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Abstract

We consider a kernel-based approach to nonlinear classification that combines the
generation of  “synthetic” points (to be used in the kernel) with “chunking” (working
with subsets of the data) in order to significantly reduce the size of the optimization
problems required to construct classifiers for massive datasets. Rather than solving a
single massive classification problem involving all points in the training set, we employ a
series of problems that gradually increase in size and which consider kernels based on
small numbers of synthetic points. These synthetic points are generated by solving
relatively small nonlinear unconstrained optimization problems. In addition to greatly
reducing optimization problem size, the procedure that we describe also has the
advantage of being easily parallelized. Computational results show that our method
efficiently generates high-performance classifiers on a variety of problems involving both
real and randomly generated datasets.

1. Introduction

Suppose that the following classification problem is given:

A set of m training points in n-dimensional space is given by the m×n matrix Y.  These
points are divided into two classes, type 1 and type -1. A classifier is to be constructed
using this data and a nonlinear kernel function K that is a mapping from Rn  × Rn  to R.
We assume that construction of the corresponding classifier involves generating a
function g(x) = w K(C,x), where w is a row vector of size s and C is a set of s points in Rn

and it is understood that, for such a set of points C,  K(C,x ) is a column vector of size s
whose entries are given by K(ci,x) for the rows ci  of C. (In a further extension of this
notation below, we will assume that for any two matrices A and B each of which has n
columns, that K(A,B) is a matrix whose (i,j) entry is K(Ai , Bj) where Ai and Bj are the
rows corresponding to indices i and j. In addition, we will use a dot or juxtaposition of
vectors and matrices to indicate a product operation, without introducing an extra symbol
to indicate the transposition of the vector that may be required.) The points used in a set
C will be termed classifier points. While it is customary to set C=Y, one of the goals of
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this paper is to investigate alternative approaches to constructing C, particularly when Y
is a large dataset. In conjunction with the determination of the weights w described
above, a constant γ is also computed so that the resulting classifier designates (as
correctly as possible) a point as type 1 if g(x) > γ  and a point as type -1 if  g(x) < γ .

We assume the kernel Mercer inner product property K(y,x)= f(y).f(x),  where f is a
mapping from Rn  to another space Rk , and f(y).f(x) represents an inner product. (For a
simple example,  suppose that n=2 and K(y,x)=(yx)2  . Then by taking
 f(z)= (z1

2 , 21/2 z1 z2 , z2
2 ),  where z is a 2-vector, it is easy to verify that K(y,x)= f(y).f(x)

holds for any pair of vectors. ) The original space Rn is finite dimensional and is referred
to as “input space” whereas Rk may have a much higher dimension (or even be infinite-
dimensional) and is referred to as “feature space”. (In the simple example given, n=2 and
k=3, but note that even for this simple quadratic kernel the dimension of the feature space
is proportional to the square of the dimension of the input space.) Many commonly used
nonlinear classifiers (such as Gaussians or homogeneous polynomials) have this Mercer
property, and although evaluation of the corresponding function f itself is in general not
computationally practical, the inner product representation K(y,x)= f(y).f(x) allows
classifier approximation problems to be formulated in an manner that is computationally
tractable. In fact, by taking advantage of this Mercer property, we will be able to solve
via a relatively small unconstrained nonlinear program (NLP), the problem of
approximating a classifier with C=Y (or subsets of Y) by classifiers based on very small
numbers of “synthetic points” that are not necessarily in Y.

Classifiers are usually constructed by taking the set C to be the set Y of training points
and then solving an optimization problem for the values of w and γ. However, for
massive datasets this choice of C results in intractably large optimization problems.
Moreover, it may be the case that even for medium-sized datasets, the classifiers using
C=Y can be outperformed by alternative choices of C. For example, if the type 1 points
form a cluster about a center point z that is not in Y, and the type -1 points lie beyond this
cluster, then an ideal classifier may be constructed using a Gaussian kernel involving the
point z alone rather than any of the many points from Y. As observed in a noisy dataset
below, the generalizability associated with alternative smaller choices of C may also be
better than the choice C=Y, since the latter can lead to overtraining.

In the initialization step of our method we construct classifiers using C’s that are small
subsets of Y, and then in successor steps we approximate classifiers for successively
larger subsets of the training set by using C’s corresponding to even smaller sets of
synthetic points (as opposed to using points from Y). We describe this procedure in the
next section. It should be noted that this chunking strategy of considering successively
larger subsets is one of the elements that differentiates this research from that of [2],
which emphasizes synthetic point generation as an a posteriori procedure applied to
simplify a classifier obtained in the standard manner from the full dataset.

The idea of simplifying classifiers by using synthetic points was introduced in [2].
Alternative approaches for generating synthetic points are described in [3][13]. Other
approaches that seek to reduce kernel-classifier complexity are discussed in [11]. In the
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linear case, classifiers have also been simplified by means of feature selection via
concave programming [1].

2. Chunking-Synthetic (CS) Approaches

Our approaches are based on a sequence of classifier generating problems interspersed
with a sequence of classifier approximation problems (that generate synthetic points).
The former we refer to as classifier problems and the latter, as approximation problems.
We now define the format of the problems used in the specific implementation presented
below.

LP(S , C) is the linear programming classifier generating problem:

Min uu,,γ,, EE       ν || E||1 + || u ||1 (1)
s.t. D.(u.K(C, S) -γ 1) + E > 1 ,  E > 0 ,

where ν  is a weighting factor,  u.K(C, S) is the vector obtained by applying the kernel
corresponding to u.K(C, .) to each element of the subset S of the training set, D is a
diagonal matrix of +1’s  corresponding to the appropriate classification of the
corresponding element of S, E is a vector of “errors” (with respect to the “soft” margin
bounding surfaces corresponding to u.K(C, x)= γ + 1 ),   1 is a vector of 1’s, and 0 is a
vector of 0’s. Note that the standard classification problem in this framework would be
obtained by setting C=S=Y, but this leads to a problem with O(m) constraints and
variables, which is intractable if m is large. Other classifier problems (such as classifiers
with quadratic objective terms) may be substituted for the LP in (1).  In particular, in
future research we will experiment with further reductions in problem size via the use of
unconstrained classifier models as described below.

Using the notation f(C) to denote the array obtained by applying f to each of the s points
of C, consider the classifier term u* f(C), where u* is obtained by solving (1), and
generate an approximation to this term by considering the problem NLP(u*,C,t), which is
the unconstrained NLP:

Min w,Z   || u* f(C) – w f(Z) ||2
2  (2),

where t<s is a small integer, w is a vector of size t, and Z is a set of t synthetic points.
Thus, the optimal solution w*f(Z*) approximates the classifier term u* f(C). In order to
avoid computation with f in feature space, this NLP is re-formulated by expanding the
squared 2-norm and applying the Mercer inner product property to obtain an equivalent
problem expressed in input space [2]. The expanded problem (2) is

Min w,Z  u
*.f(C) f(C) . u* -2u*. f(C) f(Z). w+ w. f(Z) f(Z). w

so the corresponding problem in input space via the inner product property is

Min w,Z   u*.K(C,C) . u* -2u*.K(C,Z) . w+ w.K(Z,Z) . w .
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Note that a numerical value of K(y,x) for a specific pair (y,x) is computed by operations
in input space.  (For example, we may evaluate K(y,x)=(y.x)p where p is a positive integer
and y.x  represents the inner product in input space. Evaluation of K(y,x) via the
expression f(y) f(x) would be impractical for p>1 and large n. )

The Chunking-Synthetic strategy allows different algorithmic formulations. We now
describe the i-th stage of the multistage CS algorithm that we used in this research. In our
approach we perform p independent runs of the i-th stage process, using a different
random subset of training points in each run; the results of these p runs are then combined
as described below to provide the initial set of classifier points Ci+1 for stage i+1. In our
results we use the settings p=10, t=10 (number of points used in classifier approximation
problems) and s=100 (maximum number of classifier points). See fig. 1 for an overview
of one of the independent runs of stage i.

Fig 1.  One of p runs of stage i  process
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At each successive stage, the size of the subset of the training set used to provide data for
the classification problem is increased as described below until a classifier problem for
the full training set is reached.

Stage i process (performed p times with p independent samples from the training set) :

a) Let Ci be a set of s points in Rn, with s <<m.  (C0 is chosen as a subset of the
training set; for i > 0 the Ci are sets of synthetic points obtained from the
preceding stage.)

b) Let Yi be a randomly chosen subset of Y such that size(Yi)>size(Yi-1);  solve the
      classifier problem  LP(Yi , Ci).
c) Letting Zi, wi be a set of initial values for a nonlinear optimization procedure,

solve the approximation problem NLP(ui*,Ci,t) for a value t<s  to obtain Z*
i  .

d) Solve the classifier problem:    LP(Yi , Z
*

i). (3)  .

Coordination Step (for the p stage i processes): For each run performed in stage i+1,
Ci+1 is the union of all Z*

i   for the p runs of the i-th stage (yielding a total of s=pt
potential classifier points for each of the initial problems of stage i+1).

It should be noted that step (d) of this chunking strategy serves to validate the choices
made for the strategic parameters p and t in the sense that the testing set correctness
should be similar for steps (b) and (d) and correctness should stabilize as the subsets of
Y approach the size of the original training set. This behavior was observed in the
computational results that we now present.

3. Computational Results, USPS problem

In order to evaluate the chunking-synthetic algorithm, we considered variants of the
USPS problem [14]. The USPS problem is composed of 9,298 patterns, 256 features
each, corresponding to scanned handwritten numbers (0-9). Thus, it is a multi-category
problem. Roughly, each category has the same number of representatives. We will
consider the hardest two-category subproblem: 8 vs. the other numbers. A Gaussian
kernel K(y,x)= exp(-|y-x|2 /128) was used as in [13].

All our runs took place on a node of a Sun Enterprise machine, with UltraSPARC II
processors at 248 MHz and 8 Gb or RAM. Step (b) and any other linear problems in our
tests were solved using CPLEX 6.0. The nonlinear approximation problem in step (c) was
solved by invoking CONOPT 2 via GAMS 2.50A. (We chose an "off-the-shelf" NLP
solver for this initial implementation, and found it to be quite effective.  Other NLP
techniques could, of course, be more efficient for this particular class of applications.
With CONOPT 2 we found that the solution process was accelerated by imposing box
constraints on the variables w. In particular, we impose the constraints: -α|u*

i| < w  <
α|u*

i| for some α>0. A discussion of the choice of α and the results obtained without box
constraints are given below. The CONOPT 2  option rtredg, reduced gradient tolerance
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for optimality,  was set to 1e-4.) The values of ν were chosen for maximum testing set
correctness. Both CPLEX and GAMS were called from a C program that implemented
the whole algorithm.

Five stages were used (see Table 1 below for a summary of these and related results),
employing the following sizes for the randomly selected subsets of the data:

0.   1000 USPS points:   500 testing and  500 training (Y0), ν=1.4
1.   2000 USPS points: 1000 testing and 1000 training (Y1), ν=1.6
2.   4000 USPS points: 2000 testing and 2000 training (Y2), ν=3.0
3.   8000 USPS points: 4000 testing and 4000 training (Y3), ν=6.0
4.   9298 USPS points: 2007 testing and 7291 training (Y4), ν=12.0

A point in Yi is termed a support vector if the dual variable of its classification constraint
is nonzero at the solution, implying its classification constraint is active at the solution.
Therefore, for similar testing correctness, the number of support vectors shown below is a
measure of the robustness of the classifier in the sense that the support vectors include (in
addition to “error” points)  those points that are correctly classified, but lie in the margin
and hence are not “widely separated” from the points of the other category .

# training,
# testing
points

# classifier
points

allowed

Source of
classifier

points

Training
correctness

%

# support
vectors

Testing
correctness

%
500 500 10 NLP 98.24 48 96.04

1000 1000 10 NLP 98.38 69 97.77
2000 2000 10 NLP 97.99 128 97.77
2000 2000 10 Training set 95.52 240 95.13
2000 2000 100 NLP 98.42 121 98.17
2000 2000 2000 Training set 99.87 131 98.37
4000 4000 10 NLP 97.92 231 97.83
4000 4000 20 NLP 98.42 195 98.33
7291 2007 100 NLP 98.30 389 98.28

Table 1. Effect of classifier point selection on generalizability
(USPS data; NLP denotes synthetic point generator)
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The following implementation choices were made:

•  α=1.25.
•  The initial value set Z0 for the initial approximation problem is a random

subset of t Y0 points with u≠0 after step (a) in stage 0. The w0 are their u
multipliers.

•  For i>0, the initial value set Zi+1 is the best Z*
i obtained from an

approximation problem in step (c), over p runs, in terms of testing set
classification in step (c). The initial wi+1 are the corresponding w, also after
step (c).

The results for stage 0 are:

Step (b):

! Average number of classifier points across p runs: 33.8
! Average  training correctness: 98.94%
! Average testing correctness: 96.16%
! Average number of support vectors: 60.5 (out of 500)

Step (d):

! Maximum number of classifier points across p runs: 10
! Average  training correctness: 98.24%
! Average testing correctness: 96.04%
! Average number of support vectors: 48.4

Step (c) yields an approximation of the classifier obtained in step (b). In order to evaluate
the utility of step (d), we evaluated the average quality of the step (c) classifier over all
runs in stage 0:

! Average  training correctness, step (c): 92.28%
! Average testing correctness, step (c): 92.44%
! Average step (c) run time: 4 min 22 s

This accuracy is considerably less than that obtained using step (d). Also, if we eliminate
the box constraints on w in step (c), we obtain the following results:

! Average  training correctness, step (c): 98.10%
! Average testing correctness, step (c): 95.84%
! Average step (c) run time: 8 min 51 s

The testing accuracy is again slightly worse than that of step (d). Moreover, additional
run time exceeds step (d) run time (which was less than 1 min for all runs in stage 0).



8

Another question that may arise is the quality of alternatives to the NLP synthetic point
generation procedure of step (c). Thus, we considered a simple choice of classifier points:
given the subset of C0 such that u≠0 after step (b), we took a t-point subset whose u
multipliers had largest absolute value, and used them for re-classification, yielding:

! Average training re-classification: 96.8% (vs. 98.24)
! Average testing re-classification: 95% (vs. 96.04)
! Average number of support vectors: 64.8 (vs. 48.4)

Clearly the synthetics yield better classifiers than comparable numbers of training points
selected in this manner. Similar results were obtained when random samples of training
points were used. However, if the size of the random sample is increased to 100 points,
then for this dataset the testing accuracy of the corresponding classifier is only slightly
worse than that of the classifier based on 100 synthetic points (in the case of the testing
set of size 2000 for example, the accuracy for the random subset classifier is 97.6% vs
98.2% for the synthetic point classifier). For the noisier version of this dataset, classifiers
based on 100 random points exhibit poor accuracy as discussed further below.

The results corresponding to the increasing subset sizes of stages 1, 2 and 3 are:

! Stage 1:

Step (b):

- Average number of classifier points across p runs: 19.6
- Average  training correctness: 98.78%
- Average testing correctness: 98.02%
- Average number of support vectors: 71.9 (out of 1000)

Step (d):

- Maximum number of classifier points across p runs: 10
- Average  training correctness: 98.38%
- Average testing correctness: 97.77%
- Average number of support vectors: 69.2

! Stage 2:

Step (b):

- Average number of classifier points across p runs: 24
- Average  training correctness: 98.42%
- Average testing correctness: 98.17%
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Step (d):

- Maximum number of classifier points across p runs: 10
- Average  training correctness: 97.99%
- Average testing correctness: 97.77%

! Stage 3:

Step (b):

- Average number of classifier points across p runs: 16.6
- Average  training correctness: 98.18%
- Average testing correctness: 98.03%
- Average number of support vectors: 229.9 (out of 4000)

Step (d)

- Maximum number of classifier points across p runs: 10
- Average  training correctness: 97.92%
- Average testing correctness: 97.83%
- Average number of support vectors: 230.7

In the final stage, we used the 100-point synthetic set C4 to classify the USPS set, using a
7291-point training set and a 2007-point testing set (this is the same partition used in [2]):

! Average number of classifier points, step (b): 28.0 ( ν=12.0 )
! Average  training correctness: 98.3%
! Average testing correctness: 98.28%

As training subset size increases, it is instructive to compare the quality of the solution at
stage i with the output of the standard 1-norm classification problem in which Ci =Yi:

Min uu,,γ,, EE       ν || E||1 + || u ||1 (4)
s.t. D(u.K(Yi, Yi) -γ 1) + E > 1 ,  E > 0 ,

Note that, in the particular case of stage 0, the problem (4) is the same as step (b).
However, relative to stages 1, 2 and 3, the number of classifier points that are allowed
and the corresponding number of variables grows significantly in the case of problem (4).
In fact, due to memory limitations, CPLEX was unable to solve the problem
corresponding to the 4000 training points in Y3. (Hence, we did not run CPLEX on the
final problem with 7291 training points.)
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The results for the standard 1-norm formulation of problem (4) are:

! Y1:

- Average number of classifier points, across p runs: 52.9
- Average  training correctness: 99.29%
- Average testing correctness: 97.95%
- Average number of support vectors: 83.3 (out of 1000)

! Y2:

- Average number of classifier points, across p runs: 120.7
- Average  training correctness: 99.87%
- Average testing correctness: 98.37%
- Average number of support vectors: 131.4 (out of 2000)

! Y3 : This problem could not be solved. The system could not provide enough
memory for the linear solver.

While the results with C2 =Y2 are comparable to those obtained by using the much
smaller synthetic sets, the failure of the standard approach with the problem
corresponding to C3 =Y3 illustrates the scalability drawbacks of the standard approach.
Moreover, as can be seen from Table 1, the increased size of the classifier sets in the
standard approach does not significantly improve generalizability (as measured by testing
set correctness) and has the additional drawback of increasing the number of support
vectors. For the noisier version of this dataset considered in the next section, the use of
points from the 2000-point training set actually reduces generalizability relative to the use
of a small synthetic set.

 As subset size increases, we again check the utility of step (c) relative to a trivial choice
of classifier points: given the subset of Yi such that u≠0 after solving the standard 1-norm
problem, we used a t-point subset whose u multipliers had largest absolute value for re-
classification, yielding:

! Y1:

- Average  training correctness, across p runs: 95.91%
- Average testing correctness: 95.36%

! Y2:

- Average  training correctness, across p runs: 95.52%
- Average testing correctness: 95.13%
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As was the case with Y0, classification correctness with small subsets of the training set is
not competitive with the use of synthetics (which yield about 98% correctness with these
datasets).

We close this section with an alternate chunking-synthetic algorithm. The most
expensive step is the approximation problem of step (c), whose run-time depends on the
size of the reduced set Z. A tiny reduced set may lead to a poor classifier. Hence, instead
of increasing t (and thereby increasing the size of the approximation problem), we obtain
another set of t synthetics by solving (c) starting from a different initial point (in our
experiments, a random point - many other obvious and promising choices could also be
explored). Then, we perform step (d) as

Min ww,,γ,, EE       ν || E||1 + || w ||1 (5)
s.t. D(w.K(Z*

i U Z*
r, Yi) -γ 1) + E > 1 ,  E > 0 ,

where Z*
r is the output of the second instance of step (c). We obtained the following

results:

! Alternate stage 2, step (d):

- Maximum number of classifier points, across p runs: 20
- Average  training correctness: 98.22%
- Average testing correctness: 97.93%
- Average number of support vectors: 123.6 (out of 2000)

! Alternate stage 3, step (d):

- Maximum number of classifier points, across p runs: 20
- Average  training correctness: 98.42%
- Average testing correctness: 98.33%
- Average number of support vectors: 194.5 (out of 4000)

The testing set correctness for this alternative approach shows improvement relative to
the original CS implementation (which yielded 97.83% testing correctness) and further
demonstrates the potential for parallel computation associated with CS approaches, since
multiple approximation problems may be run in parallel.

In summary, for this dataset, the generalizability of classifiers obtained by solving
optimization problems involving small numbers of synthetic points is comparable to that
obtained via classifiers generated by much larger optimization problems that consider
large sets of potential classifier points. In the next section, we consider a noisier version
of this dataset and observe that classifiers constructed from small numbers of synthetic
points actually yield better generalizability than those constructed from large numbers of
training points. (See [6] for analogous observations based on the use of small randomly
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selected subsets of the training set as classifier points for a different collection of
datasets.)

4. Computational results, modified USPS problem

In this section, we repeat part of the analysis above, on a (harder) modified version of the
USPS problem. Basically, inspired by [13], we add noise to a sample of USPS points in
order to simulate noisier datasets and to reduce separability:

! We use a USPS sample as a set of centers. In order to balance the problem, the
sample is composed of 90 random ‘8’ patterns and a random 10-pattern subset for
each of the other nine digits.

! The resulting 180-center set was used as input for the NDC data generator [9]
(thus, we substituted real data for the random selection of centers in NDC). The
NDC generator typically assigns labels to centers by means of a random
separating hyperplane, but in our case, this assignment method is not necessary,
because labels are known a priori: 1 for ‘8’ centers and -1 for the other centers
and (as is usual in NDC) all points that are generated from a specific center are
assigned the center’s label. The overall result is a training set comprised of
approximately 4000 points of category 1 and 4000 of category –1. This training
set is ~77% separable via Gaussian kernels.

All settings were NDC defaults, except for the number of points (8000 used here),
number of features (256) and expansion factor (25). (The expansion factor controls the
expansion of point clouds around centers, using a random covariance matrix for each
center.) The expansion factor was selected to produce a separability in the range of 70%
for the Gaussian kernel K(y,x)=exp(-|y-x|2 /128)  for a standard 1-norm classification
problem. The value ν=10.0 was found to yield the best classification correctness for this
dataset .

Four stages were used:

0.    1000 USPS/NDC points:   500 testing and  500 training (Ym0), ν=10.0 
1.  2000 USPS/NDC points: 1000 testing and 1000 training (Ym1), ν=10.0
2.  4000 USPS/NDC points: 2000 testing and 2000 training (Ym2), ν=10.0
3.  8000 USPS/NDC points: 4000 testing and 4000 training (Ym3), ν=10.0
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The results for stage 0 were:

Step (b):

! Average number of classifier points across p runs: 96.8
! Average  training correctness: 84.3%
! Average testing correctness: 72.12%
! Average number of support vectors: 362.5 (out of 500)

Step (d):

! Maximum number of classifier points for each run: 10
! Average  training correctness: 84.38%
! Average testing correctness: 72.42%
! Average number of support vectors: 212.5

We see that, as was the case with the original USPS data, the number of support vectors
in step (d) is less than in step (b). Also, using only a small number of synthetic points
does not degrade testing correctness, but instead yields a small improvement. (Similar
results are obtained for the larger subsets considered below.)

The performance of the ‘pure’ synthetic point classifier (without the re-classification step
(d)) is:

! Average testing correctness, step (c): 56.14%
! Average  training correctness, step (c): 56.28%

Consequently, the benefit of the re-classification in step (d) is more evident in this noisier
variant of the USPS problem. Also, if we perform this re-classification using the training
set classifier points with the 10 largest absolute weights from step (b) instead of
synthetics, we obtain:

! Average  training correctness, modified step (d): 60.54%
! Average testing correctness, using approximate classifier from step (d):

58.16%

We observe again the considerable advantage of using synthetic points in the noisier
problem  (relative to the results for the more separable data in section 3 for which
synthetic points yielded only a small improvement). The results of this comparison in
stages 1 and 2 below were similar.
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Next, we present the results for stages 1 and 2, and compare them with a standard 1-norm
classification:

! Stage 1:

Step (b):

- Average number of classifier points across p runs: 30
- Average  training correctness: 79.55%
- Average testing correctness: 77.17%
- Average number of support vectors: 538.1 (out of 1000)

Step (d):

- Maximum number of classifier points across p runs: 10
- Average  training correctness: 79.34%
- Average testing correctness: 77.13%
- Average number of support vectors: 515.7

! Standard 1-norm problem using Ym1:

- Average number of classifier points, across p runs: 122.2
- Average  training correctness: 82.06%
- Average testing correctness: 73.3%
- Average number of support vectors: 672.5

! Stage 2:

Step (b):
- Average number of classifier points across p runs: 13.1
- Average  training correctness: 76.77%
- Average testing correctness: 76.76%

Step (d):
- Maximum number of classifier points across p runs: 10
- Average  training correctness: 76.71%
- Average testing correctness: 76.62%

! Standard 1-norm problem using Ym2:
- Average number of classifier points, across p runs: 180.6
- Average  training correctness: 81.94%
- Average testing correctness: 75.47%

Note that while training correctness is improved by allowing all 2000 points in the subset
to be used to construct the classifier, the resulting testing correctness of 75.47% is
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actually worse than that obtained by using the classifier points from the much smaller sets
Ci  (whose 100 points yield 76.76% classification) or Z*

i (whose 10 points yield 76.62%).
This apparently surprising result is analogous to results in  [6], where random 1%-5%
subsets of the Adult Dataset [8] were allowed in the Gaussian kernel classifier. (Observe
that if the solution quality is measured by the number of support vectors, then by this
measure as well, the smaller classifier sets provide better quality solutions than the full
training set.)  Similar results are obtained when the full dataset is used in Stage 3,  except
that the standard 1-norm LP could not be solved in 48 hours, again illustrating the
scalability difficulties associated with the standard approach. Results are summarized in
Table 2 below.

For our dataset, we thus compared our results (as provided by the use of synthetic points
in the classifier) with random subset classifiers:

! Standard 1-norm classifier, 100 random points (10%), Ym1:

- Average number of classifier points, across p runs: 51.9
- Average  training correctness: 74.15%
- Average testing correctness: 68.52%
- Average number of support vectors: 775 (out of 1000)

! Standard 1-norm classifier, 10 random points (1%), Ym1:

- Average  training correctness: 58.44%
- Average testing correctness: 55.59%
- Average number of support vectors: 923.4

! Standard 1-norm, 100 random points (5%), Ym2:

- Average number of classifier points, across p runs: 63.9
- Average  training correctness: 74.28%
- Average testing correctness: 70.83%

! Standard 1-norm, 10 random points (0.5%), Ym2:

- Average  training correctness: 59.18%
- Average testing correctness: 57.74%
- Average number of support vectors: 1814.3 (out of 2000)

Observe that for this dataset, randomly chosen subsets of the training set produce average
classifications that are significantly worse than those obtained with either the 1-norm
classification with the full training set or our small sets of synthetic points.
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 Selected results are summarized in the following table:

# training,
# testing
points

# classifier
points

allowed

Source of
classifier

points

Training
correctness

%

# support
vectors

Testing
correctness

%
500 500 10 NLP 84.30 213 72.42

1000 1000 10 NLP 79.34 516 77.13
2000 2000 10 NLP 76.71 1104 76.62
2000 2000 10 Training set 59.18 1814 57.74
2000 2000 100 NLP 76.77 1106 76.76
2000 2000 100 Training set 74.28 1409 70.83
2000 2000 2000 Training set 81.94 1181 75.47
4000 4000 10 NLP 75.58 2282 75.89
4000 4000 100 NLP 75.74 2280 76.02
4000 4000 100 Training set 73.78 2710 71.79

Table 2.  Effect of classifier point set on generalizability
(noisy USPS data; NLP denotes synthetic point generator)

5. Conclusions and directions for future research

In this paper, we have analyzed the fusion of synthetic point generators (small nonlinear
programs) with different chunking algorithms to develop a chunking-synthetic (CS)
approach that achieves good generalizability while greatly reducing the size of the
optimization problems that are required to produce nonlinear classifiers. Our numerical
results on USPS datasets show that the classifiers obtained using very small numbers of
synthetic points (as few as 10) not only yield good generalizability (in terms of good
testing set classification in ten-fold cross-validation), but also, for noisy data, actually
yield classifiers with better generalizability than either various other choices of reduced
sets of training points or even the full training set (the latter appears to result in over-
training as was noted in [6] for other datasets and other reduced set approaches.) Finally,
since the CS approach utilizes the solution of independent optimization problems at each
stage, computation may be further accelerated by parallelization. One of our future
directions for research will be the parallel implementation of the CS method.

The version of the CS approach considered above reduces computation time by
eliminating the computation of the very large matrix K(Y,Y) and by greatly reducing the
number of terms (and corresponding optimization variables) used in the classifier.
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However, the use of the 1-norm to measure error leads to the introduction of large
numbers of constraints when the corresponding LP is constructed. Hence,  we also will
consider alternative unconstrained classifier problems such as those discussed in [5] , [7]
and [10] in order to determine if these replacements for 1-norm LP classifier problems
can lead to improvements in scalability and computing times. As a variation of this latter
approach, we will also investigate the utility of the unconstrained classifier problem
obtained by inserting the “error” directly in the objective

Min uu,,γ         ν 1 (1- D.(u.K(C, Yi) -γ 1) )+  u u + γ2
. (6)

The model (6) yields the usual penalty in the objective for points that are incorrectly
classified, but assigns a “bonus” to points that are in the interior of the “correct” region
beyond the margin. Allowing such bonuses may be particularly appropriate for noisy
datasets and Gaussian kernels in which penalties and bonuses may be comparable. Note
that (6) is an unconstrained quadratic problem whose solution may be written in closed
form. In a more sophisticated variation of (6),  the uniform weights on the error terms
could be replaced by using a weight vector v after the initial classifier is generated:

Min uu,,γ         ν v (1- D.(u.K(C, Yi) -γ 1) )+  u u + γ2
. (7)

These weights v could be generated in a pre-processing step by applying one or more of
the preceding classifiers to the current training subset Yi ,  and then setting the weight vj

on a point yj to 1 if there is a positive error term associated with the point via one or more
of those classifiers,  and conversely setting the weight to 0 (or some small positive value)
otherwise. (See [12] for a related approach to weight adjustment). It is easy to verify via
optimality conditions that if this process sets the weights v correctly, then the solution of
(7) is the same as the solution of the constrained problem

Min uu,,γ,Ε         ν ||E||1 +  u u + γ2
.

 s.t. D.(u.K(C, S) -γ 1) + E > 1 ,  E > 0 .

Finally, although the emphasis of this research is on nonlinear kernels, similar ideas
could be applied to linear kernels. For linear kernels, the approximation problem (2) is
trivial, since f is the identity function and (2) is solved by taking w=1 and Z= u* C . The
interesting aspect of the CS approach in this case is the coordination step in which these
single-point “ideal” classifiers for subsets are combined in order to produce a small
classifier set for a larger subset, and the key issue is whether these small classifier sets
will produce good classifiers.
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