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Abstract

The minimum perimeter of an n-polyiamond is whichever of {\/67‘
or {\/6_n‘ + 1 has the same parity as n. To prove this result, we first
obtain a lower bound on the perimeter by considering maximal polyi-
amonds (i.e., polyiamonds with a given perimeter and a maximum
number of triangles). We then show how to construct minimal polyi-
amonds that attain the perimeter lower bounds.

The maximum number of triangles in a polyiamond with perime-
ter p is round (p*/6) — &, where §g is 0if p=0 (mod 6), and is 1 else.

Keywords: polyiamond, perimeter, maximal, minimal

1 Introduction

A polyiamond is a connected planar set of congruent equilateral triangles in
which the edges of adjacent triangles line up exactly (are not staggered).

*This research was supported in part by National Science Foundation grant DMI-
0100220.



“Polyiamond” is a generalization of “diamond”. An n-polyiamond is a polyi-
amond with n triangles. See Figure 1. We assume here that each edge of
each triangle has length 1 and define the perimeter of a polyiamond to be
the total length of its exposed edges.
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Figure 1: The 12 polyiamonds with 6 triangles. All have perimeter 8 except

for the regular hexagon, which has perimeter 6.

A polyiamond is minimal (or optimal) iff it has min perimeter with respect
to all polyiamonds with the same number of triangles. (The use of the term
“optimal” comes from the minimum perimeter problem with polyominos,
discussed below.) A polyiamond is mazimal iff it has the maximum number
of triangles with respect to all polyiamonds of the same perimeter. Minimal
polyiamonds are useful in the solution to domain decomposition problems
in scientific computation (see [7] for an illustration of the use of domain
decomposition in conjunction with triangulations).

Note that there are 2 other possibilities: we could maximize the perimeter
subject to a fixed number of triangles, or minimize the number of triangles
subject to a fixed perimeter. But these problems are trivial and have the
same solution: the polyiamond shaped like a stick.

The main results of this paper are:

¢ Maximal polyiamond formula: The maximum number of triangles
in a polyiamond with perimeter p is

p’ 0 elseif p=0 (mod 6)
round | — | —
6 1 else

¢ Maximal polyiamond algorithm: Construct a polyiamond with
perimeter p and the most triangles. (These polyiamonds are hexagons,
except for small values of p.)

¢ Minimal polyiamond formula: The min perimeter of an n-polyiamond

is whichever of (\/ 6n| or (\/ 6n| + 1 has the same parity as n.



¢ Minimal polyiamond algorithm: Construct an n-polyiamond with
min perimeter. (These polyiamonds are hexagons or “near-hexagons”.)

These results are related as follows: a lower bound on perimeter is ob-
tained using maximal polyiamonds, and then attainment of the lower bound
is demonstrated by using the minimal polyiamond algorithm.

Motivation for this paper came from the domain decomposition problem
with polyominos, which is a whole topic by itself; see the references for details.
The many approaches to this problem include branch-and-bound, genetic
algorithms, knapsack algorithms, and stripe algorithms.

Below, we briefly discuss this domain decomposition problem and some
known results. Although the results are well-known, we present them in
terms of polyominos, and these results for polyominos will motivate the four
main results for polyiamonds in the following sections.

2 Domain decomposition problem with polyominos

A polyomino is a connected planar set of congruent squares in which the edges
of adjacent squares line up exactly (are not staggered). Equivalently, if we
move a rook on a chessboard of any finite size, then the set of squares touched
by the rook is a polyomino. “Polyomino” is a generalization of “domino”.
An n-polyomino is a polyomino of n squares. See Figure 2.

Figure 2: The 12 polyominos with 5 squares. All have perimeter 12 except for
one shaped like a 1 x 1 square joined to a 2 x 2 square, which has perimeter 10.

The domain decomposition problem is a special case of graph partitioning
problems which involve partitioning the vertices of a graph into equal-size
sets as to minimize the number of edges connecting vertices in different sets.
One version of the domain decomposition problem is as follows.

Problem 1. (Domain decomposition problem with polyominos) Let
n divide A. Tile a given set of A squares with n-polyominos. What is the
min lotal perimeter of the polyominos in such a tiling?
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This paper arose when we asked what would happen if we worked with
equilateral triangles instead of squares. The domain decomposition prob-
lem with polyominos has motivation from parallel computation; think of the
following analogy:

square job that needs to communicate with adjacent jobs

n-polyomino n jobs assigned to a processor

polyomino edge | expensive communication between jobs in different

PTrocessors

Figure 3: A solution of the domain decomposition problem with polyominos
for a 22 x 22 board tiled by 22 polyominos, each of which has 22 squares and
has perimeter 20. By Yackel-Meyer-Christou’s theorem, the min perimeter
of a 22-polyomino is 20. So the total perimeter lower bound is 22 x 20 = 440
and is attained by this tiling.

In the domain decomposition problem, note that if each polyomino in the
tiling has min perimeter, then the problem is solved. In a tiling of an arbitrary
domain, not all polyominos can have min perimeter, and solutions involve
approximating the “all-min-perimeter” situation. Yackel-Meyer-Christou [8]
found a simple formula for the min perimeter of a polyomino.

Theorem 1. (Yackel-Meyer-Christou) The min perimeter of an n-
polyomino is 2[2+/n].

Idea. A polyomino has min perimeter if it is a square, or closely resembles
a square. An n-polyomino has area n. If we shape this n-polyomino into a
square having the same area, then the square has side /n and perimeter 4,/n.
So a lower bound for the min perimeter of an n-polyomino can be shown to be



4y/n. But this lower bound is not always integer. It turns out that 2[24/n]
is a lower bound and is always attainable. O

same area

perimeter = 4vn

area=n
perimeter= 4vn

Figure 4: Relation between polyomino and square of same area.

3 Polyomino slices

The perimeter of a polyomino is related to its numbers of “subslices”. A slice
is a row or column containing squares (the squares need not be connected).
A subslice is a maximal connected set of squares in a slice. A slice-gap is an
absence of squares between subslices in a row or column. A slice is convez iff
the set of squares in the slice is convex; the slice has no gaps. A polyomino
is slice-convex iff every slice is convex.

Theorem 2. (Polyomino subslices theorem) The perimeter of a poly-
omino is 2 times the number of subslices.

Proof. Every subslice contributes 2 boundary edges. See Figure 5. O

15 vertical subslices

12 horizontal 2
subslices - ]

2
2
2
3
1

perimeter=2(12 + 15) =54

Figure 5: The perimeter of a polyomino is 2 times the number of subslices.

The following theorem follows immediately.



Theorem 3. (Polyomino slices theorem) The perimeter of a slice-convex
polyomino is 2 times the number of slices.

4 Minimal polyiamond formula

We now begin consideration of the minimal polyiamonds that provide a lower
bound for the optimal value of the following domain decomposition problem:

Problem 2. (Domain decomposition problem with polyiamonds) Let
n divide A. Tile a given set of A equilateral triangles with n-polyiamonds.
What is the min total perimeter of the polyiamonds in such a tiling?

The following parity theorem plays a crucial role in the minimal polyia-
mond formula.

Theorem 4. (Polyiamond perimeter parity) The perimeler of an n-
polyiamond has the same parily as n.

Proof. This follows from the following claim, where the definition of quasi-
polyiamond is similar to that of “polyiamond”, except that the triangles need
not be connected.

Claim: The perimeter of an n-quasi-polyiamond has the same
parity as n.

Proof of claim: Use induction. The base case is n = 0. There is 1
n-quasi-polyiamond, and its perimeter is 0.

Assume the statement is true for some n > 0. Note an (77 + 1)—quasi—
polyiamond can be constructed by adding 1 triangle to an n-quasi-polyiamond.
The degree of a triangle is the number of triangles adjacent to it. The degree
of the new triangle determines the change in perimeter:

degree | edges created | edges destroyed | perimeter change
0 3 0 +3
1 2 1 +1
2 1 2 -1
3 0 3 -3

By the induction hypothesis, the old perimeter has the same parity as n.
By the table above, the perimeter change is always odd. So the new perimeter



has parity different from that of n. So the new perimeter has the same parity
asn+ 1. ]

We now come to the main result of this paper, the minimal polyiamond
formula. The proof is short and uses the Polyiamond perimeter parity (The-
orem 4) and the Minimal polyiamond bounds (Theorem 18), proved later.
Polyiamonds that attain min perimeter are minimal (or optimal).

Theorem 5. (Minimal polyiamond formula) The min perime-
ter minperim(n) of an n-polyiamond is whichever of ’_\/6n-‘ or |-\/6n-| +1

has the same parity as n.

Proof. By the Minimal polyiamond bounds (Theorem 18),

{\/G_n—‘ < minperim(n) < {\/6_72—‘ + 1.

The upper and lower bounds are integer and differ by exactly 1, so the
bounds have different parity, and minperim(n) equals one of the bounds. By
the polyiamond perimeter parity theorem, minperim(n) has the same parity
as n. So the bound with the same parity as n is equal to minperim(n). O

See the appendix for a table of minperim(rn). In the Minimal polyiamond
bounds (Theorem 18), the upper and lower bounds are each attained about
half the time. For example, if 1 < n < 10°, then minperim(n) = |—\/6_n-‘ for
500408 values of n. We give some motivation for why the bounds have the
expression v/6n.

Recall Yackel-Meyer-Christou’s theorem that the min perimeter of an n-
polyomino is 2[2y/n]. This was motivated by shaping an n-polyomino into
a square of the same area (see Figure 4). Consider shaping an n-polyiamond
into a regular hexagon of the same area (see Figure 6). The polyiamond has
area A = nv/3/4, and it is easy to verify that the perimeter of the regular

hexagon is v/8v/34 = /6n.

ﬁ o
ket

area=nv3/4 perimeter = V(6n)
perimeter> 6vVn

Figure 6: Relation between polyiamond and regular hexagon of same area.



5 Polyiamond slices

We generalize the slice approach used with polyominos. With polyominos,
we have 2 kinds of slices: horizontal and vertical. But with polyiamonds, we
have 3 kinds of slices: horizontal, antidiagonal, and diagonal (“HAD”). For
brevity, we say that a polyiamond has HAD slices (or dimensions) (h,a,d)
iff it has h horizontal slices, a antidiagonal slices, and d diagonal slices.

10 diagonal subslices 13 antidiagonal subslices
11122111 1331113

12 horizontal
subslices

1

NP WwN

perimeter=12 + 13 + 10 = 35

Figure 7: The perimeter of a polyiamond is the number of subslices.

Theorem 6. (Polyiamond subslices theorem) The perimeter of a polyi-
amond is the number of subslices.

Proof. See Figure 7. Note each of the 2 ends of every subslice is a boundary
edge. Also, every boundary edge is the end of exactly 2 subslices. So the
number of subslices equals the number of boundary edges, which equals the
perimeter. U

The following theorem follows immediately.

Theorem 7. (Polyiamond slices theorem) The perimeter of a slice-
convex polyiamond is the number of slices.



In order to construct maximal polyiamonds (polyiamonds of given perime-
ter and the most triangles), we start with polyiamonds of given HAD dimen-
sions and the most triangles. Using the HAD capacity algorithm (Theorem 8)
and the HAD capacity formula (Theorem 9), we show that size (number of
triangles) is maximized for a given perimeter p = h 4+ a + d by “balancing”
the dimensions (choosing them as close together as possible).

To simplify the presentation, we assume for the remainder of the paper
that the HAD dimensions satisfy h < a < d. For example, the polyia-
mond of Figure 7 satisfies these inequalities because its HAD dimensions are
(h,a,d) = (6,7,8). For an arbitrary polyiamond, it is easy to see that the
inequalities A < a < d can be attained by rotation and reflection. We also
assume that p # 1 or 2 because there is no polyiamond with these perimeters.

Theorem 8. (HAD capacity algorithm) To construct a polyiamond with
given HAD dimensions (h,a,d) and the most triangles, do the following:

e Draw a parallelogram with HAD dimensions (a + d, a,d).

o Pick the h horizontal slices with the most triangles.
Such a polyiamond is unique, ignoring rotation and reflection.

Proof. See Figure 8. Note that a polyiamond with ¢ antidiagonal slices and
d diagonal slices fits inside a unique parallelogram with a antidiagonal slices
and d diagonal slices (this parallelogram is the “AD parallelogram hull”,
analogous to the convex hull). It is easily seen that A < a 4+ d. Note that
for the number of triangles to be maximized, the polyiamond must have no
gaps. Constructing the polyiamond as described ensures no gaps and ensures
uniqueness. O



<d a antidiagonal slices

13

a

1
3 tiangles in
5 €ach slice

a
top slices

Pick h horizontal slices with
most tiangles

A

middle slices a (Such slices are near
a middle of p arallelogram)
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Figure 8: Constructing a polyiamond with HAD dimensions (k, a, d) and the
most triangles.

Theorem 9. (HAD capacity formula) Let h < a < d. Let

1
A:ad+ah+dh—§(a2+d2+h2).

The max number of triangles in a polyiamond with HAD dimensions

(h,a,d) is

2ah h—(d—a)<0
capacity (h,a,d) = ¢ A h—(d—a)>0 and is even
A—=1/2 h—(d—a)>0 and is odd

Proof. There are 3 cases.

e Case: h—(d—a) < 0. Soh < d—a. See Figure 8. The d—a horizontal
slices in the middle of the parallelogram have the most triangles; each
slice has 2a triangles. Pick h of these slices to construct a polyiamond
with 2ah triangles.

e Case: h— (d—a) > 0 and is even. Note h > d — a. See Figure 9. The

number of triangles in the polyiamond is
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asd a antidiagonal slices
1 |3
3 triangles in a-(h-(d-a)2
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top slices A\VAVAVA
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a
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1 [ 2

Figure 9: Counting triangles in a polyiamond with HAD dimensions (h, a, d)
and the most triangles, where h — (d — a) > 0 and is even.

2a(d —a) +2 | a® — (G_Wy

= ad—l—ah—l—dh—%(aQ—l—dQ—l—hQ).

asd a antidiagonal slices
1
3 triangles in a-(h-(d-a)+1)2
5 each slice
E
top slices
NN/ (h-(d-a)+ 1)2
NNINININ.
d-a
middle slices

1
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5 d diagonal slices
3 a-(h-(d-a)-1)2

1 »

(h-(d-a)-1)2

a
bottom slices

4+—rP4+——Pr4+—> <>

Figure 10: Counting triangles in a polyiamond with HAD dimensions (h, a, d)
and the most triangles, where h — (d — a) > 0 and is even.

e Case: h —(d —a) > 0 and is odd. Note h > d — a. See Figure 10. The

number of triangles in the polyiamond is

11



2a(d — a)

-I—(aQ—(a_h—(d;a)-l-])Q)+<a2_<a_h—(d;a,)—1>2>

! 1
ad+ah+dh — 5(a* + d* + %) — 5.
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6 Maximal polyiamond formula

Theorem 10. (Maximal polyiamond dimensions and capacity theo-
rem)

o Let capacity (p) denote the max number of triangles in a polyiamond
with perimeter p. Let p # 1 or 2 because there is no polyiamond with
these perimelers.

o Let (h,a,d) be the HAD dimensions of such a polyiamond. (Without
loss of generality, let h < a < d. We can rotate and reflect the polyia-
mond if necessary to get these inequalities.)

Then capacity (p) and (h,a,d) are as follows.

P h a d capacity (p)

3q q q q [%QZJ

3¢+1]q ¢ g+ 1| [2¢*+q—1]

3¢g+2|q q+1 q+1|[2¢*+2|

Also, the capacily formulas in the preceding table can be consolidated as

follows:

p* 4 0 else if p=0 (mod 3)
6 6 *7

capacity (p) = \‘— - = 1 else

Proof. We will give an integer programming problem that maximizes the
number of triangles in a polyiamond with perimeter exactly p. We note the
following:

¢ To maximize the number of triangles, the polyiamond should have no
gaps. By the Polyiamond slices theorem (Theorem 7), A + a + d = p.

e Without loss of generality, let A < a < d (rotate and reflect the polyia-
mond to get these inequalities). We use these inequalities in the proof.
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o We must have h > d — @ in a maximal polyiamond, by the following
reasoning. If h < d — a, then there is some diagonal slice that does not
intersect the h horizontal slices of the polyiamond (see Figure 8). We
can remove this diagonal slice and add a horizontal slice to the polyia-
mond. The polyiamond now has HAD dimensions (h 4+ 1,a,d — 1), has

more triangles, and has the same perimeter, contradicting maximality.

e Because h > d — a, by the HAD capacity formula (Theorem 9), the
number of triangles in the polyiamond is as follows, where ¢(h, a,d) is
a correction term.

number of triangles = ad+ ah + hd — %(CLQ +d*+ hQ) + c(h, a, d).

B 0 h—(d—a)>0and is even
c(h,a,d) = {—1/2 h —(d—a) >0 and is odd

The problem of maximizing the number of triangles in a polyiamond with
perimeter p can therefore be expressed as follows:

max ad+ ah + hd — %(aQ + d? —}—h2) + ¢(h,a,d)
s.t. h+a+d = p
h < a < d
hya,d € Z

Simplify the objective function by using the constraint b + a + d = p.

max %pQ — (a2 + d? + h2) + c(h, a, d)
s.t. h4+a+d =
h <

h,a,d €

Express the problem in terms of 27 = (h,a,d) and ¢’ = (1,1,1), and
consider the relaxed problem obtained by dropping the constraint 2 < a < d.

< d

NS T

max %pz — 2Ty + (‘(T)
s.t. e = p
x € 73

14



Bring out the constant summand p?/2 and the constant factor —1, and
change the max to a min.

min zTz + c(x)

— | st. €Tz = p

x € 73

no |,

Drop the integer constraints (it turns out that we will be able to get
integer solutions without them). We have the following relaxed problem:

2 . T
_ p_ min x x -+ c(.L)
RP = 9 |: st. el = p }

We will derive an alternative expression of the correction term c¢(z) =
c(h,a,d). At the beginning of this proof, we derived h > d—a. So h—(d—a) >
0. Note h — (d —a)iseveniff h+a+d = ey = p 1s even. We can express
the correction term c¢(h, a,d) as follows:

hoa.d) — 0 h—(d—a)>0andiseven 0 peven
c(h,a,d) = —1/2 h—(d—a)>0andisodd | —1/2 podd

The relaxed problem RP branches into 2 relaxed problems, one for the
case p odd and one for the case p even.

2 . T
P min z'z — 1/2
RP-ODD = ?_|:S.t. ela = p odd}
2 . T
_ P [ min 2z
RP_EVEN = 9 [s.t. ez = p even}

In each of these relaxed problems, the objective function is strictly convex.
So any solution of these relaxed problems (and the related restricted problems
considered below) is unique.

There are 3 cases: p can have the form 3¢, 3¢+ 1, or 3¢+ 2. In each case,
it turns out that RP_ODD and RP_EVEN have solutions of the same form
when expressed in terms of p.

For example, let p = 3¢ 4+ 2. Tt turns out that if p is odd, then z,qq =
(g,q+ 1,9+ 1) solves RP_.ODD. If p is even, then zeven = (¢,¢+ 1,9+ 1)
solves RP_LEVEN. Note 2,44 = Teven, In the sense that they have the same
form.
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Case: p = 3q. Consider the relaxed problem. Both RP_ODD and
RP_EVEN have the solution = (g, ¢, q), which also solves the initial
integer problem. The optimal value is

2
capacity (p) = optimal value = % — a2l 4 e(z) = qu + ¢(z).

To express the optimal value in a simpler form, note that if p is even,
then c(z) = 0 and p?/2 — 2Tz is an integer, and if p is odd, then
c(r) = —1/2 and p?/2 — 2Tz is an integer plus 1/2. So the optimal

value is
3 5
27 |-

Case: p = 3g + 1. Because p has the form p =3¢+ 1 and h < a < d,
we must have h < d — 1. There are 2 subcases.

— Subcase: h = d — 1. Because p has the form p = 3¢ 4+ 1, we
must also have ¢ = d — 1. Add these constraints to RP_ODD
and RP_EVEN. Both problems have the solution z = (¢,q,¢+1),

which also solves the integer problem. The optimal value is

30y, L
o TIT G

— Subcase: h < d—2. Add this constraint to RP_ODD and RP_EVEN.
Both problems have the solution z = (¢ — 1,q + 1,¢q + 1), which
also solves the integer problem. The optimal value is

§ 2 +qg— é

2 T g
The subcase h = d — 1 yields the solution because it gives the larger
value.
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o Case: p = 3q + 2.

optimal value is

Summarizing all the cases, we get the table stated in the theorem. The
statement about the consolidated capacity formula follows from the following

calculations, in which

3,
bq “4'

Again, h < a < d 1mplies h < d — 1.
this constraint to RP_ODD and RP_EVEN. Both problems have the
solution = (¢, ¢+1, ¢+ 1), which also solves the integer problem. The

0 p=0 (mod 3)
bq =
1 else
2 2
? v s. | Pm_ 45
! ! 6 i I
S |9 27 0 | 3¢’
3¢+1(9*+6¢+1 |2 +q+¢ |1 |2 +q—3
3q+2[9¢"+12q+4 ]3¢ +2¢+ 5|1 [ 34"+ 2

A polyiamond with HAD dimensions (h,a,d) is balanced iff it is slice-

convex and h, a, d differ from one another by at most 1.

Theorem 11. (Maximal-balanced equivalence theorem) A polyiamond

is maximal iff it is balanced.

Proof. Use the the Maximal polyiamond dimensions and capacity theorem

(Theorem 10).

Theorem 12. (Maximal polyiamond formula) The maz number of tri-

angles in a polyiamond with perimeter p is

capacity (p) = round <

2

P\ _J 0 elseif p=0
6 1 else

(mod 6)

Recall that there is no polyiamond with perimeter 1 or 2.

17



Proof. Let

1 else

52_:{ 0 p=0 (modi)

Use the the Maximal polyiamond dimensions and capacity theorem (The-

orem 10):
2
. p 4
ty(p) = | = — =03].
capacity (p) \‘ 6 3J
Let p = 6g 4+ r, where r =0, ..., 5. Note the following equivalences.
n2 "2
P _ é53 = round Py O
| 6 6 | 6
9 rt 4 9 r?
— |6¢° + 2qr + T 653 = round | 6¢° + 2gr + o)~ ¢
2 4] 9 r?
< 6¢*+2qr + i 653 = 6g~ 4 2¢gr 4 round o) de
m2 T 2
— _% — %53— = round (%) — dg.
The last equality is easily verified by considering the cases r =0, ..., 5.
2 2 4 2 4 2 2
r % 03 % — 653 ‘ % — 653 round (%) d¢ | round (%) — d¢
0 0|0 0 0 00 0
1| 1/6] 1 —3/6 -1 0] 1 -1
2| 4/6| 1 0 0 11 0
31 9/6| 0 9/6 1 211 1
4116/6 | 1 2 2 311 2
5125/6 | 1 21/6 3 411 3
O

See the appendix for a table of capacity (p). We can interpret the maximal
polyiamond formula as approximating a regular hexagon, by the following
reasoning. Note p*/6 is integer iff p is a multiple of 6, say p = 6k. A regular
hexagon of side p = 6k has side k and has 6k* = p?/6 triangles. If p is not
a multiple of 6, then we cannot construct a regular hexagon and we have to
subtract 1 triangle from the polyiamond.

18



7 Maximal polyiamond algorithm

We give 2 versions of the maximal polyiamond algorithm, a slice version and
a spiral version. The slice version contains the proof. The spiral version is
an alternate approach.

Theorem 13. (Maximal polyiamond slice algorithm) See Figure 11.
To construct a polyiamond with perimeter p and the most triangles, do the
following:

o Ifp=1 or2, stop. There is no polyiamond with this perimeter.
o Find the HAD dimensions (h,a,d) in the following table.

P ‘ha d

3q q9 q q
3g+1\qg q qg+1
3g+2|qg g+1 g+1

e Draw a parallelogram with HAD dimensions (a + d,a,d).

o Pick the h horizontal slices with the most triangles.
Such a polyiamond is unique, ignoring rotation and reflection.

Proof. Use the Maximal-balanced equivalence theorem (Theorem 11) and
the HAD capacity algorithm (Theorem 8). 0

An alternative algorithm that produces polyiamonds of the most triangles
is as follows; from now on, “maximal polyiamond algorithm” will refer to this
spiral version:

Theorem 14. (Maximal polyiamond spiral algorithm) See Figure 12.
To construct a polyiamond with perimeter p and the most triangles, follow
the spiral and stop at the triangle labeled with perimeter p.

In Figure 12, the number in a triangle represents perimeter of the polyi-
amond constructed up to that point. The number of triangles in the polyia-
mond constructed is just the number of triangles from the start of the spiral
up to that point. A triangle has a number iff it represents the end of a

19



7

perimeter 3 perimeter 4 erimeter 5 perimeter 6
had =(1,1,1) had = (1,1, 2) had= (1, 2,2) had =(2,2,2)
capacity 1 cap acity 2 capaciy 3 cap acity 6

Y

A

perimeter périmeter erfimeter9
had = (2, 2, 3) had = (2, 3, 3) ﬁad:(3,3,3) had = (3, 3, 4)
capacity 7 capacity 10 capacity 13 capacity 16

perimeter11 perimeter 12
had = (3, 4, 4) had= (4, 4, 4)
capacity 19 capacity 24

Figure 11: Maximal polyiamond slice algorithm. The circled triangles at the
polyiamond with perimeter p are the triangles that have been added to the

perimeter 1

polyiamond with perimeter p — 1.

slice. Not all triangles have numbers, because we are interested in only the
polyiamonds of a given perimeter and with the most triangles.

The triangles labeled with numbers are shaded to make them stand out
from the other triangles. There is a pattern to the shaded triangles once we
travel far enough along the spiral.

8 Minimal polyiamond algorithm

The minimal polyiamond algorithm allows us to prove many results in this
paper. Its proof uses the maximal polyiamond algorithm.

20



Figure 12: Maximal polyiamond spiral algorithm. To construct a polyiamond
with perimeter p of the most triangles, follow the spiral and stop at the
triangle labeled with perimeter p.

Theorem 15. (Minimal polyiamond algorithm) See Figure 13. To con-
struct a polyiamond with min perimeter and n triangles, follow the spiral for
n triangles.

Proof. We must prove that the polyiamond constructed by the above algo-
rithm is minimal. This follows from the following claim.

Claim: Let minperim(n) be the min perimeter of an n-polyiamond.

Let reqperim (n) be the min perimeter of a polyiamond with n or
more triangles. (Think of reqperim (n) as the “perimeter required
for n or more triangles”.)

Then minperim(n) is whichever of reqperim (n) or reqperim (n)+
1 has the same parity as n.

Proof of claim: Throughout this proof, for brevity, let r = reqperim (n).
Note minperim(n) > r. By the Polyiamond perimeter parity (Theorem 4),
minperim(n) has the same parity as n. There are 2 cases. If r has the same
parity as n, then minperim(n) > r. Else, r + 1 has the same parity as n, and
minperim(rn) > r + 1. So minperim(n) is bounded below by whichever of r
or r + 1 has the same parity as n.

We prove that the lower bound is always attainable by constructing an
n-polyiamond whose perimeter is whichever of r or r + 1 has the same parity
as n. Below, we explain how the algorithm described in the theorem gives
such a construction. Note that the minimal polyiamond algorithm spiral
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in Figure 13 is the same as the maximal polyiamond algorithm spiral in
Figure 12. The only differences between these figures are the shading and
labels of some triangles.

Consider what happens when we follow the minimal polyiamond algo-
rithm spiral in Figure 13 for n triangles. If we interpret this spiral in terms
of the Maximal polyiamond spiral algorithm (Theorem 14), then along the
way to n triangles, we will construct the unique polyiamond with perime-
ter r—1 and capacity (r — 1) triangles. Let us stop at this point. Consider the
perimeter and number of triangles of the polyiamond constructed by follow-
ing the spiral for i more triangles, where ¢ + capacity (r — 1) < capacity (r):

o If we follow the spiral for 1 more triangle, the number of triangles will
be 1 + capacity (r — 1), and the perimeter will be r.

o If we follow the spiral for 2 more triangles, the number of triangles will
be 24 capacity (r — 1), and the perimeter will be r +1 (a gap has been
introduced).

o If we follow the spiral for 3 more triangles, the number of triangles will
be 3 + capacity (r — 1), and the perimeter will be r (a gap has been
filled).

o In general, if we follow the spiral for : more triangles, the number of
triangles will be ¢ + capacity (r — 1), and the perimeter will be r if ¢ is
odd, and will be r 4+ 1 else. I

See the appendix for a table of minperim(n). The idea of the minimal
polyiamond algorithm is to add triangles to a regular hexagon of side k to
construct a regular hexagon of side k + 1; start with 1 triangle, and at each
step, add a triangle in the clockwise direction so that it is adjacent to the
triangle added in the previous step. Note that reaching or turning a corner
(at the vertices of the hexagon) adds a slice to the polyiamond constructed.
Note that all triangles added along a side of the hexagon are in the same
slice; this keeps the perimeter small enough to be minimal.

Note that the balanced HAD polyiamonds constitute the unique minimax
configurations; i.e., they are the only polyiamonds that are both minimal and
maximal.

Figure 13 keeps track of the perimeters of the polyiamonds constructed.
White triangles (except for the first) add 1 to the perimeter, and black trian-
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min perimeter and n triangles, follow the spiral for n triangles. The number
in a triangle is the perimeter of the polyiamond constructed. White triangles
(except for the first) indicate an increase of 1 in perimeter, and black triangles
indicate a decrease of 1 in perimeter.

gles subtract 1 from the perimeter. The black and white triangles are alter-
nating except at the turns of the spiral, where 2 consecutive white triangles
appear. We could call the minimal polyiamond algorithm the “diamondback
rattlesnake algorithm”, because of the resemblance of the black and white
triangles to the markings of a curled-up diamondback rattlesnake.

9 Figures related to the minimal polyiamond
algorithm

The following figures follow immediately from the Minimal polyiamond al-
gorithm (Theorem 15). We will use them to prove the minimal polyiamond
bounds and other theorems. We put the figures here for easy reference.
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p = 6k+3,6k+4 lastp = 6k+3

first p=6k+4 at A =4k +2 p =6k+4
p =6k+3 first p=6k+5at A=6k+3
lastp = 6k+2

p = 6k+2,6k+3 p = 6k+4,6k+5

Iastg =6k+4
p = 6k+5
first p=6k+6 at A=8k +4

firstp=6k+3at A=2k+1
=6k+2
lastp = 6k+1

p = 6k+1,6k+2
firstp=6k+2at A=2
p =6k+1

start adding

tiangles lastp = 6k+6

p = 6k+5,6k+6

lastp = 6k+5
p = 6k+6
first p = 6k+7 at A =10k +5

Figure 14: Appearances of perimeters in minimal polyiamond algorithm.

p = 6k+3 appears ktimes
p = 6k+4 appears k+1 times

p = 6k+2 appears ktimes

p = 6k+4 appears ktimes
p = 6k+3 appears k+1 times

p = 6k+5 appears k+1 times

p = 6k+1 appears ktimes
p =6k+2 appears ktimes p = 6k+5 appears ktimes

start adding p = 6k+6 appears k+1 times
tiangles
= i p = 6k+6 appears ktimes
p = 6k+6 appears 1 time b = 6ke 7 appears ke 1 times
4+—>
k+1

Figure 15: Frequency of perimeters in minimal polyiamond algorithm.

A=4k+1
ceil = 6k+3

A=6k+2
ceil = 6k+4

A=10k+5

A=2ktl ceil = 6k+6

ceil = 6k+2

A=1
ceil = 6k+1 A=8k+3
ceil = 6k+5

<+— >
k+1

Figure 16: First appearance of values of (\/ 6n | for triangles added in minimal
polyiamond algorithm.
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ceil = 6k+2

ceil = 6k+1

start adding
triangles

ceil = 6k+3

ceil = 6k+4

ceil = 6k+5

Figure 17: Distribution of values of [v6n| for triangles added in minimal

polyiamond algorithm.

Theorem 16. (Minimal polyiamond intermediate perimeter theo-
rem) Let k > 1. In the Minimal polyiamond algorithm (Theorem 15), when
we add A triangles to a regular hexagon of side k, the perimeters of the

polyiamonds constructed are as follows:

minperim() | minperim()

Amn < A < Amax | 65 + Amin | 66% + Amax P

1 < A < 2k 6k 4+ 1 6k +2 | 6k+ 1,6k 4 2
2k+1 < A < 4k+1 6k + 3 6k +3 |6k +2,6k+3
k+2 < A < 6k+2 6k + 4 6k +4 | 6k + 3,6k 4 4
6k+3 < A < 8k+3 6k + 5 6k +5|6k+4,6k+5
8k+4 < A < 10k+4 6k + 6 6k +6 | 6k + 5,6k +6
10k+5 < A < 12k+6 6k + 7 6k +6 | 6k + 6,6k +7

Proof. See Figure 14 and Figure 15.
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Theorem 17. (Minimal polyiamond ceiling theorem) Let k£ > 1. In
the Minimal polyiamond algorithm (Theorem 15), when we add A iriangles
to a reqular hexzagon of side k, and if n = 6k* + A, then the values of (\/ 6n

are as follows:

A [V6n]

1 < A < 2k | 6k + 1
2%k+1 < A < 4k | 6k + 2
4k+1 < A < 6k+1]|6k+3
6k+2 < A < 8k+2|6k+4
8k+3 < A < 10k+4|6k+5
10k+5 < A < 12k+6|6k+6

Proof. See Figure 16 and Figure 17. The intervals of A in the table follow
from the following abbreviated calculations with 2 =0, ..., 5.

[Von| = 6k+i
= 6k+(1—1) < Vbn < 6k+1
(i—1)* i -
= Qk(i—l)—l—T < A < %H_E'

10 Minimal polyiamond bounds

When we proved the Minimal polyiamond formula (Theorem 5), we assumed
the minimal polyiamond bounds, which we now prove.

Theorem 18. (Minimal polyiamond bounds) The min perime-
ter minperim(n) of an n-polyiamond satisfies the following bounds:

{\/6_n—‘ < minperim(n) < {\/6_7{‘ + 1.

Proof. Use the Minimal polyiamond algorithm (Theorem 15). There are
2 cases.

o Case: n < 6. It is easy to verify the bounds for these values of n.

o Case: n > 6. Compare the tables in the Minimal polyiamond inter-
mediate perimeter theorem (Theorem 16) and the Minimal polyiamond
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ceiling theorem (Theorem 17). Recall that A is the number of triangles
added to a regular hexagon of side k, and n = 6k* + A. Note that the
intervals of A in the tables are very similar; the endpoints differ by at
most 1. Tt is easy to check that the bounds hold for all values of A. [

11 Miscellaneous consequences of the mini-
mal polyiamond algorithm

Theorem 19. (Minimal polyiamond first-appearance-of-min-
perimeter theorem) In the Minimal polyiamond algorithm (Theorem 15),
a triangle contains the first appearance of a perimeter iff the triangle is
“immediately after a turn of the spiral”.

Proof. See Figure 14. U

Theorem 20. (Minimal polyiamond 2-apart appearances theorem)
In the Minimal polyiamond algorithm (Theorem 15), if a perimeter p appears
more than once, and if it appears al triangle /\, then it appears at triangle

A—2o0or A+ 2.

Proof. See Figure 13 or Figure 14. O

Theorem 21. (Minimal polyiamond frequency theorem) In the
Minimal polyiamond algorithm (Theorem 15), every perimeter p appears

|p/3] times.

Proof. This follows from the following claim:

Claim: In the minimal polyiamond algorithm, at the completion
of a hexagon of side k, the perimeter 6k + 1 has appeared k times,
and each smaller perimeter p has appeared [p/3] times.

Proof of claim: Use induction. The claim is true for perimeters p = 0, 1,
2, and it is also true for a hexagon of side k& = 1, with its perimeters 3, ..., 7
(see Figure 13). Assume the claim is true for some k& > 1. According to the
minimal polyiamond algorithm, add triangles to a hexagon of side & to form

a hexagon of side k + 1 (see Figure 14). We get the following table showing

27



the number of appearances of certain perimeters during the addition of the
triangles (see Figure 15).

p | appearances
6k + 1 2
6k + 2 2%k = |p/3)
6k + 3 2% +1 =|p/3]
6k + 4 2% +1 =|p/3]
6k + 5 2% +1 =|p/3]
6k + 6 2% +2 =|p/3]
6k + 7 k41

Only the perimeter 6k+1 in the above table needs some explanation. The
table shows that the perimeter 6k 4+ 1 appears k times during the addition
of triangles to a hexagon of side k£ to form a hexagon of side k + 1. By the
induction hypothesis, the perimeter 6k + 1 appears k times in the hexagon of
side k. So the perimeter 6k + 1 appears a total of 2k = |(6k + 1)/3] times.

Also by the induction hypothesis, each perimeter p < 6k appears |p/3] times.
By the above table and reasoning, each perimeter p < 6k +6 = 6(k + 1) ap-
pears |p/3] times.

Also, the table shows that the perimeter 6k + 7 = 6(k + 1) + 1 appears
k + 1 times in the hexagon of side k + 1. So the claim is proved. O

12 Capacity generating function

Recall that capacity (p) was defined to be the max number of triangles in a
polyiamond with perimeter p. However, there is no polyiamond with perime-
ter 1 or 2, and so capacity (p) is undefined for these perimeters.

When we consider sequences a, and the corresponding generating func-
tions, it is nice to have a, defined for all values of n. Let us make the
following generalized definition: capacity (p) is the max number of triangles
in a polylamond with perimeter at most p. This definition agrees with the old
one, except that now capacity (1) = capacity (2) = 0. Also, the the Maximal
polyiamond formula (Theorem 12) is still valid after a slight modification
(see the appendix).

The following conjecture was motivated by [6].
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Conjecture 1. (Capacity generating function conjecture)

o0

. o ol el 2 =27
Z capacity (p) z? = =21 = (1 =)

p=0

13 For further research

Having developed the theory of minimal polyiamonds, we will investigate
how this theory can be employed in the solution of the domain decomposition
problem with polyiamonds. Approaches will be developed that are related
to those that have been shown to be effective in the domain decomposition
problem with polyominos.
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14 Appendix

The following table gives values of 2 sequences in the text. See Figure 12

and Figure 13.

e minperim(n) is the min perimeter of an n-polyiamond. minperim(n) is

whichever of [\/ 6n| or ’_\/ 6n| + 1 has the same parity as n.

e capacity (p) is the max number of triangles in a polyiamond with perime-
ter at most p (this is the generalized definition of capacity (p), discussed
in the section about the capacity generating function). Included in the
table are the HAD dimensions (h,a, d) of such a polyiamond.

9 0 ifp=1
capacity (p) = round (%) —< 0 elseif p=0 (mod 6)

1 else

The left side of the table, indexed by n, is independent of the right side
of the table, indexed by p; the values between the 2 sides are not related.
The (h,a,d) columns are to be used with only the capacity (p) column.
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