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Abstract. In this paper we consider a general algorithmic framework for solving nonlinear
mixed complementarity problems. The main features of this framework are: (a) it is well-defined
for an arbitrary mixed complementarity problem, (b) it generates only feasible iterates, (c) it
has a strong global convergence theory, and (d) it is locally fast convergent under standard
regularity assumptions. This framework is applied to the PATH solver in order to show viability
of the approach. Numerical results for an appropriate modification of the PATH solver indicate
that this framework leads to substantial computational improvements.
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1. Introduction

In the past few years, interest in formulating and solving large scale nonlinear
mixed complementarity problems (MCP) has become significant and continues
to grow. Many theoretical algorithms have been postulated with numerical suc-
cesses being reported for a variety of them on certain problem classes. Much
current research focusses on nonsmooth Newton and smoothing-type methods,
which typically have strong theoretical foundations and perform well on many
test examples. On the other hand, the most widely used algorithms remain those
based on successive linearization, which solve linear complementarity subprob-
lems using generalizations of the Lemke pivoting algorithm. These linearization
algorithms were proven locally quadratically convergent, and in practice seem to
work extremely well. However, they typically require strong theoretical assump-
tions in order to guarantee that the subproblems are solvable.

The aim of this paper is twofold. First, we give a theoretical framework
for the globalization of linearization and related algorithms. Second, we apply
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our theory to one particular linearization method, namely the PATH solver, to
demonstrate viability. In fact, our modification of the PATH code has better
numerical behaviour than all previous versions of this code.

Merit functions are used extensively in the development of globalization the-
ory and the implementation of robust algorithms. Broadly speaking, merit func-
tions summarize how close the current iterate is to a solution of the problem
under consideration with a single number. In complementarity problems and
nonlinear systems of equations, the merit functions are normally nonnegative,
and zero precisely at a solution to the original problem. Each merit function
is typically used in a globalization strategy that involves searching between the
current iterate and the Newton point (the solution of the linearization).

The classical example of a merit function in nonlinear equation solving is the
square of the two-norm residual that measures the sum of squares of the errors in
satisfying the equations. This merit function has one additional property to those
listed above: namely, it is everywhere differentiable provided that the equation
itself is everywhere differentiable.

In complementarity, the two classical merit functions are based on the natural
residual [25] and the normal map [32]. Both the natural residual and the nor-
mal map provide reformulations of the complementarity problem as a system of
equations; unfortunately, the systems and corresponding residual merit functions
are nonsmooth. Even with this drawback, Ralph [30] showed how to construct
an extension of the line search procedure for smooth nonlinear equations that
enables fast local convergence of linearization methods under conditions that are
exact generalizations of those required in smooth systems. This procedure has
been implemented and successfully used in the PATH code [10,15].

A key implementational difficulty remains what to do when the linearization
subproblem has no solution. The theory assumes this situation does not happen.
In practice, this occurs frequently, particularly if the user of the code does not
provide a good initial starting point. In nonlinear equations, an algorithm can
resort to taking a steepest descent direction for the merit function, guaranteeing
progress toward a stationary point of the merit function. Since the merit func-
tion used in the PATH solver is not guaranteed to be differentiable, heuristics
need to be implemented to overcome these cases. While these heuristics are quite
successful in practice, this situation is nonetheless unsatisfactory and prone to
failure. This paper is an attempt to provide a theoretically justifiable escape
mechanism by using a completely different merit function for the mixed comple-
mentarity problem in conjunction with the direction generated by a linearization
method.

In order to outline the details of the paper, we first recall the definition of the
mixed complementarity problem. Let I; € RU{—o0} and u; € RU{c0} be given
lower and upper bounds with I; < u; for all 4 € I, where I is used throughout
this paper to denote the index set {1,...,n}. Let [ and u be the n-dimensional
vectors with components /; and u; and assume that F : [[,u] — IR™ is a given
function, continuously differentiable in a neighbourhood of the feasible set [I,u].
The mixed complementarity problem consists of finding a vector z* € [l, u] such
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that exactly one of the following holds:

z} =1; and F;(z*) > 0,
z} = u; and F(z*) < 0,
z} € [l;,u;] and F;(z*) = 0.

The first component of this paper, described in Section 2, is a reformulation of
the mixed complementarity problem, based on the Fischer-Burmeister function
[17]. This results in an equivalent nonsmooth system of equations $(z) = 0
where the corresponding merit function

B(z) = 5 B(a)"B(z) = L 18()]

is continuously differentiable. This fact, along with other pertinent properties of
¥ is the subject of Section 3.

In the special case of nonlinear complementarity problems, both ¢ and ¥
are used to design unconstrained algorithms for the solution of the problem.
Unfortunately, in many practical situations, the imposed bounds, I and u, on
the variables of the mixed complementarity problem are important not only
for the problem definition but also because the complementarity function F
(or its derivative) may not be defined outside of these bounds. For example,
applications that include fractional powers can cause severe difficulties if the
function is evaluated outside the feasible region.

The basic algorithmic framework of this paper does not consider @ directly,
but instead attempts to solve the bound constrained optimization reformulation

min ¥(z) s.t. z € [l,ul.

Section 3 also shows that a constrained stationary point is already a solution of
the mixed complementarity problem under exactly the same assumptions that
are used in order to prove a similar result for unconstrained stationary points of
v.

In Section 4 we present our algorithmic framework and prove that it is well-
defined as well as globally and locally fast convergent under very weak assump-
tions. The theory only assumes a pre-existing feasible method that is locally
well-defined and superlinearly convergent; it is not limited to linearization meth-
ods or to the PATH solver. Our algorithmic framework generates iterates that
lie within the bounds, resorting to a projected gradient step for the bound con-
strained problem whenever the pre-existing method fails to provide sufficient
decrease. We show, however, that our method remains locally superlinearly con-
vergent.

To demonstrate the practicality of our theory, we give a brief description of
an implementation and computational results for a particular instance of our
class of algorithms in Section 5. The implementation is based on a modification
of the PATH solver; the results indicate that the modified PATH solver is more
robust than all previous versions of PATH.
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Before proceeding, we give a few words about our notation. If F' is any vector-
valued function, we denote its Jacobian at a point z by F'(z) and let VF(x)
signify the transposed Jacobian. The gradient of a real-valued function f will be
denoted by Vf and will always be viewed as a column vector.

2. Equation Reformulation of MCP

In this section, we first define the mapping &, which produces a reformula-
tion of the mixed complementarity problem as a nonlinear system of equations
&(x) = 0, and then investigate the properties of this mapping. These properties
are extensions of some known ones for the standard nonlinear complementarity
problem where I; = 0 and u; = 400 for all ¢ € I (see, in particular, [9,14]). Our
generalizations will be important in the analysis of subsequent sections.

Let us first define the mapping ¢ : R? — IR by

#(a,b) :=va2+ b —a—b.

This function was introduced by Fischer [17] (and attributed to Burmeister)
and is widely used in the context of nonlinear complementarity problems. The
function’s most interesting property is the fact that it is an NCP-function, i.e.,

#(a,b) =0<=a>0,b>0,ab=0.

To use this NCP-function for the solution of the more general mixed comple-
mentarity problem, we first introduce a partition of I:

L:={iel| —oo<l; <u;=+o0},

I, = {i€I| —oo=l,-<u,~<+oo},

I, ::{iEI| —OO<li<'LLi<+OO},

I ={iel| —o00=1; <u; =400},
ie., Iy, I,, Ity and Iy denote the set of indices ¢ € I where there are finite lower
bounds only, finite upper bounds only, finite lower and upper bounds and no
finite bounds on the variable x;, respectively.

We now follow an idea of Billups [2,3] and define the operator ¢ : R” — R™
componentwise as follows:

o(x; — 1;, Fi(x)) ifi € I,

B.(z) — —d(u; — x;, —Fi(x)) ifi e I,
(@)= ¢(zi — li, $(ui — @i, —Fi(z))) if i € Lhu,
—Fi(z) if i € I;.

The reader may ask why we use the minus sign for indices ¢ € I, or ¢ € Iy. In
fact, all results of this paper would be true without the minus sign. However, the
following lemma motivates why we use it in the definition of @; for i € I, U I;.
A different motivation has recently been given by Billups [3].
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Lemma 1. Let x € R™ be fixed. Then the following limits hold:

(a) limy, o d(x; — iy P(u; — 23, —Fi(x))) = —é(u; — 23, —Fi(x)).
(b) limy, o0 (x5 — liy p(ui — m3, —Fi(2))) = ¢(@: — U, Fi(z)).
(c) limy;, oo limy,; yoo ¢(zi — Ui, p(u; — 5, —F;(2))) = —F;(z).

Proof. Let {a*} C IR be any sequence converging to oo and let b € R be any
fixed number. Then

d(a®,b) = /(ak)2 +b2 —a* —b
(\/m — (a* + b)) ( (aF)2 + b2 + (a* + b))

(a*)? +b% + (a* +b)

—2a*b
(a*)? +b% + (a* +b)
2b

V1+(b/a*)? + 1+ b/ak
b.

_)_

From this observation, the three statements follow immediately by simple con-
tinuity arguments. |

To prove the following characterization of the mixed complementarity problem
is straightforward. The proof is a simple extension of that given in Billups [2,
Proposition 3.2.7].

Proposition 1. z* € R" is a solution of the mized complementarity problem if
and only if x* solves the nonlinear system of equations &(x) = 0.

The function @ is not differentiable everywhere. However, it is locally Lips-
chitzian and therefore has a nonempty generalized Jacobian in the sense of Clarke
[8]. We next present an overestimation of this generalized Jacobian (see Billups
[2, Lemma 3.2.10]).

Proposition 2. We have
99(x)" C {Da(z) + VF(z)Dy(x)},

where Dy (z) € R™™™ and Dy(z) € R™™™ are diagonal matrices whose diagonal
elements are defined as follows:

(a) If i € Ij, then if (x; — l;, Fi(x)) # (0,0),

x; — 1
(Da)ll(x) - ||($z — l“E(x))“ -b
(Dp)ii(z) = b -

[(z; — i, Fi(x))]|
but if (x; — l;, F3(x)) = (0,0),

((Da)ii(z), (Dy)ii(z)) € {(€ —1,p— 1) e R?|||(&, p)Il < 1}
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(b) If i € L, then if (u; — i, —Fi(z)) # (0,0),

B U; — T4

(Da)ii(z) = [(w; — =i, —F3(x))||
—Fi(z)

l(wi — @i, —Fi())|l

_]_’

-1

(Db)ii(w) =

but if (u; — =i, —Fi(z)) = (0,0),
((Da)ii(2), (Dy)is(2)) € {(€ = 1,p— 1) e R?|[|(&, p)|| < 1}.
(c) Ifi € Iy, then
(Da)ii(z) = ai(@) + bi(z)c;(w), (Dp)is(z) = bi(z)di().
Here, if (z; — i, $(u; — z3, —Fi(z))) # (0,0),

Z; —li
(@) = o T du — e —F@) "
() = P(u; — z;, —Fi(2)) _
b(®) = =1 6 — 2 —F @)
but if (x; — l;, (u; — z;, —Fi(z))) = (0,0),
(as(2),b:(2)) € (€~ 1,p— 1) € B2 | (€ p)| < 1}.

Further, if (u; — x;, —F;(z)) # (0,0), then

T; — U;

|(ui — zi, —Fi(x))
but if (u; — zi, —F;(z)) = (0,0),
(ci(z), di(z)) € {(€+1,p+ 1) e R?|[|(&, p)|| < 1}
(d) Ifi € Iy, then (D,)ii(x) =0, (Dp)si(z) = —1.

ci(z) = | i +1, diz) =

l(ui — i, —Fi(=))|l

Note that the statement of Proposition 2 is rather lengthy because we have to
take into account the definition of @ using the four different index sets I, I,, Ij.
and Iy; its proof is straightforward and therefore omitted here. However, Propo-
sition 2 is extremely important for our subsequent analysis and will be used
several times within the proofs of some important results established in this and
the next section.

The remainder of this section is devoted to proving Theorem 1. The moti-
vation for this result is to establish the local convergence of the algorithm that
we propose in Section 4. To that end, let z* € IR™ be a solution of the mixed
complementarity problem and let us introduce another partition of I:

a:={i|l; < z] <u;, Fi(z*) =0},
B = {i|z; € {li,u;}, Fi(z*) = 0},
v = {i|z} € {li, ui}, Fi(z*) # 0}

Then we obtain the following result as a simple consequence of Proposition 2.
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Lemma 2. Let z* € R™ be a solution of the mized complementarity problem.
Furthermore, let H € 0®(x*) be any fized matriz, H = D,(x*) + Dy(x*)F'(x*)
with diagonal matrices D,(x*) and Dy(x*) as specified in Proposition 2. Then
these diagonal matrices have the following properties:

(a) (Dao)ii(z*) =0 and (Dp);i(z*) = =1 for all i € a.
(b) (Do)ii(z*) < 0,(Dp)ii(z*) <0, and (Dy)ii(z*) + (Dp)ii(z*) < 0 for all i € 3.
(¢) (Da)ii(x*) = =1 and (Dy)s(x*) = 0 for all i € 7.

Proof. If i € a, then we immediately obtain statement (a) from Proposition 2
by considering the four possible cases ¢ € I;,¢ € I,,,i € I}, and i € Iy separately.

Next consider statement (c), i.e., assume that i € . Then we either have
zf =1; and F;(z*) > 0 or we have z7 = u; and F;(z*) < 0.

First assume that =} = [; and F;(z*) > 0. Then the index ¢ necessarily
belongs to I; or to Ij,. If i € I, we obtain from Proposition 2 that (D,);; (z*) =
—1 and (Dy)i(2*) = 0. On the other hand, if ¢ € I;,,, we get from Proposition 2,
together with the observation that ¢(a,b) > 0 outside the nonnegative orthant,
that

(Da)ii(z*) = ai(z™) + bi(z™)ci(z*) = =140 ¢;(z*) = -1
and
(Dp)ii(z*) = bi(z*)di(z*) = 0-d;(z*) = 0.

The case z} = u; and F;(z*) < 0 can be proven in a similar manner. Fur-

thermore, statement (b) also follows by using an identical argument. 0

We next restate a useful characterization of Robinson’s [31] strong regularity
condition in the context of mixed complementarity problems. A proof may be
found in [13]. We stress that, in the case of a nonlinear complementarity problem
(i.e., I; = 0 and u; = oo for all i € I), this characterization reduces to a standard
characterization from Robinson [31].

Proposition 3. The following two statements are equivalent:

(a) =* is a strongly regular solution of the mixed complementarity problem.
(b) The submatriz F'(z*)ao is nonsingular, and the Schur-complement

F'(2*)aug,aup(@*) [ F'(2%)aa = F'(¢*)pg — F' (2*)pa F' (2*) ga F' (2" ) ap
is a P-matriz.

In order to establish a nonsingularity result for the generalized Jacobian 0 (z*)
at a strongly regular solution of the mixed complementarity problem, we also
need the following result whose proof can be found in [22, Proposition 2.7]; see
[19] for several extensions.

Proposition 4. A matriz of the form
D, + DyM

is nonsingular for all negative semidefinite diagonal matrices Dy, Dy € R™>*™
such that D, + Dy is negative definite if and only if M € R™*™ is a P-matrix.
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Based on the previous results, we are able to prove the main result of this section.

Theorem 1. If x* is a strongly regular solution of the mized complementarity
problem, then all elements H € 0®(z*) are nonsingular.

Proof. Let H € 8%(z*). By Proposition 2, there exist diagonal matrices Do (z*), Dy(z*) €
R™*™ such that

H = Do(z*) + Dy(a*) F' (z*). (1)

Hence, if we write

(Da) aa(z*) 0 0
Da(z*) = 0 (Da)pp(z*) 0 ;
0 0 (Da)yy ()
(Dp) aar(*) 0 0
Dy(z*) = 0 (D) gp (") 0
0 0 (Dp)y~(@*)

and
Fl(x*)aa Fl(x*)aﬂ Fl(w*)av
F'(e*) = | Fa*)ga F'(2%)g5 F'(2")g9
Fl(w*)'ya Fl(x*)vﬂ FI('Z'*)'W
and if we take into account Lemma 2, the homogeneous linear system Hd = 0
can be rewritten as

F'(z%)aada + F'(2%)apdg + F'(2")ardy = 0a(2)
(Da)pp(x*)ds + (Do) pp (™) [F' (27 pada + F' (&%) ppds + F'(z*) gydy] = 05(3)
_dv = 07(4)

Since dy = 0 by (4) and F'(2*)aq is nonsingular by assumption and Proposition
3, we obtain from (2):

do = —F'(2") 20 F' (2%) apdp. (5)
Substituting (4) and (5) into (3), we obtain after some rearrangements:

[(Da)sp(z™) + (Ds)pp(x™) (F' (™) aup,aus/F' (") aa)] ds = Op- (6)

Since the Schur complement F'(2*)aug,aus/F’ (2*)aa is a P-matrix by assump-
tion and Proposition 3 and since, by Lemma 2 (b), the diagonal matrices (D,)gg(z*)
and (Dy)gp(x*) are negative semidefinite with a negative definite sum, it follows
from Proposition 4 that the coefficient matrix in (6) is nonsingular. Hence we
obtain dg = 0g. This, in turn, implies do, = 0, by (5). Reference to (4) shows
that d = 0, so that H is nonsingular. m|
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3. Smooth Merit Function for MCP

We now investigate the properties of the residual merit function

associated with the equation operator &.

Despite the fact that @ is nondifferentiable in general, it turns out that the
merit function ¥ is continuously differentiable everywhere. More precisely, we
have the following result.

Proposition 5. The function ¥ is continuously differentiable with gradient V¥ (z) =
H"®(x) for an arbitrary H € 0%(z).

Proof. The proof is essentially the same as that given for Proposition 3.4 by
Facchinei and Soares [14] for the special case of a nonlinear complementarity
problem. O

We next provide a stationary point result for the unconstrained reformulation
min ¥(x), z€R"™,

of the mixed complementarity problem. To this end, we need the following char-
acterization of Pp-matrices, see [7] as well as [19] for some generalizations (note
the difference between this result and the related statement in Proposition 4).

Proposition 6. A matriz of the form
D, + DyM

is nonsingular for all negative definite diagonal matrices D,, Dy € R™*™ if and
only if M € R™*™ is a Py-matriz.

Proposition 6 enables us to prove the first major result of this section. In this
result and in the remaining part of this section, we use the short-hand notation
VF(z*)s5 to denote the submatrix VF(z*)s,1,. A similar notation is used for
submatrices and subvectors defined by other index sets.

Theorem 2. Let x* € R™ be a stationary point of ¥. Assume that

(a) the principal submatriz VF(x*) s is nonsingular, and
(b) the Schur complement VF(x*)/VF(x*)ss is a Py-matriz.

Then x* is a solution of the mized complementarity problem.
Proof. Let z* be a stationary point of ¥. Then, by Proposition 5, we have

H™®(z*) = V#(z*) = 0 (7)
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for an arbitrary H € 0%(z*). By Proposition 2, there exist diagonal matrices
D,(z*), Dp(z*) € R™ ™ such that

H = D,(z*) + Dy(z*)F' ().

Therefore, (7) becomes

[Do(z*) + VF(z*)Dp(z*)] &(z*) = 0. (8)
Writing
* (Da) (:L‘*) 0
Da(l' ) = ( 6f (Da)f'(iﬁ'*)) )
. (Dp)ss(z*) 0
Dy(z*) = ( ' {)f ’ (Dy) 77(z* ))
and

o _ [VF(@*)ss VE(x*) ;5
VF@®) = (VF(x*)f); vp(m*)ff) ’

where I7 := I'\ Iy, and taking into account that

(Da)ii(z*) =0  Vie Iy,
(Dy)ii(z™) = —1 Vi€ Iy

by Proposition 2, we can rewrite (8) as

Of
(Da) 5 (2")@(2") 5 — VF(2") 5 (2%) s + VF(2%) 77(Dy) f7(«")8(2") f = 0£10)
Due to the assumed nonsingularity of VF(z*) s, we obtain from (9):

P(z*)y = VF(m*);flVF(a:*)ff(Db)f—f—(m*)qﬁ(ar*)f. (11)

Substituting this expression into (10) and rearranging terms gives

[(Da)77(x*) + (VF(2*)/VF (") 55)(Dy) 77(2)] S(2*) 5 = 05 (12)
Since

(i) the diagonal matrices (D,)77(=*) and (Ds)77(2*) have nonpositive entries,
(ii) a diagonal element of (Da)ff x*) or (Dp) 77(z*) can be zero only if the cor-
responding component of &(z*)7 is zero, and
(iii) the diagonal matrices (D,)77(2*) and (D) 77(z*) are always postmultiplied
by &(z*)7 in the system (9), (10),
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we can assume without loss of generality that all diagonal entries of D, (z*) and
Dy(x*) are negative. But then Proposition 6 and the assumption of our theorem
show that the coefficient matrix in (12) is nonsingular. Hence we get &(z*) 7 = 0
from (12). But then (11) implies #(z*); = 0;. Hence &$(z*) = 0, i.e., z* is a so-
lution of the mixed complementarity problem by Proposition 1. |

Our next aim is to provide a sufficient condition for a stationary point of the
constrained reformulation of the mixed complementarity problem

min ¥(z) s.t. z €[l,u] (13)

to be a global minimum. In fact, this result is of much more importance for
this paper than the unconstrained stationary point result given in Theorem 2.
However, Theorem 2 is of interest on its own and will also be used in order
to establish our constrained stationary point result. Before doing this, we first
prove another technical result.

Lemma 3. Let © € R™ be arbitrary and H € 0%(x), H = Dy(x) + Dyp(z)F'(x)
with diagonal matrices D,(x), Dy(x) € R™ ™ as defined in Proposition 2. Then
the following two statements hold:

(a) For alli € I, [D,(x)®(x)];[Dp(z)®(z)]; >0 .
(b) For each i & Iy, [Dy(z)®(x)]; = 0 <= [Dp(z)P(x)]; = 0 <= &;(x) =0 .

Proof. (a) By considering the four possible cases i €
i € Iy, it is easy to see that (D,):(z) <0 and (D)

)
[Da(2)@(2)}i[ Dy (2)@(2))i = (Da)si (x)(Ds)ii ()i (z)* > 0

for all 7 € I.

I,i € I,,i € I}, and
< O0for all i € I. Hence

(b) If &;(x) = 0, we immediately have
[Da(z)®

(z
Conversely, assume that [D,(z)®(z)]; = 0 for some index ¢ ¢ Iy (the proof is
analogous if [Dy(2)®(x)]; = 0). Then

)i =0 and [Dy(z)$(x)); = 0.

(Do)ii(x) =0 or &;(z)=0.

In the latter case, there is nothing to show. So suppose that (D,):i(z) = 0. Due
to the definition of D,(z), we distinguish three cases.

Case 1:14 € I.
If (z; —1;, Fi(z)) = (0,0), then &;(z) = 0 follows immediately from the definition
of the operator #. Otherwise Proposition 2 (a) gives

Xr; — ll

0= Po)il) = o~ R~
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This implies z; — I; > 0 and F;(z) = 0, so that &;(z) = 0 in view of the very
definition of ¢ and the NCP-property of the function ¢.

Case 2:i € I,,.
The proof of this case is very similar to the one given for Case 1 and we therefore
omit the details.

Case 3:1i € I,.
If (z; —1;, p(u; — s, —Fi(z)) = (0,0), we are done. So assume that (z; —I;, ¢(u; —
z;, —F;(x)) # (0,0). Then Proposition 2 (c) gives

0= (Do)ii(z) = a;(x) + b;(x)ci(x) (14)

with certain numbers a;(z),b;(z) and ¢;(z) specified in Proposition 2 (c). Since
it follows immediately from this Proposition that

a;i(z) <0, bi(z) <0 and ¢i(z) >0,

the right-hand side of (14) is the sum of two nonpositive expressions which can
therefore be equal to zero only if a;(z) = 0. This, however, implies z; — [; > 0
and ¢(u; —z;, —Fi(z)) = 0 in view of the definition of a;(x) given in Proposition
2 (c). Hence &;(x) = 0 by the NCP-property of the function ¢. m|

Note that Lemma 3 (b) does not hold for indices ¢ € Iy since (Dy);;(z) = —1 for
all i € Iy in view of Proposition 2 (d).
We are now able to prove the main result of this section.

Theorem 3. Let x* € R™ be a stationary point of the constrained reformulation
(13) of the mized complementarity problem. Assume that

(a) the principal submatriz VF(x*) s is nonsingular, and
(b) the Schur complement VF (z*)/VF(z*)¢s is a Po-matriz.

Then x* is a solution of the mized complementarity problem.

Proof. Since z* is a stationary point of the reformulation (13), it satisfies the
following conditions (which themselves form a mixed complementarity problem):

¥ =1l; = [V¥(z*)]; >0,

l;
zf =u; = [V¥(z*)]; <0, (15)

x; € (li,u;)) = [VSp(:L'*)]Z =0.

The main part in proving that z* is already a solution of the mixed complemen-
tarity problem consists in showing that we actually have [V¥(z*)]; = 0 for all
iel.

The proof is by contradiction, so assume that V¥ (z*) # 0. Since V¥ (z*)
can be written as

V&(z*) = H"®(z*) = Do(z*)B(a*) + VF(z*)Dy(z*)B(z*)
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for a matrix H € 0%(x*) and certain diagonal matrices D,(z*), Dp(z*) € R™*"
by Propositions 2 and 5, and since we necessarily have

[V#(27)]s = 05

because of (15), we can follow the argument used in the proof of Theorem 2 in
order to show that

®(z*); = VF(a*);;VF(2*) ;7(Dy) ;5(a*)B(2*) 5.

Substituting this into the expression for [V¥(2*)]7 and rearranging terms, we
obtain

[V&(@)]5 = (Da) 5 (x*)8(2") 5 + (VF(2") /VF(2")57)(D) s (27)(x7) 5.
(16)

Since V¥(z*) # 0 by assumption, there exists an index ¢ € I such that either

zi =1; and [V¥(z*)]; >0 (17)

(]

or
z; =u; and [V¥(z")]; <O. (18)
Now it follows easily from Proposition 2 that if 2} = l;, then

(D) 77(z*)P(z*)7]: <O

and that if z} = u,,
(D) f7(z*)®(z*) f]: > 0.
Therefore, if we premultiply [V¥(z*)]; in (17) and (18) by [(D b)ff‘gs( *)#li and

substitute the ith component from the expression (16) for [V¥(z*)];, we obtam
in both cases that

[(Da) 77(z*)P(z") £li[(Ds) 7 (z*)2(2") 7ls +
[(De) 77 (@")®(z*) sLi[(VF (2*) [V F(z*) 57 )(Dp) 7 (z*)8(2*) 7l < 0. (19)

Note that this inequality holds for all indices i € I such that [V¥(z*)]; # 0. In
addition, we can show in a similar way that the equality

[(Da) 77(2)(2) 7li[(Do) 77 (2" )B(2") 7li +
[(Ds) 7 (2*)8(") (Ll (VE(2) [V F(2%) £)(Ds) 5 (2™)8(27) gls = 0 (20)
holds for all indices i € If with [V¥(z*)]; = 0.

Since V¥ (x*) # 0 by assumption and since we already know that [V¥ (z*)]; =
0, it follows immediately from (16) and Lemma 3 (b) that (Ds)77(z")®(x*)7 is
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a nonzero vector. Therefore, since the Schur complement VF(x*)/VE (z*)sy is
a Py-matrix by assumption, there exists an index 49 € I such that

[(Ds)77(z*)®(x")Fliy #0 and
(Do) 75(z*)B(a*) flio [(VE (&) [V F (&%) 1) (D) s (5")B(*) flig > 0. (21)

Now Lemma 3 (a), (19), (20) and (21) imply that

0= [(Da) 77(«")2(x7) flio (Do) 77 (2*) (") 7o

and therefore [(Dy) 77(z*)®(2*) fli, = 0 by Lemma 3 (b). This, however, contra-
dicts the choice of the index i in (21).

Hence we must have V¥ (z*) = 0, so that Theorem 2 gives the desired result
that z* is a solution of the mixed complementarity problem. |

We note that, if we apply the main results of this section to the standard non-
linear complementarity problem, then we obtain some known properties of the
merit function ¥, see [9,14,18]. We also believe that appropriate modifications
of the above theory will enable us to use other merit functions such as those
described in [6,29,35].

4. Algorithmic Framework

In this section, we present our class of algorithms for the solution of the mixed
complementarity problem and the corresponding global and local convergence
theory. In our class of methods, we assume we have a basic algorithm, let us call
it Algorithm A, with the following two properties:

(a) Given any point z* € [l,u], if Algorithm A is able to compute a search

direction d* € IR™, then this direction satisfies z* + d* € [I, u];

(b) Given any sequence {z*} converging to a strongly regular solution z* of the
mixed complementarity problem, Algorithm A is able to compute a search
direction d* for all z* sufficiently close to z*, and this direction has the
property that ||z* 4+ d* — z*|| = o(||z* — z*||).

Property (a) is a very weak assumption; it does not even assume that Algorithm
A is able to do anything at an arbitrary given point z* (e.g., Algorithm A might
not be well-defined due to inconsistent subproblems). However, if Algorithm A
is able to compute a search direction, we assume that it computes a search di-
rection such that, if we take the full step, then the new point z* + d* stays in
the feasible set [I,u]. Note that, due to the convexity of our feasible set [I,u],
this guarantees that all the points z* + t,d*, t;, € [0,1] are feasible, too. On the
other hand, property (b) states that, under Robinson’s strong regularity con-
dition, Algorithm A is locally well-defined and generates a locally superlinearly
convergent search direction. Hence we view Algorithm A as a feasible and locally
superlinearly convergent method for the solution of the mixed complementarity
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problem. Note, however, that the above two conditions say nothing about the
way in which we generate the sequence {z*}.

Several methods satisfy the above two conditions. For example, one may take
the Josephy-Newton method as Algorithm A, see Josephy [20,26]. Alternatively,
the method suggested by Ralph [30] has these two properties. Note that this
method is the basis for the PATH solver by Dirkse and Ferris [10], to which we
will come back in our numerical section. The NE/SQP method by Pang and
Gabriel [28] is another possible candidate for Algorithm A as is the inexact QP-
based solver by Kanzow [21] (these two methods have been used to solve the
standard complementarity problem only, but it is not difficult to extend both
methods to mixed complementarity problems, see, e.g., [2,4]).

Our class of algorithms globalizes Algorithm A as follows. We use the merit
function ¥ to measure any progress. If the point generated by Algorithm A has a
function value of ¥ sufficiently smaller than the previous one, it is accepted as the
new iterate. Otherwise a projected gradient step for our smooth merit function
¥ is taken. In this way, we guarantee that all iterates stay in the feasible set
[I,u]. In effect, our class of methods is an algorithmic framework for the solution
of the box constrained optimization problem

min ¥(z) s.t. z € [l,u]. (22)

We now give a detailed statement of our class of methods, where the pro-
jection of an arbitrary point z € IR™ on the feasible set [/,u] is denoted by

[2]+-
Algorithm 1 (General Descent Framework)

(S.0) (Initialization)

Choose x° € [l,u],s > 0,8 € (0,1),v € (0,1) and set k := 0.

(S.1) (Termination Criterion)

If z* is a stationary point of (22): STOP.

(S.2) (Compute Fast Search Direction)

Use Algorithm A to compute a search direction d*. If this is not possible or
if the condition

(z* + d¥) < o (2) (23)

is not satisfied, go to Step (S.4), else go to Step (S.3).
(S.8) (Accept Fast Search Direction)

Set zht! .= z* + d*, k + k+ 1, and go to Step (S.1).
(S.-4) (Take Projected Gradient Step)

Compute t;, = max{sB‘|£ =0,1,2,...} such that

T(z*(t)) < O(a*) — oV (*)T (2% — 2*(t1)), (24)

where z*(t) := [z* — tV¥(z*)] . Set z*t! := ¥ (t,),k « k + 1, and go to
Step (S.1).
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Other methods have attempted to use projected gradient steps in conjunction
with steps that give fast local convergence. See for example, Ferris and Ralph
[16]. Unfortunately, these hybrid algorithms are difficult to implement and nu-
merical testing has therefore only been carried out on small test examples. A
key difference in the approach outlined here is that the implementation can be
achieved as a minor modification of an existing code.

We now investigate the convergence properties of our class of methods 1. To
this end, we always assume implicitly that Algorithm 1 does not terminate in a
finite number of steps, i.e., none of the iterates z* is a stationary point of (22).

We begin with the global convergence analysis that consists of two parts.
We first show that the algorithm is well-defined, and then we prove that any
accumulation point of a sequence {z*} generated by Algorithm 1 is at least a
stationary point of the bound constrained optimization problem

min ¥(z) s.t. z € [l,u]. (25)

Recall that Theorem 3 gives a relatively mild condition for a stationary point of
(25) to be a solution of the mixed complementarity problem.

Theorem 4. Algorithm 1 is well-defined for an arbitrary mized complementar-
ity problem with a continuously differentiable function F' defined on an open set
containing the rectangle [I,u].

Furthermore, every accumulation point of a sequence {z*} generated by Al-
gorithm 1 is a stationary point of (25).

Proof. To prove the algorithm is well-defined, we only have to show that the
projected gradient step can be carried out at each iteration, i.e., that we can
always find a finite steplength ¢, > 0 satisfying condition (24). However, since
we assume that none of the iterates z* is a stationary point of (22), this follows,
e.g., from Proposition 2.3.3 (a) in Bertsekas [1].

For the second part of the theorem, let * be a stationary point of the se-
quence {z*}, and assume that {z*} k is a subsequence converging to z*. Suppose
there are infinitely many k € K such that 2*t! is generated by using a projected
gradient step for all these k. Since the iterates z* belong to the feasible set [I,u]
for all kK € IN and since the sequence {¥(z*)} is monotonically decreasing, it is
not difficult to see that the proof of Proposition 2.3.3 (b) in Bertsekas [1] can be
adapted in a straightforward manner to establish that z* is a stationary point
of the constrained reformulation (25).

Hence we can assume without loss of generality that all iterates k € K sat-
isfy the descent condition (23). Due to the monotone decrease of the sequence
{®(z*)}, this implies that the entire sequence {¥(z*)} converges to 0. In partic-
ular, in view of the definition of our merit function, we see that the accumulation
point x* is a solution of the mixed complementarity problem and hence also a
stationary point of problem (25). m|

We next want to show that Algorithm 1 is locally Q-superlinearly convergent
under Robinson’s [31] strong regularity condition.
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The proof is in two parts. We first show that the entire sequence generated
by Algorithm 1 converges to a solution z* if this solution satisfies the strong
regularity assumption. The critical tool to establish this result is the following
proposition of Moré and Sorensen [27].

Proposition 7. Assume that x* is an isolated accumulation point of a sequence
{z*} (not necessarily generated by Algorithm 1) such that {||z**! — z*||}x — 0
for any subsequence {x*}x converging to x*. Then the whole sequence {z*}
converges to x*.

Once convergence is established, we then determine the rate of convergence. The
basic device used to show Q-superlinear convergence of our class of methods
given in 1 is to prove that eventually there are no projected gradient steps, so
our method inherits the local convergence properties of the locally superlinearly
convergent Algorithm A used in Step (S.2) of Algorithm 1. To simplify the proof,
we invoke the following proposition from [23] (see also [14] for a similar result).

Proposition 8. Let G : R™ — IR™ be locally Lipschitzian, x* € IR™ with
G(z*) = 0 be such that all elements in 0G(z*) are nonsingular, and assume
that there are two sequences {z*} CIR™ and {d*} CIR™ (not necessarily gener-
ated by Algorithm 1) with {z*} — z* and ||z* + d* — z*|| = o(||z* — z*||). Then
IG(z* + a*)| = o(||G (*)]]).

We are now in the position to state our main local convergence result for Algo-
rithm 1. The convergence rate established here depends critically on the main
result of Section 2, namely Theorem 1.

Theorem 5. Let {z¥} C R™ be a sequence generated by Algorithm 1. Assume
that this sequence has an accumulation point x* which is a strongly reqular so-
lution of the mized complementarity problem. Then the entire sequence {x*}
converges to this point, and the rate of convergence is Q-superlinear.

Proof. To establish convergence, we first note that a strongly regular solution
is an isolated solution of the mixed complementarity problem, see [31]. Since
Algorithm 1 generates a decreasing sequence {¥(z*)} and z* is a solution of the
mixed complementarity problem, the entire sequence {¥(z¥)} converges to zero.
Hence every accumulation point of the sequence {z*} must be a solution of the
mixed complementarity problem. Therefore, the assumed strong regularity of z*
implies that z* is an isolated accumulation point of the sequence {z*}.

Now let {z*}x denote any subsequence converging to z*. Assume first that
we take a projected gradient step for all & € K. Then we obtain, using the
nonexpansive property of the projection operator:

lla*+t — 2t = [la* () — =*|

= [I[z* -t V& (a*)]5 — 2*||
Ile* =t V& (2*)]4 — [z
[tV ()|
IV ()]

(26)

LINIA

s
0
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since z* solves the mixed complementarity problem so that x* is a global mini-
mizer and hence a stationary point of our merit function ¥.

On the other hand, if we calculate the search direction d* by using Algorithm
A for infinitely many k € K, our assumptions on Algorithm A and the assumed
strong regularity imply that {d*} — 0 on this infinite subsequence, so that the
updating rules from Algorithm 1 show that

[l — 2*|| = ||d*|| — 0 (27)
on this subsequence. Combining (26) and (27), we immediately obtain that
{llz"* = 2"} x = 0.

Hence the assumptions of Proposition 7 are satisfied, and convergence follows
from that result.

In order to establish the Q-superlinear rate, we note that the strong regu-
larity of the solution z* and Theorem 1 show that all elements in 0&(z*) are
nonsingular. Since, in view of our assumptions about the search directions d*
generated by Algorithm A, we have ||z* + d* — 2*|| = o(||z* — z*||) for these
search directions, Proposition 8 implies that

[B(z* +d*)|| = o(l|®(=")I))

and therefore
T (z* + d¥) = o(@(z")).

This shows that the descent condition
(zF + d*) = yo ()

is eventually satisfied in Step (S.2) of Algorithm 1, i.e., for all k¥ € IN sufficiently
large, Algorithm 1 does not take any projected gradient steps. Hence Algorithm 1
has the same local convergence properties as Algorithm A. Since ¥+ = ¥ 4 dF,
this means that {z*} converges Q-superlinearly to z*. i

Obviously, if the basic Algorithm A is locally Q-quadratically convergent, the
class of Algorithms given in 1 is also locally Q-quadratically convergent. Typ-
ically, this holds if we assume in addition that the Jacobian of F' is locally
Lipschitzian.

5. Computational Results

The computational results in this section were carried out by extending the
PATH 3.0 solver to allow use of a different merit function and projected gradient
steps. The coding was done in ANSI-C and enabled these extensions based on
setting the option merit function fischer.

The PATH solver is described in detail in [10,15]. The code is extensively used
by economists for solving general equilibrium problems and is well known to be
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robust and efficient on the majority of the mixed complementarity problems it
encounters. The algorithm successively linearizes the normal map [32] associated
with the MCP, defined by

F(lyl+) +y — [yl+

where [y]+ represents the projection of y onto [/,u] in the Euclidean norm,
thereby generating a sequence of linear mixed complementarity problems. These
subproblems are solved by generating a path between the current iterate and the
solution of the linear subproblem; the precise details of this generation scheme
can be found for example in [10]. A nonmonotone backtracking search is per-
formed on this path to garner sufficient decrease in its merit function, the norm
of the residual of the normal map. It is known that the solutions of the sub-
problem will eventually provide descent for the merit function and that local
superlinear or quadratic convergence will occur under appropriate conditions. A
crash procedure [12] is used to quickly identify an approximation to the active
set at the solution; this is based on a projected Newton step for the normal map,
but the direction produced is not known to be a descent direction for the merit
function used.

The PATH 3.0 code was modified to incorporate the extensions that are
outlined in this paper. Two implementational points are of interest. Firstly, a
backtracking search was implemented instead of the simple test given as (23).
This search inspected points that form the following arc, parametrized by ¢ €
(0,1]:

[2* + t(@™ — M)y

where 2V is the solution of the linearized normal map. Note that, in general,
this is not the line segment joining z* to z'V. A projected gradient step was only
taken if suitable descent did not occur for some minimum steplength allowed.
This line search was chosen to be consistent with that used in the projected
gradient step given as (24). Secondly, the gradient of the merit function required
for (24) was calculated using the formulas detailed in Propositions 5 and 2 and
the method described in [2].

In the following two tables, we give the number of successes and failures
of our new code, PATH 4.0, and the PATH 3.0 code from all starting points
in the MCPLIB collection of test problems [11]. Two tables are presented by
splitting the problems into standard MCP models (Table 1) and models that
were generated using the MPSGE preprocessor [33,34] in GAMS (Table 2). In
order to condense the information in Table 1, we have grouped several similar
models together whenever this grouping results in no loss of information; for
example, problems colvdual and colvnlp are grouped together as example
colv* in Table 1.

It was noted in [15] that restarting PATH 3.0 from the user provided starting
point after the algorithm failed to find a solution on the first attempt significantly
improved the robustness of the code. In the results reported in Table 1, we use
exactly the same restart parameter settings in both codes (see [15]), with the
exception that the PATH 4.0 code is able to carry out at most 5 projected
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Problem Without Restarts With Restarts
PATH 3.0 PATH 4.0 | PATH 3.0 PATH 4.0

asean9a,hanson 3(0) 3(0) 3(0) 3(0)
badfree,degen,qp 3(0) 3(0) 3(0) 3(0)
bert_oc 4(0) 4(0) 4(0) 4(0)
bertsekas,gafni 9(0) 9(0) 9(0) 9(0)
billups 0(3) 0(3) 0(3) 0(3)
bishop 1(0) 1(0) 1(0) 1(0)
bratu,obstacle 9(0) 9(0) 9(0) 9(0)
choi,nash 5(0) 5(0) 5(0) 5(0)
colv* 10(0) 10(0) 10(0) 10(0)
cycle,explcp 2(0) 2(0) 2(0) 2(0)
duopoly 0(1) 0(1) 1(0) 1(0)
ehl_k* 6(6) 8(4) 11(1) 12(0)
electric 0(1) 0(1) 1(0) 1(0)
force* 2(0) 2(0) 2(0) 2(0)
freebert 7(0) 7(0) 7(0) 7(0)
games 16(9) 19(6) 23(2) 25(0)
hanskoop 10(0) 10(0) 10(0) 10(0)
hydroc*,methan08 3(0) 3(0) 3(0) 3(0)
jel,jmu 3(0) 3(0) 3(0) 3(0)
josephy,kojshin 15(1) 16(0) 16(0) 16(0)
lincont 1(0) 1(0) 1(0) 1(0)
mathi* 11(2) 13(0) 13(0) 13(0)
ne-hard 1(0) 1(0) 1(0) 1(0)
opt_cont* 5(0) 5(0) 5(0) 5(0)
pgvon* 6(4) 5(5) 6(4) 6(4)
pies 1(0) 1(0) 1(0) 1(0)
powell* 12(0) 12(0) 12(0) 12(0)
scarf* 12(0) 11(1) 12(0) 12(0)
shubik 38(10) 39(9) 48(0) 48(0)
simple-* 1(1) 1(1) 1(1) 1(1)
sppe,tobin 7(0) 7(0) 7(0) 7(0)
tinloi 56(8) 61(3) 63(1) 64(0)
trafelas 2(0) 2(0) 2(0) 2(0)
Total 261(46) 273(34) 295(12) 299(8)

Table 1. Results for regular models

gradient steps when the direction provided by the linear subproblem is poor.
This factor can be changed by setting the gradient step_limit option to a
suitable constant. Since the merit function in PATH 3.0 is nonsmooth, there is
no possibility of carrying out a similar scheme in this code. We note that several
heuristic procedures were described and tested in [12]; all of these appear not to
be beneficial to PATH.

MPSGE models are generated differently by GAMS [5], and thus a solver
can distinguish them from general MCP models. We have used this information
to choose different default options for MPSGE models both in PATH 3.0 and
PATH 4.0. For PATH 4.0, by default there is no crash and we use a linesearch.
The first restart for the MPSGE models is to crash using the projected Newton
technique and use a linesearch. The remaining restart procedures (that are not
used for any problem on our test set) are identical to those documented in [15].

As can be seen from the results of Tables 1 and 2, PATH 4.0 is considerably
better than PATH 3.0 when the codes are not allowed to restart. The projected
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Problem Without Restarts With Restarts
PATH 3.0 PATH 4.0 | PATH 3.0 PATH 4.0

box 340(21) 359(2) 355(6) 361(0)
denmark 31(9) 40(0) 40(0) 40(0)
eppa 8(0) 8(0) 8(0) 8(0)
eta2100 1(0) 1(0) 1(0) 1(0)
mrtmge 0(1) 1(0) 0(1) 1(0)
multi-v 3(0) 3(0) 3(0) 3(0)
olg 0(1) 1(0) 1(0) 1(0)
romer 0(1) 1(0) 0(1) 1(0)
tradel2 2(0) 2(0) 2(0) 2(0)
uruguay 7(0) 7(0) 7(0) 7(0)
Total 392(33) 423(2) 417(8) 425(0)

Table 2. Results for MPSGE models

gradient steps allow progress to be made in this code, which cannot occur in
PATH 3.0. We note that the total number of projected gradient steps over the
total of 732 runs was 349, indicating our preference to take such steps only
as a last resort (i.e. only after nonmonotone search and the watchdog strategy
fail). When restarts are allowed, it still seems that PATH 4.0 is more robust;
however the margin is significantly smaller, in part due to the fact that most of
the problems are already solved by PATH 3.0. On the MPSGE models, however,
restarts allow us to solve all the models in the test collection.

To conclude this section, Table 3 provides more complete information for
the algorithm PATH 4.0 on a subset of the test problems. These problems were
selected by taking every 10th run in an alphabetical ordering of all the test
problems considered. However, we only report the first three instances of any
given problem. We believe this is an unbiased sample of our test results. A
complete listing of the results is available from

http: //www.cs.wisc.edu/math — prog/tech — reports

The columns of Table 3 indicate the number of starting points (SP), number
of major iterations (MI), crash iterations (CI), restarts (R) and projected gradi-
ent steps (PG) taken. The final column of this table reports the time for PATH
4.0 in seconds, with the time for PATH 3.0 added in parentheses. All runs were
carried out on a Sun UltraSparc 300 MHz processor with 256MB RAM. A “*”
indicates failure of the method.

It is hard to draw firm conclusions from Table 3. It indicates that the solution
times of both algorithms are comparable, with some smaller times for PATH 4.0
and some for PATH 3.0. There are only 4 problems in this subset which use
projected gradient steps and restarts, the vast majority of the problems being
solved without invoking these strategies.

Overall, the theoretical extensions outlined in this paper result in an improve-
ment in robustness of PATH 3.0 without any noticeable change in the accuracy
or speed of the code. Further testing on even more challenging problems is re-
quired to fully determine the effects of different merit functions within the PATH
code. This will be the subject of future research.
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Problem SP | MI CI R PG T
bert_oc 310 3 0 0 0604
billups 3 38 2 3 4 * (%)
box 9 [ 3 0 0 0 0000
box 190 4 0 0o 0 0000
box 2913 0o 0 0 00(0.0)
colvnlp 213 1 0 0 0000
denmark 4 11 0 o0 0 9.9 (25.2)
denmark 143 0 0 0 20(25.1)
denmark 24 | 11 0 0 0 9.2(10.3)
ehl k40 308 1 1 6 3.4 (%)
electric 1 /128 1 1 6  20(L3)
explcp 1 1 1 0 0 0.0 (0.0)
gafni 103 1 0 0 0000
games 8 5 1 0 0 0.1 (0.0)
games 18020 1 0 0 02(03)
hanskoop 3 6 1 0 0 0.0 (0.0)
hydroc06 114 1 0 0 00(00)
josephy 6 5 1 0 0 0.0 (0.0)
kojshin 8 1 1 0 0 0.0 (0.0)
mathisum 3 | 7 1 0 0  0.0(0.0)
nash 115 1 0 0 00(00)
obstacle 6 0 7 0 0 1.3 (1.3)
pgvonl05 2 13 1 0 0 0.2 (0.1)
powell 1 6 1 0 0 0.0 (0.0)
powellmep 5 | 7 1 0 0  0.0(0.0)
scarfasum 2 3 1 0 0 0.0 (0.0)
shubik 41 3 0 0 0 00(.0
shubik 14013 1 0 0 00(01)
shubik 24 | 41 1 1 5 02(0.1)
tinloi 11 1 0 0 0.0(00
tinloi 111 2 0o 0 0100
tinloi 21| 1 2 0 0  0.0(0.0)
trafelas 1 7 22 0 0 6.2 (6.3)

Table 3. Selected full results

Acknowledgements. The authors would like to thank Roman Snajder for pointing out the
relation of some of our results with reference [19].
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