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ABSTRACT: In the design of SPUR, a high-performance multiproces- 
sot workstation, the use of large caches and hardware-supported 
cache consistency suggests a new approach to virtual address transla- 
tion. By performing translation in each processor's virtually-tagged 
cache, the need for separate translation lookaside buffers (TLBs) is 
eliminated. Eliminating the TLB substantially reduces the hardware 
cost and complexity of the translation mechanism and eliminates the 
translation consistency problem. Trace-driven simulations show that 
normal cache behavior is only minimally affected by caching page 
table entries, and that in many cases, using a separate device would 
actually reduce system performance. 
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1. I n t r o d u c t i o n  

Paged virtual memory is used in most computer systems to 
extend the address space available to the programmer [Denn70]. Pro- 
grams execute using virtual addresses, which are translated by the 
system into physical addresses at run-time. Virtual memory allows 
program size to be independent of the amount of available physical 
memory, and eliminates the problems of contiguous physical memory 
allocation. 

The mapping from virtual addresses to physical addresses is 
maintained in a structure called a page table. A virtual address is 
used to index into the table and locate the corresponding page table 
entry (PTE); the entry is used to construct the physical address. 
This translation process is usually accelerated by special hardware 

called a translation lookaside buffer (TLB) 1. A TLB is a small 
cache, typically 64 to 512 entries,' of recently-referenced page table 
entries. Like all caches, the TLB reduces the average access time to 
a PTE, thus reducing the overhead of virtual address translation 
[Saty81]. 

In this paper we describe a new translation mechanism, called 
in-cache address translation, that uses the virtually-tagged data 
cache instead of a TLB to hold page table entries [Ritc85]. In-cache 
translation requires less hardware, since it eliminates the TLB, and 
has comparable performance to TLB-based mechanisms when com- 
bined with a large cache. Performance depends critically on the 
cache memory having low miss rates; fortunately, the increased den- 
sity of RAM chips makes large caches (>64K bytes) feasible. 

In-cache address translation is being implemented as part of the 
SPUR workstation project at U.C. Berkeley. The SPUR workstation 
[Hill85] is a high performance personal computer that has evolved 
from the previous RISC [Putt85] and SOAR lUngs84] research pro- 
jects. SPUR is a single bus, shared-memory multiprocessor, contain- 
ing 6 to 12 processors with private caches. The prototype of this 
machine will serve as a test-bed for parallel processing research. 

1 Also known as a directory lookaslde table (DLAT) or translation buf'fer (TB). 

Shared-memory multiprocessors with cache memories suffer 
from the well known problem of cache coherency [Tang76,Cens78]. 
Solutions to this problem guarantee that all processors see a con- 
sistent view of memory. For shared bus multiprocessors, this is often 
accomplished using extra hardware that monitors transactions on the 
bus, as is done in SPUR [Katz85]. Since a TLB is nothing more than 

a special purpose cache, if each processor has its own TLB 2, then a 
multiprocessor also suffers from a TLB coherency problem. Thus 
changes to a page table entry (e.g., making a page inaccessible so it 
can be flushed to the paging store) must be reflected in the TLBs of 
all processors. The data cache solution also works for TLBs, but 
requires significant additional hardware. Since in-cache translation 
does not use a TLB, it eliminates the TLB coherency problem. 

Section 2 describes the basic mechanisms and algorithms needed 
for a uniproeessor system. Section 3 extends the scheme to shared- 
bus multiprocessors employing a hardware cache consistency algo- 
rithm. In section 4, we describe a performance evaluation using 
trace-driven simulation, and present the results. Finally, we discuss 
the implementation status of in-cache translation in SPUR and sum- 
marize our results. 

2. U n l p r o c e s s o r  I n - C a c h e  A d d r e s s  T r a n s l a t i o n  

This section describes the basic mechanisms and algorithms of 
in-cache translation. First, the motivation for the virtually-tagged 
cache is explained, followed by a discussion of its problems and their 
solutions. Then the page table organization and conceptual transla- 
tion process is described. Next, the actual in-cache address transla- 
tion process is described. Finally, the details of memory management 
are discussed for completeness. 

2.1.  O v e r v i e w  of  T r a n s l a t i o n  S c h e m e  

The in-cache translation mechanism assumes that the cache is 
addressed using virtual addresses, i.e., the cache index and tag are 
derived from virtual, rather than physical, addresses. The advantage 
of this virtually-tagged cache is that address translation is required 
only on a cache miss, when the data must be fetched from main 
memory. In contrast, if physical addresses are used for cache access, 
the translation must occur on every cache reference. Many systems 
with physical address caches perform address translation in parallel 
with the cache access, deriving the index from the virtual address and 
the tag from the physical address. In general, this requires the cache 
index bits to be the same in both virtual and physical addresses. 
However, as cache sizes increase for a fixed page size, the complexity 
(e.g., associativity) must also increase for parallel translation to be 

possible s. For example, a 16K byte cache with 4K byte pages must 

Most current generation multiprocessors utilize a TLB per processor. Some re- 
cent research systerm, e.g., MIPS-X [Stan86] and Dragon [lVlcCr84], are investigating 
centralized and hybrid translation buffers. 

s Other ways to satisfy the restriction are to increase the page size, or to restrict 
the mapping of virtual pages to physical pageframes such that some low order hits of 
the virtual page number and pageframe number are the same. 
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Figure 1 : Formation of a Global Virtual Address 

The virtual memory allows for multiple large address spaces by pro- 
viding one large global virtual address space. Each process's virtual 
address space is divided into four segments, typically stack, heap, 
code, and system. The global virtual address is formed in the cache 
controller by prepending the global segment number, from one of 
the four active segment registers, to the process virtual address. 

be 4-way set-associative. For much larger caches, the associativity 
becomes unmanageable, and translation is usually done sequentially. 
In this case, translation must be fast to achieve reasonable effective 
memory access times. On the other hand, cache misses only occur on 
a small percentage of the total references, and therefore the transla- 
tion mechanism used with a virtually-tagged cache need not be as 
fast to yield comparable performance. 

Virtually-tagged caches suffer from the address ~ynonym prob- 
lem [Smit82]. If two virtual addresses are allowed to map to the 
same physical address, the same data could be in two separate cache 
entries; if modifications to one entry are not reflected by the other, 
inconsistent results can occur. We avoid this problem by providing a 
single global virtual address space, shared by all processes. When two 
processes share data, they must use the same global virtual address 
to access it. 

as 
In SPUR, the global virtual address space is 256 gigabytes ( 2 ) ,  

divided into 256 1-gigabyte segments. Each process sees a 4-gigabyte 
process virtual address space, composed of 4 1-gigabyte segments. 
Each process segment is independently mapped to one of the 256 glo- 
bal segments. As Figure 1 shows, the top two bits of the process vir- 
tual address select one of four active segment registers, which define 

the current mapping. Processes share data by mapping to the same 
global segment. If any portion of a segment is shared, then the whole 
segment is shared. The segment register can be accessed in parallel 
with the cache, since the segment number is not needed until the tag 
comparison. A similar scheme has been implemented in the CDC 
Cyber 180 [CDC84] and variations are discussed by Knapp in her 
dissertation IKnap85 I. 

Each segment is divided into 256K 4K byte pages. Over 64 
million is page 26 table entries 
12 segments X2 pages/segment=2 PTEs) are needed to map the 
entire global address space, for a total page table size of 256 mega- 
bytes. To avoid excessive memory requirements, the page tables are 
placed in virtual space, and therefore may be paged out to disk. 
Rather than residing in a separate system virtual 8pace, as is done in 
the VAX-11 architecture [Digi81], the page tables may reside any- 
where in the global virtual space. Since the page tables map the 
entire global virtual space, some portions of the page tables map 
themselves. These portions are referred to as second-level or root 
page tables, to denote their special significance. The root page tables 
must be kept resident at known addresses within physical memory, 
requiring a minimum of 256K bytes of physical memory to map the 
entire global virtual address space. 

2 .2 .  I n - c a c h e  T r a n s l a t i o n  P r o c e s s  

Conventional systems with virtual caches have used a separate 
TLB to cache page table entries [Smit82]. In our approach, page 
table entries can reside in the same cache as instructions and data, 
and are referenced with virtual addresses. Translation is accom- 
plished by fetching PTEs from the cache instead of a TLB. Since 
translation is necessary only on cache misses, the impact of the addi- 
tional delay on performance is minor. 

To translate a virtual address, we need to fetch its PTE to 
determine the physical address. To do this, the in-cache mechanism 
must compute the PTE's global virtual address. By requiring all 
page tables to be contiguous in virtual space, the PTE can be found 
by using the (data} virtual page number as an index into the page 
table. By further requiring the page tables to be aligned on a 256M 
byte boundary, the address computation can be performed by a sim- 
ple shift and concatenate, as illustrated in Figure 3. 

In this paper, we assume that the processor issues a memory 
request and remains stalled until the request is completed. A 
separate cache controller performs all the address computation and 
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Figure 2 : Two-Level Page Tables for an Active Segment 

Associated with the global segment number of an active segment is the base address of the root page table for that seg- 
ment. The high-order eight bits of the virtual page number index into the root page table to find the physical address 
of the "first-level" page table page. The low-order ten bits of the virtual page number select the page table entry for 
the desired data page. The offset field then specifies the byte within the page. 
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Figure 3 : Formation of Page Table Entry Global Virtual Address 

The virtual address of the PTE is formed by using the virtual page 
number portion of the (data} global virtual address as an index into 
the page table. Because the page tables must be aligned on a 256M 
byte boundry, the address may be formed using concatenation rath- 
er than addition. Since PTEs are 4 bytes, the bottom two bits of 
the byte address must be 0. 

logic required to service a miss, including address translation. 

Figure 4 shows the four eases that can occur on a memory 
reference. In the most frequent case (ease A), the cache hits and data 
is delivered in one cycle (assuming a single-cycle cache). In prepara- 
tion for a miss, a shift-and-concatenate circuit in the cache controller 
forms the global virtual address of the page table entry during the 
reference. If translation is required, the cache controller uses this 
address and attempts to read the page table entry in the following 
cycle. Case B corresponds to a cache miss on the data and a hit on 
the PTE. This requires one additional cache reference, for the PTE, 
and one memory transfer to fetch the desired data block. 

If the PTE is not in the cache (case C), a third cache reference 
is required for the root PTE, from which the physical address of the 
PTE may be formed. After the PTE is fetched from memory, it is 
loaded into the cache for use in future translations. In the worst case 
(ease D), all three cache references fail, and the root PTE must also 

be fetched from memory and cached. The physical addresses of the 
root page table for each of the four active segments are kept in regis- 
ters in the cache controller. 

More than three memory operations may occur if a write-back 
of a dirty cache block is necessary. Because the cache is virtually- 
tagged, a recursive translation must be performed to obtain the phy- 
sical address needed for the write-back. If the PTE for the replaced 
block must be fetched from memory, it should be placed in a 
separate register to prevent deadlock: deadlock could occur if a PTE 
tries to displace the block being written back to memory. In SPUR, 
this complexity is eliminated by keeping the physical address tag for 
each block in cache tag memory (as is also done in the Dragon 
[McCr84] ). We trade off control complexity for the additional bits of 
cache tag memory. 

On examining any page table entry, the desired page may be 
shown to be invalid, indicating that the page is not in memory but 
resides on disk. In this event, a trap to the page fault handler is 
taken, and the page fault is resolved in software. 

2.3. Reference and Dirty  Bits 

In most systems, reference and dirty bits for each page are kept 
in the PTE to optimize the replacement and write-back of pages in 
memory. Traditionally, copies of these bits are kept in the TLB, 
checked on each cache reference, and are set when necessary. For 
in-cache translation, maintaining a true reference bit requires that 
the corresponding page table entry be examined for every reference to 
the cache. This overhead would be prohibitive; instead, we use an 
approximation to reference bits, which we refer to as misa bits. The 
PTE miss bit is set only when a reference to a cache block misses. In 
this event, the PTE must be brought into the cache anyway to carry 
out the address translation. After a miss bit is cleared by the paging 
daemon, it is not set again until the next cache miss for that page. 
Thus it is possible, although unlikely, for a page to be thrown out of 
memory despite being referenced. Since even true reference bits only 
allow the operating system to approximate a "Least Recently Used" 
policy, we feel that this additional approximation is not a serious 
shortcoming 4. 

Dirty bits could be maintained in the same way, by setting the 

4 At least one very successful architecture, the VAX-I1 [DigiS1], does not provide 
reference bits at all. 
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Figure 4 : Steps in the Translation Procedure 

Four eases are possible depending on whether the cache contains the data, page table entry, and root PTE. A: The 
cache hits, and no translation is required. R: The first cache reference misses, but the cache contains the page table en- 
try (a "TLB hit"). O: The second cache reference misses, but the cache contains the root PTE. D: The cache misses 
on all three attempts, and the root page table entry must be fetched from memory. 
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dirty bit whenever a writable block is brought into the cache. This 
has the disadvantage that the dirty bit may be set even though the 
page has not been modified, and therefore unmodified pages may be 
written to disk unnecessarily. Another solution is to examine the 
PTE on every processor write; however, this results in a significant 
degradation in performance. Instead, every cache entry contains a 
PageDirty  bit. The PTE dirty bit is copied into the PageDirty bit 
when a block is brought into the cache. When the processor writes 
to a block whose PageDirty bit is set, i.e., the page is known to be 
dirty, then the write proceeds normally. If this bit is not set, then 
the PTE dirty bit ma y  not have been set yet. The cache controller 
must first reference the PTE (potentially causing a cache miss), check 
the dirty bit, and set it if not already set. Then the referenced cache 
block's PageDirty bit is set (since the page is now known to be dirty), 
and the write is allowed to proceed. 

The PageDirty bits of other blocks that were read from the 
page before it was written are not updated when the PTE dirty bit 
was set. Thus, when one of these blocks is modified, the PageDirty 
bit is still zero, and the cache controller must check the PTE dirty 
bit. 

In the SPUR prototype, when the processor writes to a block 
whose PageDirty bit is not set, it handles the reference like a cache 
miss. When the PTE is referenced, the PTE dirty bit is checked. If 
it is set (a dirty bit miss), then the miss handling completes and the 
write is allowed to proceed. If the dirty bit is not set, a trap is gen- 
erated (a dirty bit trap) and the PTE is modified under software con- 
trol. By handling the PageDirty bit in this manner, the control logic 
is greatly simplified, and, as we will show later, these dirty bit misses 
occur infrequently. 

When the page is recycled (see below) or written back to disk, 
the page's dirty bit is cleared. Care must be taken to first flush all 
that page's blocks from the cache; this guarantees that subsequent 
writes to that page won't find a block remaining in the cache with 
the PageDirty bit incorrectly set. Since this must be done infre- 
quently, the performance impact of the flushes is slight. 

2.4. Segment and Pageframe Recycling 

The SPUR workstation supports 256 global segments. This 
should be sufficient for the number of concurrent processes on a per- 
sonal workstation. Processes have finite lifetimes, however, so seg- 
ments will need to be reassigned from terminated processes to newly 
active ones (recycled). Because of the virtually*tagged cache, the sys- 
tem must guarantee that no blocks from the deactivated segment's 
pages are resident in the cache before it is reassigned. Otherwise, a 
process accessing the reassigned segment might reference old data. 

A similar problem arises when we want to reuse a physical 
pageframe. As before, we want to change the virtual to physical 
mapping, but this change is not immediately reflected in the cache 
since it is accessed by virtual addresses. If we simply remap the 
pageframe to a different virtual page, then there may be blocks from 
the original virtual page remaining in the cache. Since, in SPUR, the 
physical address tag is cached with each entry, blocks mapped to the 
old virtual address will still be written-back to the pageframe 6. 
When the old block is written-back, it could over-write new data. To 
prevent this loss of data, it is necessary to guarantee that a page's 
dirty blocks are removed from the cache before re-using the page's 
page frame. 

Both of these problems can be solved by flushing the cache. If 
a number of pages and segments are recycled together, then the over- 
head is not significant. Other algorithms exist which may have less 
overhead in some cases. 

Note this problem does not exist if we do not cache the physical tags. Howev- 
er, we would incur the performance loss and complexity of translating on write-back. 

3. Extensions for Multiproeessor In-Cache Translation 

Traditional multiprocessors use TLBs to perform address trans- 
lation. As mentioned previously, multiple TLBs experience a transla- 
tion coherency problem analogous to the cache coherency problem. 
Existing systems have solved this problem using a combination of 
hardware and software. At one extreme, a special instruction can be 
provided to invalidate remote TLBs. At the other, the software must 
verify that the TLB entry is valid before using it. Some new mul- 
tiprocessors with virtually-tagged caches have a single TLB shared by 
all processors IStan85,McCr84]. This solution eliminates the 
coherency problem, but may result in a performance bottleneck at 
the TLB. 

In-cache translation is easily extended to multiprocessors that 
use hardware to enforce cache coherency [Katz85]. Page tables are 
only cached in the processor's data cache, and not in a separate 
translation buffer. Therefore, updates to cached PTEs are done in a 
consistent manner, as guaranteed by the regular cache coherency 
mechanism. 

The basic translation process is unchanged for mnltiprocessors, 
but recycling pages and segments is slightly more complicated. 
When recycling a page (or segment), there must be no blocks from 
that page (or segment) in any processor's cache. Each processor can 
be instructed to flush its cache by sending it a message or interrupt. 
The completion of the operation can be synchronized using a counter 
in shared memory; each processor atomically incrementing it upon 
completion of its flush. 

4. Evaluation 

The previous sections have described the operation of the in- 
cache translation mechanism. While this translation scheme elim- 
inates the TLB and the TLB coherency problem, it must also have 
acceptable performance to be useful. One reasonable definition of 
"acceptable", examined below, is that it should perform at least as 
well as existing translation mechanisms. 

4.1. Methodology 

We used the DinerolI cache simulator [Hill831 to evaluate the 
performance of the in-cache translation mechanism and other transla- 
tion buffers. This simulator uses address traces as input and reports 
miss rates and bus traffic for specified cache parameters. We 
modified the simulator to simulate the caching of page table entries. 
All simulations were for a uniprocessor and do not take into account 
additional misses that might result from maintaining cache 
coherency. However, since pagetables are updated relatively infre- 
quently, we do not expect cache coherency to have a major impact 
on performance. 

Table 1 lists the five address traces that were used to drive the 
simulations, and the amount of virtual memory referenced by each 
trace. The first four were gathered on a VAX running UNIX with an 
address and instruction tracer [Henr84]. LISZT is the Franz LISP 
compiler compiling a portion of itself. VAXIMA is an algebraic 
manipulation system, written in LISP, performing a series of integra- 
tions, matrix operations, and solving differential equations. CS20K 
and CS100K are traces composed of two separate sections of the 
VAXIMA trace, and are designed to simulate context switching. 
They are identical except for the switching interval, which is 20,000 
and 100,000 references, respectively. Since, in SPUR, indepeudent 
(non-sharing) processes run in different segments, the two traces were 
given different segment numbers to simulate this behavior. The final 
trace, MVS, is a series of calls to the MVS operating system and was 
traced on an Amdahl 470 [Smit851. The traces gathered on the VAX 
include only those references made while in user mode. The MVS 
trace, on the other hand, includes only system references. 

The available computer resources forced us to limit the simula- 
tions to one million addresses per trace, even though this length 
represents under one second of execution. As a sensitivity analysis, 
traces of five million references were run for selected cases, and miss 
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A d d r e s s  T r a c e s  U s e d  

Trace 

LISZT 

VAXIMA 

CS20K 

CS100K 

MVS 

Description 

Franz LISP self-compilation 

Algebraic expert system 
(a derivative of MACSYMA) 

Two VAXIMA streams inter- 
leaved every 20K references 
(Multi-user context switch rate) 

Two VAXIMA streams inter- 
leaved every 100K references 
(single-user context switch rate) 

Multiple calls to the MVS 
operating system 

Memory Referenced 
(Mbytes) [ (pages) 

0.6Mb 145 

1.7Mb 413 

2.5Mb 609 

2.5Mb 609 

3.7Mb 284 

Table 1 : Address Traces Used 

These five traces were used in the analysis of the in-cache transla- 
tion scheme. The first four were generated on a VAX running 
UNIX. The last trace was recorded on an Amdahl 470 running the 
MVS operating system. The amount of virtual memory refer- 
enced is shown by the number of 41( byte pages that were 
touched (4K bytes is the page size used in SPUR). 

rates did not differ substantially. All digits of the results are 
significant for the particular traces that were simulated. However, as 
workload behavior varies wildly [Smit85], care should be taken in 
interpreting these results. 

The in-cache translation scheme was simulated assuming a 
128K byte, direct-mapped (associativity=l) cache, with :32 byte 
blocks. The memory page size was 4K bytes. These parameters are 
being used in the prototype of the SPUR multiprocessor workstation. 

While trace-driven simulation has been shown to provide 
optimistic results [Clar85], it is nonetheless useful for making relative 
comparisons. 

4.2.  P e r f o r m a n c e  of  I n - C a c h e  T r a n s l a t i o n  

There are two opposing views of the SPUR cache: a cache being 
corrupted by page table entries, and a translation buffer being pol- 
luted by instructions and data. Table 2 shows the increase in the 
cache miss rate because both functions are being performed in the 
cache. This total additional miss rate is computed by dividing the 
misses added when PTEs are cached by the total number of refer- 
ences made to the cache by the processor. 

There is an important distinction to be made: proce88or refer- 
ences to the cache are for instructions and data, while the cache con- 

troller references the cache for page table entries during the transla- 
tion process. The 5th and 6th columns of Table 2 separate the total 
additional miss rate according to this distinction. In the column 
labeled "Collisions", the processor is experiencing additional misses 
on instructions and data because normal cache contents are being dis- 
placed by PTEs. The "PTE Misses" column, on the other hand, 
reflects the additional misses incurred when the cache is being refer- 
enced during the translation process. The combination of "Colli- 
sions" and "PTE misses" is the measure of the translation mechan- 
ism performance: the "TLB" miss rate for SPUR. This figure of 
merit includes the misses on both page table and root page table 
references. As we shall see, there are few root page table references. 

Effective, or average, memory access time is another important 
performance metric. As was shown in Figure 4, a memory reference 
can cause 4 different cases to occur. The average access time is com- 
puted by summing the products of the frequency of each case times 
the cycles required by that case. We assume that cache accesses 
complete in 1 cycle, and memory accesses complete in 13 (5 cycles 
latency and 8 cycles transfer time); these parameters are based on 
the implementation of the SPUR prototype. 

Table 3 displays the percent of memory references handled by 
each of the four cases. Between 97% and 99% of the time, the refer- 
ence hits in the cache and is handled in one cycle (A). The cache con- 
troller takes over on a miss, and in the next cycle references the 
cache with the virtual address of the page table entry. From 91% to 
97% of these references, or from 0.5% to 2.5% of all references (B), 
are cache hits. The desired instruction or data can then be fetched 
from memory in one bus transaction. 

For all the traces except MVS, only 2 to 4 references out of 
10,000 result in a PTE miss and force a memory access for the page 
table entry (C). Only about 2 in 100,000 references cause a "double- 
miss," and require a memory fetch of the root page table entry as 
well (D}. These second level looknps represent only 3.3% of PTE 
misses on average. These results agree with those of Clark and Emer 
[Clar85], that between 3.1 to 4.8% of PTE misses are for second level 
PTEs, and support the use of a two-level page table scheme. 

4.3.  C o m p a r i s o n  to  a Separate  T L B  

To properly evaluate in-cache translation, we must compare its 
performance to some standard. One reasonable standard is the per- 
formance of existing translation mechanisms. The most common 
translation mechanism is a TLB combined with a physically- 
addressed cache. Table 4 shows how in-cache translation compares 
to the translation buffers of several commercial computers. 

The in-cache method displays lower miss rates for almost all 
cases. Of the TLBs shown, only the large set-associative buffers 
achieve better performance. By allowing a large, variable number of 
cache entries to hold PTEs, the in-cache scheme is able to adapt to 
the dynamics of program behavior. As seen in the last column of 

Increase  in C a c h e  MIss  R a t e  Average 
Number 

,, of PTEs 

Trace in SPUR 

LISZT 
VAXIMA 
CS100K 
CS20K 
~VS 

Miss Rate (%) 
Pure Cache 

0.584 
1.844 
2.214 
2.445 
1.677 

Miss Rate (%) 
w/Translation 

0.610 
1.875 
2.260 
2.495 
1.981 

Additional Cache Miss Rate (%) 
Total(% increase) Collisions PTE Misses 

0.026(4.4%) 0.009 0.016 
0.030(1.6%) 0.004 0.026 
0.046(2.1%) 0.005 0.041 
0.050(2.0%) 0.007 0.042 
0.304(18.1%) 0.142 0.162 

Cache 

211 
598 
928 
933 
329 

Table 2 : Additional Cache Misses Due To In-Cache Translation 

This table shows the increase in cache misses when translation is performed in-cache. For example, the miss rate for 
VAXIMA is 1.844% when PTEs are not cached and 1.875% when PTEs are cached, a relative increase of 1.6%. The 
additional 0.03% is composed of two elements: extra misses when the processor references instruction and data blocks 
that have collided with PTEs (0.004%), and the misses when the cache controller references a page table entry 
(0.026%). The last column shows the average number of PTEs resident in the cache; less than 3% of the cache entries 
are used to store PTEs. 
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Types  of  Memory Accesses 

Percentage of Total References 

Trace 

LISZT 
VAXIMA 
CS100K 
CS20K 
MVS 

Cache Hits 
A( I$ )  

99.4065 
98.1517 
97.7806 
97.5478 
98.1804 

PTE Hits 
B (2$,1M) 

0.5775 
1.8236 
2.1805 
2.4115 
1.6600 

RPTE Hits 
C (35,2M) 

0.0158 
0.0231 
0.0373 
0.0390 
0.1576 

RPTE Misses 
D (35,3M) 

0.0002 
0.0016 
0.0016 
0.0017 
0.0020 

Table 3 : Breakdown of Memory References 

Averas= 
Access 

Time (cycles) 

1.0854 
1.2624 
1.3164 
1.3492 
1.2773 

This table shows the percentage of total references to memory that fall into the four categories of Figure 4. The aver- 
age number of cycles per reference is given for each trace. A "$" represents a cache reference requiring 1 cycle, and an 
"M" indicates a memory transaction requiring 13 cycles. Note that the cache hit ratios presented for case A include 
the effect of PTEs colliding with instructions and data. Thus they correspond to the "pure" cache miss rates plus the 
collision miss rates of Table 2. 

Table 2, the average number of PTEs in the cache increases for more 
poorly behaved traces. Clearly, the performance of in-cache transla- 
tion is at least comparable to popular high-performance machines. 
Therefore, we conclude that in-cache translation has acceptable per- 
formance. 

Much of in-cache's performance obviously results from the large 
virtually-tagged cache, since translation is only required on cache 
misses. As an alternative standard of comparison, we can examine 
the performance of a TLB placed after the SPUR cache (i.e., using a 
TLB for address translation rather than in-cache translation). This 
comparison factors out the effects of the virtually-tagged cache. 

The results for this comparison were generated by simulating 
the performance of the 128K byte, direct-mapped cache for each 
trace, and recording only those addresses that missed. These 
addresses were then used as the input to each of the simulated trans- 
lation buffers. 

Table 5 shows the commercial translation buffers examined in 
Table 4, but this time translating only on cache misses. Only VAX- 
IMA and MVS are shown for brevity, but the results are comparable 
for the other traces. The "Cache Miss" columns have identical 
entries because the SPUR 128K byte cache was simulated in each 
case. The TLB miss rate is still normalized to processor references, 
rather than TLB references, to facilitate comparisons. The cycles 
required for the average reference are calculated as in Table 3; a TLB 
miss is assumed to take as much time as a cache miss (13 cycles). 
This assumption is somewhat pessimistic, as TLB misses often take 

much longer than cache misses. The relative performance, effective 
cycle times of TLBs over in-cache translation, is displayed in the last 
column of each section. 

In-cache translation has lower TLB miss rates than many of the 
buffers; however, in one of the cases the effective cache access time is 
worse. This occurs because a TLB may be accessed in parallel with 
the cache access, reducing the cost of a miss by one cycle. Nonethe- 
less, the average access time of in-cache is within 5% of any transla- 
tion buffer. 

When computing effective cycle times for TLBs, we have 
assumed that a full-block transfer from memory is required to satisfy 
a TLB miss. This is not strictly necessary: a single word transfer 
would be sufficient. Thus, our results are somewhat optimistic when 
compared to systems that make this optimization. On the other 
hand, this is partially balanced by the assumption that TLB misses 
are handled as quickly as cache misses. Despite these limitations, we 
believe the results are accurate enough to make valid comparisons. 

To further increase performance, some machines [Gust82] 
employ a TLB in addition to caching page tables. While this reduces 
the average time to service a TLB miss, the caching of PTEs 
increases the cache miss rate, due to collisions between PTEs and 
data. However, in-cache translation achieves an effective access time 
within 5 ~  of the ideal for all traces (ideal assumes no cost for trans- 
lation). It is hard to justify the significant additional cost of a TLB 
to achieve at most 5~. 

Summary of  Commercial  TLB Performance 

TLB Set Page Miss Rate (Percent) 
Size Size Size 

(entr ies) ,  (entr ies) ,  (bytes), ,  LISZT VAXIMA I CS100K I CS20K I MVS I 
128 1 512 3.588 4.070 4.332 4.444 3.948 
128 2 512 1.782 I 2.306 2.344 2.460 2.664 
512 1 512 0.639 1.249 1.545 1.710 1.240 
512 2 512 0.324 0.619 0.676 0.856 0.548 
128 2 4096 0.097 0.305 0.450 0.550 0.145 
256 2 4096 0.023 0.112 0.174 0.223 0.063 
512 2 4096 0.014 0.047 0.086 0.1Ol 0.030 ! 

I I II ~ I I I 

n/a  n /a  4K 0 . 0 2 6  0.030 0.046 0.050 0.304 

Machine 

VAX-11/730 
VAX-11/780 
VAX 8600 
VAX-11/750 
IBM 370 8033 
Amdahl 470V/6 
Amdahl 470V/8 

SPUR In-Cache 

Table 4 : Commercial TLB Performance 

Simulations of the VAX TLBs are for one half only (only half the buffer is available to user programs while the other 
half is reserved for system-space translations). The IBM and Amdahl performance were simulated using a hashed index 
based on an Exclusive OR of the address bits. By allowing a large, variable number of cache entries to hold PTEs, the 
in-cache method achieves lower miss rates than almost all these buffers (exceptions in bold font). The figures for in- 
cache translation are from Table 2. 
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C o m m e r c i a l  T L B  P e r f o r m a n c e  w i t h  S P U R  V i r t u a l  C a c h e  

Separate TLB 

VAX- 11/730 
VAX-11/780 
VAX 8600 
VAXoI1/750 
IBM 370 3033 

Amdahl 470V/6 
Amdahl 470V/8 

SPUR In-Cache 

Cache 
Miss 

1.844 
1.844 
1.844 
1.844 
1.844 
1.844 
1.844 

1.844 

VAXIMA 
TLB Avg. 
Miss I Time 

] (%) ](cycles) 

I 0.687 ' 1.329 
0.588 1.316 
0.559 1.312 
0.415 1.294 
0.157 1.200 
0 080 1.250 

L0.047 , 1.246 

i 0.030 1.262 

Relative 
Perf. 

I (/SPUR) 
' 1.051 

1.041 
1.038 
1.023 
0.997 
0.989 
0.980 

1.000 

Cache 
Miss 
(%) 

1.677 
1.677 
1.677 
1.677 
1.677 
1.677 
1.677 

1.677 

MVS 
TLB Avg. 
Miss I Time 

I (%) I(cycles) 

' 0.680 I 1.306 
0.531 1.287 
0.619 1.299 
0.341 i 1.202 
0.092 1.230 
0.048 1.224 
0 .030 i 1.222 

I 

0.304 1.277 

Relative 
Perf. 

I ( /SPUR)  

I 1.023 
1.008 
1.017 
0.988 
0.903 
0.958 
0.957 

1.000 

Table 5 : Performance of Commercial TLBs After Cache Miss 

These are the same commercial translation buffers as in Table 4. Here, however, they are placed after the SPUR 
virtually-tagged cache to show performance when translating only on cache misses. As before, only half the entries for 
the VAX buffers were simulated, the IBM and Amdahl TLBs use a hashed index, and the page size is 512 bytes for 
VAX buffers and 4K bytes for the others. The TLB miss rate and average access time provide different information be- 
cause the cost of a miss differs between a TLB and in-cache translation. A TLB may be accessed in parallel with the 
cache reference, while the PTE lookup for in-cache is strictly sequential. 

4.4. Addi t iona l  A n a l y s e s  

To simplify the hardware, the SPUR workstation traps to 
software to execute infrequent operations, such as setting miss (refer- 
ence) bits and dirty bits. A miss bit trap occurs at most once each 
time the miss bit is cleared. With large main memories (each SPUR 
workstation will have 20-40 megabytes), paging should occur infre- 
quently. Since the miss bits need only be reset during memory star- 
vation (to determine likely pages to swap out), the overhead of these 
traps should be small. 

Dirty bit traps occur each time a page is written for the first 
time; all translation schemes incur similar overhead, since they must 
update the PTE dirty bit when the page is modified. Dirty bit 
misses, which occur on accesses to blocks that are brought into the 
cache before the page is first modified, are unique to in-cache transla- 
tion and present a potential performance loss. The simulator was 
extended to estimate the frequency of dirty bit misses; the results of 
this study are presented in Table 6. Despite the cold-start effect, 
only 48 extra misses occurred in one million references, in the worst 
case. That is less than one dirty bit miss per 20000 references. For a 
longer trace the frequency decreases, since the extra misses due to 
cold-start are amortized over more references. These results indicate 
that pages are modified quickly; thus, dirty bit misses are not a per- 
formance problem. 

One reason to have a physical address cache and TLB is to 
reduce the size of the cache tag memory. This reduction occurs 
because virtual addresses are typically larger than physical addresses, 
e.g., in SPUR, the virtual address is 38 bits and the physical address 
is 32 bits. In addition, SPUR caches both virtual and physical tags, 
which greatly increases the necessary bits. If we were to use the 
additional bits to build a TLB, it would have over 1600 entries (4K 
blocks * 21 bit virtual tag ~ 86010 bits, TLB entry ~ virtual tag + 
PTE = 21 + 32 = 53 bits, 86016 / 53 = 1622 TLB entries). If only 
the virtual tag were cached, then the possible TLB size drops to 
under 500 entries. This is still a large TLB. However, the absolute 
number of bits is not necessarily a meaningful metric: the number of 
IC packages is often much more important. For example, in the 
SPUR prototype the virtual tags occupy only six 4K x 4 bit static 
RAM chips, and require only 3 more glue chips than physical tags. It 
would be difficult, if not impossible, to build a TLB with so few chips 
without using custom logic. Thus, in-cache translation is not neces- 
sarily less space efficient than TLBs. 

5. S t a t u s  and  C o n c l u s i o n s  

As cache sizes increase, virtuMly-tagged caches provide high 
performance with less hardware complexity than physical caches. 
Since translation is performed only on cache misses, it can be slower 
than for physical caches without significant impact on performance. 
In this paper we describe a new translation mechanism that elim- 
inates the traditional TLB, using the virtually-tagged cache to hold 
PTEs. 

The simulation results show that a large cache is very effective 
in caching page table entries. The effective cache access time is com- 
parable to large set-associative buffers, and is, in fact, within 5°7oo of 
optimal. With this result, we have shown that a high performance 
memory system can be designed without a TLB. Eliminating the 
TLB reduces the hardware cost and complexity of a uniprocessor 
design. More importantly, the in-cache mechanism provides transla- 
tion coherency in shared memory multiprocessors, without additional 
hardware complexity or software restrictions. 

D i r t y  Bi t  P e r f o r m a n c e  for  In -Ca ch e  

Trace Dirty Bit Dirt: 
Traps 

II  I 

LISZT 

VAXIMA 

48 

132 

CS 100K 164 

MVS 147 

~y Bit 
Misses 

2 

33 

25 

48 

Table 6 : In-Cache Dirty Bit Performance 

This table shows the number of dirty bit traps and dirty bit misses 
generated by the traces used in the previous simulations. All trans- 
lation schemes must take the necessary traps, i.e., the PTE dirty bit 
must be set when the page is first modified. 
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The in-cache translation algorithm is being implemented as part 
of the SPUR multiprocessor workstation. The cache controller, 
which executes much of the algorithm, is implemented as a custom 
CMOS chip, in a 2#m n-well process. The chip is targeted for fabri- 
cation in the summer of 1986. The cache data and tags are stored in 
vendor supplied static RAMs: the data portion uses 45ns 16K x 4 bit 
parts, and the tag portion uses 25ns 4K x 4 bit parts. 

6, Acknowledgements  

We wish to acknowledge John Ousterhout for his many sugges- 
tions that helped lead to this final design. Jean-Loup Baer, Russ 
Brown, David Culler, Jane Doughty, Hugh Lauer, Corinna Lee, Lish- 
ing Liu, Richard Sites, and Alan Smith read earlier drafts of this 
paper and provided excellent comments. Major funding for this 
research was from DARPA under contract order 482427-25840 by 
NAVALEX. Additional support was provided by Texas Instruments 
and the California MICRO program. 

7. Re ferences  

[CDC841 CDC,. Hardware Reference Manual No. 60462090, CDC 
Cyber 180 Computer System Model 990, Virtual State. Con- 
trol Data Corporation, St. Paul, Minnesota, 1984. 

[Cens78] Censier, L. M. and P. Feautrier. "A New Solution to Coher- 
ence Problems in Multicache Systems." IEEE Transactions on 
Computer8 27, 12 (December 1978), 1112-1118. 

[Clar85] Clark, D. W. and J. S. Emer. "Performance of the VAX- 
11/780 Translation Buffer: Simulation and Measurement." 
ACM Transactions on Computer Systems 3, 1 (February, 
1985). 

[Denn70] Denning, P. J. "Virtual Memory." Computing Surveys 2, 3 
(September, 1970). 

lDigi81] Digital Equipment Corporation,. VAX Architecture Hand- 
book. Maynard, Massachusetts 01754, 1981. 

[Gust82] Gustafson, R. N and F. J. Shapiro. "IBM 3081 Processor 
Unit: Design Considerations and Design Process." IBM J. of 
Research and Development 26, 1 (January, 1982), 12-21. 

[Henr84] Henry, R. R. Address and Instruction Tracing for the VAX 
Architecture. Unpublished Report, U.C. Berkeley, November, 
1984. 

[Hill83] Hill, M. D. Evaluation of On-Chlp Cache Memories. 
Master's Report, Computer Science Division, EECS Dept., U.C. 
Berkeley, December 1983. 

IHil185] Hill, M. D. et al. SPUR: A VLSI Multiprocessor Worksta- 
tion. Submitted for publication in Computer, November 1985. 

[Katz85] Katz, R. H., S. J. Eggers, D. A. Wood, C. L. Perkins, and R. 
G. Sheldon. "Implementing a Cache Consistency Protocol." 
Proc. lgth International Symposium on Computer Architec- 
ture, Boston, Mass., June 1985, pages 276-283. 

[Knap85] Knapp, V. Virtually Addressed Caches for Multiprogram- 
ruing and Multiprocessing Environments. U. of Washington, 
Dept. of Computer Science, Technical Report No. 85-06-02, 
June, 1985. 

[MeCr84] MeCreight, E. M. "The Dragon Computer System: An 
Early Overview." NATO Advanced Study Institute on Mir- 
coarchitecture of VLSI Computers, Urbino, Italy, July, 1984. 

[Patt85] Patterson, D. A. "Reduced Instruction Set Computers." 

Communications of the ACM 28, 1 (January, 1985), 8-21. 
[Rite85] Ritchie, S. A. TLB For Free: In-Cache Address Translation 

For A Multiprocessor Workstation. UC Berkeley, Computer 
Science Division, Technical Report No. UCB/CSD 85/233, 
May 1985. 

[Saty81] Satyanarayanan, M. and D. Bhandarkar. "Design Trade-offs 
in VAX-11 Translation Buffer Organization." IEEE Computer 
14, 12 (Dec.1981), 103-11. 

[Smit82] Smith, A. J. "Cache Memories." Computing Surveys 14, 3 
(Sept. 1982), 473-530. 

[Smit851 Smith, A. J. "Cache Evaluation and the Impact of Work- 
load Choice." Proc. l~th International Symposium on Com- 
puter Architecture, Boston, Mass., June 1985, pages 64°73. 

[Stan85] Stanford University,. "MIPS-X: A High Performance Com- 
puter." Computer Systems Laboratory Technical Progress 
Report, March, 1985, pages %12. 

[Tang76] Tang, C.K. "Cache System Design in the Tightly Coupled 
Mutliprocessor System." Proceedings of NCC, 1976, pages 
749-753. 

[Unga84] Ungar, D., R. Blau, P. Foley, D. Samples, and D. Patterson. 
"Architecture of SOAR: Smalltalk on a RISC." Proc. Eleventh 

International Symposium on Computer Architecture, June 
1984, pages 188-197. 

365 


