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ABSTRACT

Prior to this work, all implementations of stack simulation
[MGS70] required more than linear time to process an
address trace. In particular these implementations are often
slow for highly-associative memories and traces with poor
locality, as can be found in simulations of file systems. We
describe a new implementation of stack simulation where
the referenced block and its stack distance are found using
a hash table rather than by traversing the stack. The key to
this implementation is that designers are rarely interested in
a continuum of memory sizes, but instead desire metrics for
only a discrete set of alternatives (e.g., powers of two).
Our experimental evaluation shows the run-time of the new
implementation to be linear in address trace length and
independent of trace locality. Kim, et al., [KHW91]
present the results of this research in more detail.
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1. Introduction

Trace-driven simulation, the most commonly-used
method for evaluating cache and memory system designs,
can consume considerable computer resources, particularly
when it is applied to highly-associative memories with
traces having poor locality. A key approach to reducing
these resource demands is to evaluate multiple alternative
memories with a single pass through an address trace.

Mattson, et al., [MGS70] describe a single-pass tech-
nique called stack simulation that can efficiently simulate
multiple alternative memories with the same block size
(line, page), the same number of sets, and using the least-
recently-used (LRU) replacement policy. Since stack
simulation handles each set independently, we will
hereafter assume fully-associative memories (a single set).
Mattson, et al., show why a single list, called a stack, can
�����������������������������������

† This work is supported in part by the National Science Foundation
(MIPS-8957278 and CCR-8902536), A.T.& T. Bell Laboratories,
Cray Research Foundation and Digital Equipment Corporation.

be used to simultaneously represent the contents of all
alternative memories, and how the first k elements of the
stack give the blocks in a memory of size k blocks. In
stack simulation, a reference is said to be to stack distance
k if it accesses the k-th block in the stack. Each reference
is processed in four steps:

INPUT read the next reference from the trace,

FIND search the stack to find the block the reference
accesses (if any) and determine its stack distance,

METRIC update counter(s) to record which memories hit
or missed, and

UPDATE update the stack to reflect the state of the
memories after the reference.

A straight-forward implementation of stack simula-
tion uses a linked list and has asymptotic running time
O (N . D), where N is the trace length and D is the mean
stack distance. This implementation is commonly-used for
CPU cache simulations, where the limited associativity res-
tricts D and traces exhibit good locality [Tho87]. Others
have developed tree-based implementations [BeK75,
Olk81] with asymptotic running times O (N log D) and
used hashing to determine when a block is not in the stack
[BeK75, Tho87]. The performance of these implementa-
tions, however, is still sensitive to trace locality [Tho87].

In the next section we develop an implementation
that uses hashing to achieve asymptotic running times that
are independent of trace locality. We then present key
results from our experimental evaluation.

2. Hashing-Based Implementation

Our implementation of stack simulation uses a hash
table to find a reference in the stack. This implementation
would be trivial, except that step FIND must also determine
the block’s stack distance in constant time. One way to
achieve this is to add a field to each block that stores its
stack distance. Doing this, however, would not improve
asymptotic running time, because step UPDATE would now
require an average of D updates per reference.

The key to our implementation is that designers are
rarely interested in a continuum of memory sizes, but
instead desire metrics for only a discrete set of alternatives
(e.g., powers of two). Thus, we need only remember a
block’s stack distance at that coarse level, and therefore we
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Figure 1a: Example of stack and hash table.
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Figure 1b: Same stack after reference to 94.

must update the field only when a block moves from one
memory to the next. Let the number of memory sizes
being simulated be M. Our implementation has asymptotic
running time O (N . M), because on each reference a single
memory size requires at most one update. The expected
number of updates per reference, however, is equal to the
sum of the M miss ratios. Since miss ratios for highly-
associative memories are typically small, our implementa-
tion is fast unless M is very large.

Figure 1 shows the key data structures of our imple-
mentation, simulating (very small) memory sizes of 2, 4, 8
and 16 blocks. The stack is implemented with a doubly-
linked list, hash table, and discard pointers (which point to
the first block not in a memory)†. Figure 1a shows the
stack before processing a reference to block 94, while Fig-
ure 1b shows it afterward.
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† Robinson and Devarakonda [RoD90] use similar data structures to
implement frequency-based replacement in a disk cache.

Using the simulation steps defined in Section 1, a
reference to block 94 is processed as follows.

INPUT ‘‘94’’ is read from the trace.

FIND Its block is found by hashing (with 94 mod 32)
through bucket 30.

METRIC Since the ‘‘distance’’ field for the block says
‘‘2’’, the distance count for memory 2 must be
incremented to indicate a hit in memories 2 and
larger.

UPDATE Finally, the discard pointer for memory 1 (all
memories less than 2) must be moved up one
block, the discarded block marked out of memory
1, and block 94 moved to the top of the stack.

3. Discussion

We have implemented hashing-based and linked-list
stack simulation in C and have evaluated them with some
CPU address traces [BKW90]. We synthesized various
mean stack distances using stack deletion [Smi77]. Results
show that the performance of hashing-based stack simula-
tion is (1) insensitive to mean stack distance, and (2) faster
than linked-list stack simulation for mean stack distances
greater than five. Thus our implementation should be supe-
rior for disk and file-system traces, which have mean stack
distances in the hundreds [Tho87].

4. References

[BeK75] B. T. Bennett and V. J. Kruskal, LRU Stack Processing, IBM
Journal of R & D, July 1975, 353-357.

[BKW90] A. Borg, R. E. Kessler and D. W. Wall, Generation and
Analysis of Very Long Address Traces, Proceedings
Seventeenth International Symposium on Computer
Architecture, Seattle, June 1990.

[KHW91] Y. H. Kim, M. D. Hill and D. A. Wood, Implementing Stack
Simulation for Highly-Associative Memories, Computer
Sciences Technical Report #997, Univ. of Wisconsin,
February 1991.

[MGS70] R. L. Mattson, J. Gecsei, D. R. Slutz and I. L. Traiger,
Evaluation techniques for storage hierarchies, IBM Systems
Journal 9, 2 (1970), 78 - 117.

[Olk81] F. Olken, Efficient Methods for Calculating the Success
Function of Fixed Space Replacement Policies, Masters
Report, Lawrence Berkeley Laboratory LBL-12370,
University of California, Berkeley, May 1981.

[RoD90] J. T. Robinson and M. V. Devarakonda, Data Cache
Management Using Frequency-Based Replacement,
Proceedings SIGMETRICS Conference on Measurement and
Modeling of Computer Systems, Boulder, Colorado, May
1990.

[Smi77] A. J. Smith, Two Methods for the Efficient Analysis of
Memory Address Trace Data, IEEE Trans. on Software Eng.
SE-3, 1 (January 1977), 94-101.

[Tho87] J. G. Thompson, Efficient Analysis of Caching Systems,
Computer Science Division Technical Report UCB/Computer
Science Dept. 87/374, University of California, Berkeley,
October 1987.



-- --

-- --


