (i.e., an Artificial Neural Network with
one layer of hidden units that are fully connected to
both the input and output units). Conversely, drop-
ping only 30% of the original antecedents degrades the
performance of KBANN-nets to below that of standard
ANNSs.

Symbolic Induction on Domain Theories

The experiments in the previous section indicate that
it is easier for KBANN to discard antecedents that are
useless than to add antecedents initially believed to be
irrelevant. Hence, a method that tells KBANN about
potentially useful features not mentioned in the domain
theory might be expected to improve KBANN’s learning
abilities.

The DAID algorithm, described and tested in the re-
mainder of this paper, empirically tests this hypothesis.
It “symbolically” looks through the training examples
to identify antecedents that may help eliminate errors in
the provided rules. This is DAID ’s sole goal. The algo-
rithm accomplishes this end by estimating correlations
between inputs and corrected intermediate conclusions.
In so doing, DAID suggests more antecedents than are

150% noise means that for every two antecedents speci-
fied as important by the original domain theory, one spuri-
ous antecedent was added.
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Figure 4: Flow of information using KBANN-DAID.

useful; it relies upon KBANN’s strength at rejecting use-
less antecedents.

DAID adds an algorithmic step to KBANN, as the
addition of the thicker arrows in Figure 4 illustrates.
Briefly, DAID uses the initial domain theory and the
training examples to supply information to the rules-to-
network translator that is not available in the domain
theory alone. As a result, the output of the rules-to-
network translator is not simply a recoding of the do-
main theory. Instead, the initial KBANN-net is slightly,
but significantly, shifted from the state it would have
assumed without DAID.

Overview of the DaAID algorithm

The assumption underlying DAID is that errors occur
primarily at the lowest levels of the domain theory.?
That is, DAID assumes the only rules that need cor-
rection are those whose antecedents are all features of
the environment. DAID’s assumption that errors oc-
cur solely at the bottom of the rule hierarchy is sig-
nificantly different from that of backpropagation (and
other neural learning methods). These methods assume
that error occurs along the whole learning path. As a
result, it can be difficult for backpropagation to correct
a KBANN-net that is only incorrect at the links con-
necting input to hidden units. Thus, one of the ways
in which DAID provides a benefit to KBANN is through
its different learning bias.

This difference in bias can be important in net-
works with many levels of connections between inputs
and outputs (as is typical of KBANN-nets). In such
networks, backpropagated errors can become diffused
across the network. The result of a diffuse error signal
is that the low-level links all change in approximately
the same way. Hence, the network learns little. DAID
does not face this problem; its error-determination pro-
cedure is based upon Boolean logic so errors are not
diffused needlessly.

2This idea has a firm philosophical foundation in the
work of William Whewell. His theory of the consilience of
inductions suggests that the most uncertain rules are those
which appear at the lowest levels of a rule hierarchy and that
the most certain rules are those at the top of the hierarchy

(Whewell, 1989).

Algorithm specification

To determine correlations between inputs and interme-
diate conclusions, DAID must first determine the “cor-
rect” truth-value of each intermediate conclusion. Do-
ing this perfectly would require DAID to address the
full force of the “credit-assignment” problem (Minsky,
1963). However, DAID need not be perfect in its deter-
minations because its goal is simply to identify poten-
tially useful input features. Therefore, the procedure
used by DAID to track errors through a rule hierarchy
simply assumes that every rule which can possibly be
blamed for an error is to blame. DAID further assumes
that all the antecedents of a consequent are correct if
the consequent itself is correct. These two ideas are
encoded in the recursive procedure BACKUPANSWER
that is outlined in Table 1, and which we describe first.

BAackUprANSWER works down from any incorrect fi-
nal conclusions, assigning blame for incorrect conclu-
sions to any antecedents whose change could lead to
the consequent being correct. When BACKUPANSWER
identifies these “changeable” antecedents, it recursively
descends across the rule dependency. As a result,
BAcKUPANSWER visits every intermediate conclusion

Table 1: Summary of the DAID algorithm.
DAID:

GOAL: Find input features relevant to the
corrected low-level conclusions.

1. Establish eight counters (see text) associating each
feature-value pair with each of the lowest-level rules.

2. Cycle through each of the training examples and do
the following:

e Compute the truth value of each rule in the original
domain theory.

e Use BACKUPANSWER to estimate the correct
value of each lowest-level consequent.

e Increment the appropriate counters.

3. Compute correlations between each feature-value
pair and each of the lowest-level consequents.

4. Suggest link weights according to correlations.

BAackUPANSWER:

GOAL: Determine the ‘‘correct’’ value of each
intermediate conclusion.

1. Initially assume that all antecedents are correct
2. For each antecedent of the rule being investigated:
e Determine the correctness of the antecedent

e Recursively call BAckUPANSWER if the an-
tecedent is incorrect




which can be blamed for an incorrect final conclusion.

Given the ability to qualitatively trace errors through
a hierarchical set of rules, the rest of DAID is relatively
straightforward. The idea is to maintain, for the con-
sequent of each of the lowest-level rules, counters for
each input feature-value pair (i.e., for everything that
will become an input unit when the rules are translated
into a KBANN-net). These counters cover the following
conditions:

e does the feature have this value?

e is the consequent true for this et of features?

e does the value of the consequent agree with
BAackUrPANSWER’s expected value?

Hence, each of the lowest-level consequents must main-
tain eight counters for each input feature (see Table 1).
DAID goes through each of the training examples, run-
ning BACKUPANSWER, and incrementing the appropri-
ate counters.

After the example have been presented, the coun-
ters are combined into the following four correlations®:
Notice that these correlations look only at the relation-

1. between conseq(incorrect|false) and feat(present),
i.e., a consequent being false and disagreeing with
BAckUPANSWER and a feature being present,

2. between conseq(correct|false) and feat(present),
3. between conseq(incorrect|true) and feat(present),

4. between conseq(correct|true) and feat(present).

ship between features that are present and the state of
intermediate conclusions. This focus on features that
are present stems from the DAID’s emphasis on the ad-
dition of antecedents. Also, in our formulation of neu-
ral networks, inputs are in the range [0...1] so a fea-
ture that is not present has a value of zero. Hence,
the absence of a feature cannot add information to the
network.

DAID makes link weight suggestions according to the
relationship between the situations that are aided by
the addition of a highly-weighted features and those
that are hurt by the addition of a highly-weighted fea-
ture. For instance, correlation 1 between a feature and a
consequent has a large positive value when adding that
feature to the rule would correct a large portion of the
occasions in which the consequent is incorrectly false.
In other words, correlation 1 is sensitive to those situa-
tions in which adding a positively-weighted antecedent
would correct the consequent. On the other hand, cor-
relation 2 has a large positive value when adding a

®The correlations can be computed directly from the
counters because the values being compared are always ei-
ther 0 or 1.

positively-weighted antecedent would make a correct
consequent incorrect. Hence, when suggesting that a
feature be given a large positive weight it is important
to consider both the value of correlation 1 and the dif-
ference between correlations 1 and 2. Similar reason-
ing suggests that the best features to add with a large
negative weight are those with the largest differences
between correlations 3 and 4. Actual link weight sug-
gestions are a function of the difference between the
relevant correlations and the initial weight of the links
corresponding to antecedents in the domain theory (i.e.,
the thick lines in Figure 2).*

Recall that the link-weight suggestions that are the
end result of DAID are not an end of themselves.
Rather, they are passed to the rules-to-network trans-
lator of KBANN where they are used to initialize the
weights of the low-weighted links that are added to the
network. By using these numbers to initialize weights
(rather than merely assigning every added link a near-
zero weight), the KBANN-net produced by rules-to-
network translator does not make the same errors as
the rules upon which it is based. Instead, the KBANN-
net is moved away from the initial rules, hopefully in a
direction that proves beneficial to learning.

Example of the algorithm As an example of the
DAID algorithm, consider the rule set whose hierarchi-
cal structure is depicted in Figure 5. In this figure, solid
lines represent unnegated dependencies while dashed
lines represent negated dependencies. Arcs connecting
dependencies indicate conjuncts.

Figure 6 depicts the state of the rules after the pre-
sentation of each of the three examples. In this fig-
ure, circles at the intersections of lines represent the
values computed for each rule — filled circles represent
“true” while empty represent “false.” The square to the
right of each circle represents the desired truth value of
each consequent as calculated by the BACKUpP ANSWER
procedure in Table 1. (Lightly-shaded squares indicate
that the consequent may be either true or false and be
considered correct. Recall that in BACKUPANSWER,
once the value of a consequent has been determined to
be correct, then all of its dependencies are considered
to be correct.)

Consider, for example, Figure 6: which depicts the
rule structure following example i. In this case the fi-
nal consequent a is incorrect. On its first step back-
ward, BACKUPANSWER determines that ¢ has an in-
correct truth value while the truth value of b is cor-

*Our use of correlations to initialize link weights is rem-
iniscent of Fahlman and Lebiere’s (1989) cascade correla-
tion. However, our approach differs from cascade correla-
tion in that the weights given by the correlations are sub-
ject to change during training. In cascade correlation, the
correlation-based weights are frozen.
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Figure 6: The state of the rule set after presenting three
examples.

rect. (Desired truth values invert across negative de-
pendencies.) Because b is correct, all its supporting
antecedents are considered correct regardless of their
truth values. Hence, both d and e are correct.

After seeing the three examples in Figure 6, DAID
would recommend that the initial weights from fto d
and e remain near 0 while the initial weight from fto
¢ be set to a large negative number. However, the sug-
gestion of a large negative weight from fto ¢ would be
ignored by the rules-to-network translator of KBANN
because the domain theory specifies a dependency in
that location.

Tests of KBANN-DAID

Results in this section demonstrate the effectiveness
of the KBANN-DAID combination along two lines: (1)
generalization, (2) effort required to learn. Following
the methodology of the results reported earlier, these
results represent an average of eleven ten-fold cross-
validation runs.

Figure 7 shows that DAID improves generalization
by KBANN-nets in the promoter domain by almost
two percentage points. The improvement is significant
with 99.5% confidence according to a one-tailed ¢test.
DAID only slightly improves generalization for splice-
junctions.

Also important is the computational effort required
to learn the training data. If DAID makes learning eas-
ier for KBANN-nets, then it might be expected to ap-
pear in the training effort as well as the correctness
reported above. Figure 8 plots the speed of learning on
both splice-junctions and promoters. (DAID requires
about the number of arithmetic operations as in a sin-
gle backpropagation training epoch.) Learning speed is
measured in terms of the number of arithmetic opera-

Splice-Junction Domain

8.0
7.6 H 6.9
T | T T
KBANN KBANN  Std KBANN KBANN  Std
DAID ANN DAID ANN

Promoter Domain

N
o
=
o

13.5

=
o
=
1S

(&)
(&)

o
o

Percent Test Set Errors
_ o]
b

Percent Test Set Errors

Figure 7: Generalization using DAID. (Estimated using
10-fold cross-validation).
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Figure 8: Training effort required when using DAID.
(Effort is normalized to basic KBANN.)

tions required to learn the training set.

The results show that DAID dramatically speeds
learning on the promoter problem. (This result is statis-
tically significant with greater than 99.5% confidence.)
DAID also speeds learning on the splice-junction prob-
lem. However, the difference is not statistically signifi-
cant.

In summary, these results show that DAID is effec-
tive on the promoter data along both of the desired
dimensions. DAID significantly improves both the gen-
eralization abilities, and learning speed of KBANN-nets.
Conversely, on the splice-junction dataset, DAID has lit-
tle effect. The difference in the effect of DAID on the two
problems is almost certainly due to the nature of the re-
spective domain theories. Specifically, the domain the-
ory for splice-junction determination provides for little
more than Perceptron-like learning (Rosenblatt, 1962),
as it has few modifiable hidden units. (Defining “depth”
as the number of layers of modifiable links, the depth of
the splice-junction domain theory is one for one of the
output units and two for the other.) Hence, the learn-
ing bias that DAID contributes to KBANN — to changes
at the lowest level of the domain theory — is not signif-
icant. On the other hand, the promoter domain theory
has a depth of three. This is deep enough that there
is a significant difference in the learning biases of DAID
and backpropagation.



Future Work

We are actively pursuing two paths with respect to
KBANN-DAID. The simpler of the paths is the investiga-
tion of alternate methods of estimating the appropriate
link weights. One approach replaces correlations with
ID3’s (Quinlan, 1986) information gain metric to select
the most useful features for each low-level antecedent.
This approach is quite similar to some aspects of EI-
THER (Ourston and Mooney, 1990). Another method
we are investigating tracks the specific errors addressed
by each of the input features. Rather than collecting
error statistics across sets of examples, link weights are
assigned to the features to specifically correct all of the
initial errors.

The more challenging area of our work is to achieve a
closer integration of DAID with backpropagation. Cur-
rently DAID can be applied only prior to backpropaga-
tion because it assumes that the inputs to each rule can
be expressed using Boolean logic. After running either
backpropagation or DAID, this assumption is invalid.
As aresult, DAID’s (re)use is precluded. It may be pos-
sible to develop techniques that recognize situations in
which DAID can work. Such techniques could allow the
system to decide for each example whether or not the
clarity required by DAID exists. Hence, DAID would not
be restricted to application prior to neural learning.

Conclusions

This paper describes the DAID preprocessor for KBANN.
DAID is motivated by two observations. First, neural
learning techniques have troubles with training “deep”
networks because error signals can become diffused.
Second, empirical studies indicate that KBANN is most
effective when its networks must learn to ignore an-
tecedents (as opposed to learning new antecedents).
Hence, DAID attempts to identify antecedents, not used
in the domain knowledge provided to KBANN, that may
be useful in correcting the errors of the domain knowl-
edge. In so doing, DAID aids neural learning techniques
by lessening errors in the areas that these techniques
have difficulty correcting.

DAID is a successful example of a class of algorithms
that are not viable in their own right. Rather, the mem-
bers of this class are symbiotes to larger learning al-
gorithms which help the larger algorithm overcome its
known deficiencies, Hence, DAID is designed to reduce
KBANN’s problem with learning new features. Empiri-
cal tests show that DAID is successful at this task when
the solution to the problem requires deep chains of rea-
soning rather than single-step solutions.

DAID’s success on deep structures and insignificance
on shallow structures is not surprising, given the learn-
ing bias of DAID and standard backpropagation. Specif-
ically, DAID is biased towards learning at the bottom

of reasoning chains whereas backpropagation is, if any-
thing, bias towards learning at the top of chains. In
a shallow structure like that of the splice-junction do-
main, there is no difference in these biases. Hence, DAID
has little effect. However, in deep structures, DaID dif-
fers considerably from backpropagation. It is this dif-
ference in learning bias that results in the gains in both
generalization and speed that DAID provides in the pro-
moter domain.
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