
Appears in Machine Learning: Proceedings of the Eighth International Workshop,
Birnbaum, L. and Collins, G. (eds.), Morgan Kaufmann, San Mateo, Ca., 1991

Constructive Induction in Knowledge-Based Neural Networks

Geoffrey G. Towell Mark W. Craven Jude W. Shavlik

Department of Computer Sciences
University of Wisconsin

Madison, Wisconsin 53706
email:

�
towell, craven, shavlik � @cs.wisc.edu

Abstract

Artificial neural networks have proven to be a
successful, general method for inductive learning
from examples. However, they have not often
been viewed in terms of constructive induction.
We describe a method for using a knowledge-
based neural network of the kind created by the
KBANN algorithm as the basis of a system for con-
structive induction. After training, we extract two
types of rules from a network: modified versions
of the rules initially provided to the knowledge-
based neural network, and rules which describe
newly constructed features. Our experiments
show that the extracted rules are more accurate,
at classifying novel examples, than the trained
network from which the rules are extracted.

1 INTRODUCTION

Artificial neural networks (ANNs) have proven to be
a powerful and general technique for machine learn-
ing. For example, a host of empirical comparisons
indicate that ANNs are at least as effective at gen-
eralizing from training to testing examples as any of
several common symbolic machine learning algorithms
[Atlas89, Fisher89, Shavlik91, Weiss89]. This general-
ization aptitude results from the ability of ANNs to train
hidden units to form useful intermediate representations. In
other words, the success of ANNs results from their ability
to use hidden units as loci for constructive induction. How-
ever, ANNs tend to be “black boxes” after training; their
intermediate representations are not easily comprehended
by humans. As a result, features constructed by ANNs
cannot be passed along for use on related problems.

This paper describes work aimed at making the constructed
features of an ANN available for human inspection and
understanding. The method begins by using the KBANN
algorithm [Towell90] to supply a Knowledge-based Neural
Network (KNN) with much of the intermediate information
that it would otherwise have to derive in order to correctly
solve a problem. Hence, KBANN reduces the scope of

the problem that must be solved, and simplifies the task
of understanding the features discovered during training.
The KNN is then trained using a set of classified exam-
ples and standard neural learning methods [Rumelhart86].
Finally, the NOFM algorithm (described below), which ex-
tracts rules from trained KNNs, is used to understand the
new feature representations that arise during training and
how the initial knowledge provided to the KNN has been
adapted. We present results of using KNNs as a tool for
constructive induction in the molecular genetics problem
of recognizing splice junctions.

2 THE KBANN ALGORITHM

The KBANN algorithm uses a knowledge base of domain-
specific inference rules (a domain theory), in the form of
PROLOG-like clauses, to determine the topology and initial
weights of a KNN. The domain theory need be neither
complete nor correct; it need only support approximately
correct reasoning. KBANN translates a domain theory into
a KNN in which units and links correspond to parts of the
domain theory. A detailed explanation of the procedure
used by KBANN to translate rules into an ANN can be found
in [Towell90].

A :− B, C.
B :− not H.
B :− not F, G.
C :− I, J.

(a)

A

B C

F G H I J

A

C

J

X Y

F G H I

B

(b) (c)

Figure 1: Translation of a Domain Theory into a KNN

As an example of KBANN, consider the artificial domain
theory in Figure 1a, which defines membership in category
A. Figure 1b represents the hierarchical structure of these
rules: solid and dotted lines represent necessary and pro-
hibitory dependencies, respectively. Figure 1c represents
the KNN that results from the translation of this domain
theory into a neural network. Units X and Y in Figure 1c
are introduced into the KNN to handle the disjunction in
the rule set. Otherwise, each unit in the KNN corresponds
to a consequent or an antecedent in the domain theory. The

AB C DE FG

(a)

Z bias=10
if

then Z

n−true returns the number of
true antecedents

(b)

6.06.2 6.0 3.5 3.3 3.3 3.1

6.1 * n−true(B, E, C) +
3.2 * n−true(A, G, F, D)
> 10

Figure 2: Example of the NOFM Algorithm

thick lines in Figure 1c represent heavily-weighted links in
the KNN that correspond to dependencies in the domain
theory. The thin lines represent the links added to the
network to allow refinement of the domain theory.

3 RULE EXTRACTION

This section briefly presents the NOFM method, an algo-
rithm for extracting rules from trained KNNs [Towell91].
The method makes two assumptions about these networks.
First, that training a KNN does not significantly shift the
meaning of its units. By making this assumption, the
methods are able to attach labels to extracted rules that cor-
respond to consequents in the symbolic knowledge upon
which the KNN is based, thereby enhancing the compre-
hensibility of the rules. Second, that the units in a trained
KNN either have activation near one) or near zero. By
making this assumption, each non-input unit in a trained
KNN can be treated as a step function or a Boolean rule.
Observation of trained KNNs suggests that both of these
assumptions are valid.

The NOFM method searches for antecedents of the form:
if (� of these � antecedents are true) then . . .

NOFM was suggested by experiments that indicate neural
networks are good at learning N-of-M concepts [Fisher89]
and our observation that rule sets extracted by methods
similar to [Saito88] often contain subsets which can be
compactly expressed as N-of-M concepts. The NOFM
method finds groups of links that have approximately the
same weight and treats each group as if all of the weights
in it were the same.

As an example of the NOFM algorithm, consider Figure 2a
that shows a unit of a trained KNN with seven heavily-
weighted antecedents (lowly-weighted antecedents are not
shown). The rules extracted by NOFM are similar to
Figure 2b. It is often possible to simplify these rules,
removing the weights and thresholds. However, even
without such simplification, extracted rules are normally
much easier to comprehend than networks.

A primary advantage of the NOFM algorithm is that it does
not need to exhaustively search through combinations of
links to find rules. As a result, NOFM runs in polynomial
time with respect to the number of incoming links to a unit
whereas other methods [Saito88] require exponential time.
Also, NOFM does not require alterations to the structure

of networks to allow extraction [Sestito90]. The rules
derived by NOFM, however, may lack the simplicity of
straightforward, PROLOG-like rules extracted using other
methods.

4 THE SPLICE-JUNCTION PROBLEM

Splice junctions are the points on a DNA sequence at
which “superfluous” DNA is removed during the process
of protein creation. The problem we have addressed is
to recognize the boundaries between exons (the parts of
the DNA sequence retained after splicing) and introns
(the parts of the DNA sequence that are spliced out)
in a given sequence of DNA. Figure 3 illustrates how
splicing occurs during the process of protein creation. This
problem consists of two subtasks: recognizing exon/intron
boundaries (referred to as E/I), and recognizing intron/exon
boundaries (referred to I/E).

DNA
mRNA

Intron

Exon

Key:precursor mRNA

Figure 3: The Organization of Genes in Higher Organisms

To approach this problem, we use a dataset initially de-
scribed in [Noordewier91]. This dataset contains 3190
examples, of which 25% are I/E, 25% are E/I and the
remaining 50% are neither. Each example consists of a
60 nucleotide-long DNA sequence categorized according
to the type of boundary at the center of the sequence. A
domain theory that classifies 61% of the examples correctly
was derived from the biological literature [Watson87]. An
abstracted view of the KNN resulting from the theory is
depicted in Figure 4.

Previously reported experiments [Noordewier91] indicate
that this domain theory does not include all of the intermedi-
ate terms necessary to learn the concept of a splice-junction.
Therefore, the KNN requires hidden units in addition to
those specified by the domain theory to achieve a high level
of accuracy. These extra hidden units enable the network
to constructively induce the requisite terms not captured in
the domain theory. The following sections discuss some
of the problems that arise in incorporating hidden units not
specified by a domain theory into a KNN, and how these
problems can be addressed

pyr−rich

@−3=Y @−3=M @3=R

I/E E/I

DNA Sequence

...

E/I stop I/E stop

Figure 4: Initial Splice-Junction KNN
Shaded units represent “definitional” rules in the domain
theory. Neither incoming weights nor the bias can
change during training for these units.

5 ADDING UNITS FOR CONSTRUCTIVE
INDUCTION

While the performance of a neural network is dependent
on its topology [Kolen90, Shavlik91], how to organize the
topology of a network in order to best learn a particular
task is an open question. By using the domain knowledge
of a problem to specify network topology, KBANN di-
rectly addresses this issue and eliminates the need to search
network-topology space. However, adding extra hidden
units to capture features not expressed in the domain theory
reopens the problem of topology determination. Specif-
ically, the number and connectivity of the added hidden
units must be determined.

A guiding principle used to determine the number and
connectivity of the added hidden units was to, whenever
possible, make decisions about topology to simplify the
problem of interpreting trained KNNs. A second idea that
guided topology determinations was an analogy between
vision and the scanning of DNA sequences. This analogy
suggests the use of recognition cones [Honavar88] for
scanning a DNA sequence. That is, individual hidden
units should be connected only to input units representing
a short, contiguous subsequence of the DNA strand. The
analogy to recognition cones is supported by the biology
of DNA, which suggests that certain localized regions on a
DNA sequence are key in recognizing important biological
signals. Moreover, this analogy at least partially resolves
both the number and connectivity issues raised by the added
units.

In the experiments reported below, each “cone unit” covered
a sequence 20 nucleotides long. This cone size is slightly
longer than several DNA features which are specified by
the splice-junction domain theory. Cones were given 50%
overlap. Hence, except at the ends of the sequence, where
important information is least likely to be found, every input
unit is covered by two cones. Networks with more cones
of shorter length were tried, as were architectures which

E/I−stop
pyr−rich

E/I I/E
@−3=Y

cone units

Figure 5: Splice-Junction Network with Cone Units

varied the amount of overlap between cones. None of the
variations had a significant effect on network performance.

Each cone in the network is connected directly to only
one of the output units rather than to an intermediate layer
of hidden units. (Figure 5 is a schematic representation
of the splice junction network with cones added.) This
simplifies interpretation because it does not allow multiple
output units to encode different features with a shared cone.
Supporting the decision to connect cones units to only one
output unit is Dietterich’s suggestion that sharing of hidden
units is not an important contributor to the classification
abilities of ANNs [Dietterich90] .

The input and output weights and the biases of the cone
units were initialized to random, near-zero values. The
near-zero values of these parameters reflect the fact that,
unlike the units that are specified by the domain theory,
the roles of the cone units are completely unknown before
training.

6 INTERPRETING ADDED HIDDEN
UNITS

Three problems arise in trying to apply the NOFM interpre-
tation algorithm to KNNs which include cone units. First,
units in KNNs are labeled as a result their initial correspon-
dence to parts of a domain theory. The cone units, however,
have no similar labels. Until the biological significance of
a feature measured by a cone unit can be determined, the
region of the DNA sequence measured by the unit serves
as a consequent name in extracted rules.

The second problem is that the rules extracted from cone
units often contain unnecessary double negatives. This
occurs because the biases of the cone units and the links
into and out of the units are initialized to near-zero values.
As a result, the signs on the links and biases of the cone units
after training are meaningful in relation to each other, but
arbitrary with respect to the concepts with which the units
are associated. Hence, the result of simply applying NOFM
to the cone units is rules which contain many unnecessary
double negatives. To alleviate this problem, cones with
negative biases were inverted prior to interpretation. That
is, the signs of the bias and all input and output links were

reversed. The biases at all receivers of links from these
reversed units were adjusted to reflect the changed signal.

The third problem is related to the way in which the NOFM
algorithm approximates each network unit with a linear
threshold unit (LTU). As previously discussed, the NOFM
method assumes that the units in a KNN tend have activa-
tions near zero or one. When this condition of activation
bifurcation is true, NOFM is able to accurately approximate
each unit with a LTU. While activation bifurcation almost
always holds true after training in those KNN units that are
specified by the domain theory, it is not as likely to hold
true for cone units, since they are not initially configured
to approximate LTUs. Therefore, it was occasionally nec-
essary to coax the cone units into approximating LTUs by
progressively steepening the logistic activation function for
these units during training.

With each of these issues addressed, the NOFM method can
be used to interpret the rules encoded by the added hidden
units, thereby making the constructive inductions of KNNs
available for human review.

7 EXPERIMENTAL RESULTS

The utility of using KNNs as a method for constructive
induction can be measured on at least two independent
axes: (1) the ability of the rules to retain the accuracy
of the KNN from which they were extracted, and (2)
the comprehensibility of the extracted rules. Figure 6
addresses the first issue, plotting the accuracy of extracted
rules versus the accuracy of the networks from which the
rules were derived. All results in Figure 6 are for a 1000
example subset chosen randomly from the 3190 available
examples. Testing was done using repeated 10-fold cross-
validation [Weiss90]. While the extracted rules do not
perform as well as networks on the training examples,
the error rates of the rules are slightly better than those
of the networks on the testing examples. This suggests
that the extracted rules capture meaningful regularities in
the training set while avoiding spurious correlations that
account for the performance of the networks on the training
sets. In addition, Figure 6 presents results for KNNs that
do not have cone units. Clearly, the addition of cone
units improved the accuracy of both the network and the
extracted rules.

There are two aspects to the comprehensibility of construc-
tive inductions: are the individual rules extracted from a
network understandable, and are nearly the same sets of
rules derived when training is slightly modified? Table 1,
which presents a representative set of rules extracted from
cone units by NOFM from one of the trials of a ten-fold
cross-validation test1 contains information relevant to each
of these questions. Looking first at the comprehensibility
of individual rules, the largest of these rules has six an-

1Ten-fold cross-validation provides a good way to approach
the latter issue because each training set has 89% of the examples
in common with every other training set.

0.0

2.5

5.0

7.5

10.0

Network Extracted
Rules

P
er

ce
nt

 E
rr

or
s Train Set - 5 added units

Test Set - 5 added units

Train Set - no added units

Test Set - no added units

Figure 6: Error Rates on Training and Testing Examples

tecedents. Recall that the number of antecedents does not
tell the whole comprehensibility story as each antecedent
is weighted. While weights are not shown here for clarity,
rules rarely had antecedents with more than two different
weights. Hence, the rules extracted from a single training
episode are certainly comprehensible.

Table 1: Typical Rules Extracted From Cone Units
consequent antecedents
E/I[-20..-1] @-3=C, @-2=A, @-1=G.
E/I[-10..10] @-9=t, @-3=C, @-2=A, @-1=G, @5=c.
I/E[-10..10] @-5=c, @-1=g, @1=G, @2=T, @3=a, @5=G.

I/E[1..20] @1=G, @2=T, @3=A, @5=G, @14=c, @18=g.
The notation E/I[-20..-1] signifies a cone connected to
the E/I output unit that looks at a subsequence starting 20
nucleotides before, and ending at, the splice-junction.
Antecedents in upper-case appear seven or more times
during a single 10-fold cross-validation test.

Moreover, as indicated by the antecedents shown in upper-
case, the extracted rules are quite consistent. Fourteen of
the twenty antecedents in Table 1 appear in at least six of
the other nine trials.

8 DISCUSSION

On each of the measures described above, the rules ex-
tracted from the cone units are successful. The rules are
both short and consistent, and hence quite comprehensible.
The extracted rules are more accurate at classifying testing
examples than the network from which they are derived.
This improvement in accuracy result from the extracted
rules picking up the important generalizations made by the
network, while ignoring small correlations that allow the
network to perform well on the training set. Furthermore,
the rules constructed by the cone units seem to identify
biologically-significant structures. We are currently work-
ing on more detailed assessments of the “interestingness”
of the constructed rules.

It is important to note that the rules extracted from the cone
units are not, in themselves, sufficient for the recognition
of either E/I or I/E boundaries. Instead, the constructed

rules lend additional evidence to support predicates in
the initial domain theory. This supports a suggestion
made previously that KNNs are particularly well suited to
constructive induction because the presence of knowledge
in the KNN considerably reduces the problems that must
be resolved through feature construction.

Our plans for enhancing the utility of KNNs for performing
constructive induction are primarily aimed at improving
methods for the extraction of rules from trained KNNs.
We are currently working on a rule-extraction algorithm
that operates during the training of a KNN. Rather than
allowing link weights to freely take on arbitrary values,
this algorithm periodically rounds each link weight into a
member of a predetermined, small set of values. Instead
of undergoing the transitions from an interpretable set of
rules to a black-boxish KNN and back to an interpretable
set of rules, the rounding algorithm should preserve the
comprehensibility of the knowledge base during training.

9 CONCLUSIONS

We have described a method for using neural networks to
perform constructive induction. By using the KBANN sys-
tem to form a knowledge-based neural network, we have
significantly reduced the difficulty of learning and inter-
preting the necessary intermediate representations formed
by hidden units. Our technique for deriving rules from a
trained KNN is able to express the information captured by
the network in a manner easily comprehended by humans.

To make use of this interpretation technique, we specialized
the computer vision concept of recognition cones to apply
to DNA sequence analysis. This use of recognition cones
constrained the possible inductions of the hidden units
not specified by the domain theory, thereby facilitating
interpretability of the constructed rules.

Our efforts to promote the interpretabilityof the constructed
rules were successful. The trained network constructed four
new rules, each of which identified significant aspects of
the domain we studied. Additionally, the derived rules
were easily comprehensible, averaging fewer than six an-
tecedents. Moreover, the rules extracted from the trained
network (in which the constructed rules play an integral
part) are more accurate on sets of testing examples than the
networks from which they were extracted.

Acknowledgements
This work was partially supported by Office of Naval
Research Grant N00014-90-J-1941 and National Science
Foundation Grant IRI-9002413 and Department of Energy
Grant DE-FG02-91ER61129.

References

[Atlas89] Atlas, L., Cole, R., Connor, J., El-Sharkawi, M.,
Marks II, R. J., Muthusamy, Y., and Barnard, E. (1989).
Performance comparisons between backpropagation networks

and classification trees on three real-world applications. In
Advances in Neural Information Processing Systems,volume 2,
pages 622–629, Denver, CO.

[Dietterich90] Dietterich, T. G., Hild, H., and Bakiri, G. (1990). A
comparative study of ID3 and backpropagation for English text-
to-speech mapping. In Proceedings of the Seventh International
Conference on Machine Learning, pages 24–31, Austin, TX.

[Fisher89] Fisher, D. H. and McKusick, K. B. (1989). An empir-
ical comparison of ID3 and back-propagation. In Proceedings
of the Eleventh International Joint Conference on Artificial
Intelligence, pages 788–793, Detroit, MI.

[Honavar88] Honavar, V. and Uhr, L. (1988). A network of
neuron-like units that learns to perceive by generation as well
as reweighting of its links. In Hinton, G. E., Sejnowski,
T. J., and Touretzky, D. S., editors, Proceedings of the 1988
Connectionist Models Summer School, pages 472–484. Morgan
Kaufmann, San Mateo, CA.

[Kolen90] Kolen, J. F. and Pollack, J. B. (1990). Back-
propagation is sensitive to initial conditions. In Advances
in Neural Information Processing Systems, volume 3, Denver,
CO. Morgan Kaufmann.

[Noordewier91] Noordewier, M. O., Towell, G. G., and Shavlik,
J. W. (1991). Training knowledge-based neural networks to
recognize genes in DNA sequences. In Advances in Neural In-
formation ProcessingSystems, volume 3, Denver, CO. Morgan
Kaufmann.

[Rumelhart86] Rumelhart, D. E., Hinton, G. E., and Williams,
R. J. (1986). Learning internal representations by error prop-
agation. In Rumelhart, D. E. and McClelland, J. L., ed-
itors, Parallel Distributed Processing: Explorations in the
microstructure of cognition. Volume 1: Foundations, pages
318–363. MIT Press, Cambridge, MA.

[Saito88] Saito, K. and Nakano, R. (1988). Medical diagnostic
expert system based on PDP model. In Proceedings of IEEE
International Conference on Neural Networks,volume 1, pages
255–262.

[Sestito90] Sestito, S. and Dillon, T. (1990). Using multi-layered
neural networks for learning symbolic knowledge. In Proceed-
ings of the 1990 Australian Artificial Intelligence Conference,
Perth, Australia.

[Shavlik91] Shavlik, J. W., Mooney, R. J., and Towell, G. G.
(1991). Symbolic and neural net learning algorithms: An
empirical comparison. Machine Learning, 6:111–143.

[Towell91] Towell, G. G., Shavlik, J. W., and Craven, M. W.
(1991). Interpretation of artificial neural networks: Map-
ping knowledge-based neural networks into rules. Technical
report, Computer Sciences Department, University of Wiscon-
sin, Madison, WI.

[Towell90] Towell, G. G., Shavlik, J. W., and Noordewier, M. O.
(1990). Refinement of approximately correct domain theories
by knowledge-based neural networks. In Proceedings of the
Eighth National Conference on Artificial Intelligence, pages
861–866, Boston, MA.

[Watson87] Watson, J. D., Hopkins, N. H., Roberts, J. W., Steitz,
J. A., and Weiner, A. M. (1987). Molecular Biology of the
Gene. pages 634–647.

[Weiss89] Weiss, S. M. and Kapouleas, I. (1989). An empirical
comparison of pattern recognition, neural nets, and machine
learning classification methods. In Proceedingsof the Eleventh
International Joint Conferenceon Artificial Intelligence, pages
688–693, Detroit, MI.

[Weiss90] Weiss, S. M. and Kulikowski, C. A. (1990). Computer
Systems that Learn. Morgan Kaufmann, San Mateo, CA.

