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Building a Relation World Model

Learn concept using ILP

Q-Learning vs AMBIL for Reinforcement Learning
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In Q-learning, policies are composed of multiple
Q-functions, one for each action. Typically, an agent o Examplestates
takes the action with the highest Q-value for the state. e Game ended with score
= Game ended without score
——= Action A taken
~=== Action B taken

Q-Values are calculated using standard Bellman backups,
based upon the observed rewards, next state, and
previous policy.

For each action, groups states that have similar Generalize the selected concept using ILP. Each ILP rule becomes an MDP state.
outcomes, such as goal was scored.
Transitions with same action as target concept For each outcome an MDP state leads to, the

Q-functions are often estimated using function Score each possible concept according to the become and negative training examples, probability and expected reward is estimated

learning rate.
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Over time, the policy will be refined, with a controlling the

approximation, which can be difficult in complex domains.

Rewards observed after performing an
action are shown along the transition arcs

expected discounted reward sum for
performing the appropriate action.

Greedily select the concept to leam. Hz would
be selected above.

depending on whether they are in the selected

In non-deterministic domains, the leamed ILP
rule(s) may cover negative examples.

A state score is calculated using Bellman

backups.

babil
from the constituent example states.

Traditional Q-Learning Process
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Building a world model completely replaces the Q-value AMBIL uses the world model directly to determine policy.

learning mechanism from traditional Q-learning.

Extend the MDP by selecting an additional This is the final model for the example.

concept to learn.

Another concept is leamed via ILP and the

For any given abstract state in the world model, the
MDP is extended

recommended action is determined by the action with the
maximum Q-value for the state.

AMBIL partitions state space into a relational Markov
Decision Process (MDP). Each abstract state of the MDP
contains estimates for the expected rewards, transition
probabilities, and Q-values for each action.

A special “uncovered” state provides a
catch all for example states that couldn't
be covered. This occurs both while
building the model and when there isn't
enough data left to create additional
states.

The process of concept selection and
extending the MDP is repeated untilthe.
state space is covered.

Consider all of the original concepts, plus new
concepts leading to the MDP state created in
the previous step.

AMBIL Learning Process

AMBIL does not utilize function approximation when
building a model or determining policy. Greedily select the concept to learn. H; would

be selected above.




