
June 8, 1993

1

Wisconsin
Archi tectural
Research
Tool
Set
Mark D. Hill, James R. Larus, Alvin R. Lebeck,
Madhusudhan Talluri, and David A. Wood
Computer Sciences Department
University of Wisconsin
1210 West Dayton St.
Madison, WI 53706
warts@cs.wisc.edu

Wisconsin Architectural Research Tool Set (WARTS) is a collection of tools for
profiling and tracing programs and analyzing program traces. WARTS currently
contains:
• QPT, a program profiler and tracing system.
• CPROF, a cache performance profiler.
• Tycho and dineroIII, cache simulators.

WARTS is distributed with the full source and a small amount of documentation. The
tools in WARTS are copyrighted and distributed under license. A copy of the license is
available onftp.cs.wisc.edu in ~ftp/pub/warts-license.ps.Z or it can
be obtained by writing to the address above.WARTS is available without charge for uni-
versity researchers and is available to other researchers for a modest research donation.
Contactwarts@cs.wisc.edu for more details or to be added to the mailing list to
hear of future releases.

QPT is an exact and efficient program profiler and tracing system written by James
Larus. Theqpt tool rewrites a program’s executable file (a.out) by inserting code to
record the execution frequency or sequence of every basic block (straight-line sequence
of instructions) or control-flow edge. From this information, another program
qpt_stats can calculate the execution cost of procedures in the program. Unlike the
Unix toolsprof andgprof, QPT records exact execution frequency, not a statistical
sample. When tracing a program, QPT produces a trace regeneration program that reads
the highly compressed trace file and regenerates a full program trace.

When profiling, QPT operates in two modes. In “slow” mode, it places a counter in each
basic block in a program—in the same manner as the MIPS toolpixie. In “quick”
mode, QPT places counters on an infrequently-executed subset of the edges in the pro-
gram’s control-flow graph. This placement can reduce the cost of profiling by 3–4 times.
Since there is no such thing as a free lunch, quick profiling requires more program anal-
ysis and consequently slows QPT. The additional cost to instrument a program and
report results, however, is small and is quickly gained back when profiling long-running
programs.

QPT offers a number of advantages over existing systems:
• In quick mode, QPT can record edge execution frequencies as well as basic block

execution frequencies.

QPT:
A Quick Program
Profiling and Tracing
System

2

• QPT also records a number of semantics events—such as loop entry and iteration,
function entry and exit, and memory allocation and deallocation—that other systems
do not identify.

• On MIPS systems, QPT typically requires less overhead thanpixie and can profile
programs that use signals. QPT can also produces hierarchical profiles (like
gprof).

• On SPARC-based systems, QPT offers exact instruction counts, instead of a PC-his-
togram that is subject to quantization errors. QPT also does not require recompila-
tion of the program.

QPT currently runs on MIPS and SPARC-based systems. I have verified the ports on a
DECstation and SPARCstation IPX by profiling and tracing the entire SPEC ‘92 bench-
mark suite (a set of shell scripts for tracing this benchmark suite is included) and other
programs. QPT is written to be portable. All of the machine-specific features are col-
lected in a few files. Porting to a new machine requires a couple months of effort.

The table below shows the overhead of QPT profiling and the MIPS programpixie:

Overhead measured on a DECstation 5000 with the SPEC benchmarks compiled at -O2 to permit
register scavengering. Overhead for QPT is slightly larger for SPEC benchmarks compiled at the
standard level of -O3 or -O4.

The profiling and control-tracing algorithms in QPT are described in:

[1] Thomas Ball and James R. Larus, “Optimally Profiling and Tracing Programs,” ACM SIGPLAN-SIGACT
Principles of Programming Languages (POPL), January 1992, pp. 59-70.
(A postscript version of a technical report containing this paper is available for anonymous ftp frompri-
most.cs.wisc.edu in the file~ftp/pub/opt-prof-tracing.ps.Z)

Abstract execution is described in:

[2] James R. Larus, “Abstract Execution: A Technique for Efficiently Tracing Programs,”Software Practices
& Experience, 20, 12, December 1990, pp 1241-1258.
(A postscript version of a technical report containing this paper is available for anonymous ftp frompri-
most.cs.wisc.edu in the file~ftp/pub/ae-tr.ps.Z)

QPT is described in:

[3] James R. Larus, “Efficient Program Tracing,” IEEE Computer, 26, 5, May 1993, pp 52-61.

 The CPROF system is a cache performance profiler written by Alvin R. Lebeck and
David A. Wood that annotates source listings to identify the source lines and data struc-
tures that cause frequent cache misses. The CPROF system consists of two programs:
Cprof, a uniprocessor cache simulator, andXcprof, an X windows user interface.
Cprof processes program traces generated by QPT (see above) and annotates source

TABLE 1. Overhead of QPT and Pixie

Benchmark

Slow
Overhead
(%)

Quick
Overhead
(%)

Pixie
Overhead
(%)

gcc 224 78 169

espresso 185 98 113

spice 68 39 43

doduc 33 4 35

nasa7 8 6 3

xlisp 136 85 157

eqntott 158 55 180

matrix300 13 13 7

fpppp 17 12 13

tomcatv 10 9 8

CPROF:
A Cache Performance
Profiler

3

lines and data structures with the appropriate cache miss statistics.Xcprof provides a
generalized X windows interface for easy viewing of annotated source files.

The performance of current RISC processors is very sensitive to cache miss ratios. Pro-
grammers, compiler writers, and language designers must explicitly consider cache
behavior to fully exploit a program’s performance potential. CPROF provides detailed
information about a program’s cache behavior through full cache simulation. By anno-
tating lines of source code and data structures with the corresponding number of cache
misses, CPROF helps the user focus on problematic data structures and algorithms.
CPROF aids the programmer in identifying types of transformations that can improve
program cache behavior by classifying cache misses as: compulsory, capacity, or con-
flict. We have profiled six of the SPEC92 benchmarks and obtained speedups in execu-
tion time ranging from 1.06 to 1.81 on a DECstation 5000/125 [1].

Our experience using CPROF to tune this subset of the SPEC benchmarks is detailed in:

[1] Alvin R. Lebeck and David A. Wood, “Cache Profiling and the SPEC Benchmarks: A Case Study,” Tech-
nical Report, University of Wisconsin, March 1992.
(A postscript version of the technical report is available via anonymous ftp onromano.cs.wisc.edu in
the file ~ftp/public/CPROF/cprof.paper.ps.Z)

 Tycho anddineroIII are uniprocessor cache simulators written by Mark Hill. The simu-
lators report the behavior of one or more alternative cache designs in response to an
input trace provided by the user (e.g., with QPT). A trace is a list of the memory refer-
ences that a program or workload makes while it is executing. Both simulators are writ-
ten in C, use the same ASCII trace format, and have been distributed to dozens of
companies and universities.

The first simulator, tycho, simultaneously evaluates many alternative uniprocessor
caches, but severely restricts the design options that may be varied [1]. Specifically,
with one pass through an address trace,tycho will produce a table of miss ratios for
caches of many sizes and associativities, provided that all caches have the same block
(line) size, do no prefetching, and use LRU replacement.Tycho is used, for example,
with the SPEC benchmark suite to examine numerous caches [2]. Tycho is most useful
for reducing the size of a large cache design space. A second version oftycho—
tychoII—provides higher performancewith the option of binary trace input and several
otheroptmizations by Madhusudhan Talluri. TychoII, however, is morecomplex than
tycho and has not been widely used.

The second simulator, dineroIII, evaluates only one uniprocessor cache at a time, but
produces more performance metrics (e.g., traffic to and from memory) and allows more
cache design options to be varied (e.g., write-back vs. write-through, LRU vs. random
replacement, demand fetching vs. prefetching).DineroIII is distributed for instructional
use with a popular graduate computer architecture textbook [3].DineroIII is most useful
for carefully studying a few alternative cache designs.

[1] Mark D. Hill and Alan Jay Smith, “Evaluating Associativity in CPU Caches,” IEEE Trans. on Computers,
C-38, 12, December 1989, p.1612-1630.

[2] Jeffrey D. Gee, Mark D. Hill, Dionisios N. Pnevmatikatos, Alan Jay Smith, “Cache Performance of the SPEC
Benchmark Suite,” to appear, IEEE Micro, August 1993, 3, 2.

[3] John L. Hennessy and David A. Patterson,Computer Architecture: A Quantitative Approach, Morgan
Kaufmann, San Mateo, California, 1990

TABLE 2. Execution Time Speedup at Optimization Level -O3

Program
DEC 5000/
125

DEC 5000/
200

DEC 5000/
240

compress 1.81 1.52 2.30

dnasa7 1.14 1.12 1.45

eqntott 1.11 1.06 1.03

spice 1.26 1.25 1.34

tomcatv 1.46 1.28 1.58

xlisp 1.06 1.03 1.08

Tycho and DineroIII:
Cache Simulators

