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Abstract

A generic framework for utilizing the computational resources provided
by a metacomputer to concurrently solve several optimization problems
generated by a modeling language is postulated. A mechanism using the
Condor resource manager and the AMPL and GAMS languages is devel-
oped and applied to a technique for solving a mixed integer programming
formulation of the feature selection problem. Due to the method’s com-
putational requirements, the ability to perform optimizations in parallel
is necessary in order to obtain results within a reasonable amount of time.
We provide details about our simple and easy to use tool and implemen-
tation so that other modelers with applications generating many inde-
pendent mathematical programs can take advantage of it to significantly
reduce duration.

1 Introduction

One branch of the machine learning community, those researching supervised
learning [3, 18, 19], attempts to construct a process based upon historical data
for the purpose of forecasting. The feature selection problem chooses a small
number of the data characteristics with the best predictive capability. This prob-
lem is applicable in numerous situations and is becoming increasingly important,
especially in data mining. Many approaches to solving the problem have been
postulated and used [5, 6, 7, 20, 21, 22, 23, 29]. The method presented in this pa-
per generates a large number of independent mixed integer programs (MIP). To
make this technique practical, we need to perform the individual optimizations
in parallel. Rather than require a large parallel computer, we utilize a metacom-
puter, a confederation of heterogeneous computing resources including, but not
limited to, supercomputers, workstations, and specialized machines connected
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through a network. The tool developed for concurrently solving optimization
problems exploits one vast, and largely untapped, part of this metacomputer, a
pool of pre-existing, “off-the-shelf” workstations via Condor.

Condor [12, 24] is a management tool based upon the premise that most
workstations are severely under-utilized. Typically, the workstation owner does
some computation and then the machine idles for long stretches of time. Condor
notices these idle machines and schedules tasks on them. When the owner
wants to perform additional work, Condor migrates the task to another available
computer. In essence, Condor uses resources that would have otherwise been
lost.

Our mechanism allows Condor to be used from within a modeling language
[4, 16] which provides a natural, convenient way to represent mathematical
programs. These languages typically have efficient procedures to handle vast
amounts of data and can quickly generate a large number of models. For this
reason, modeling languages are heavily used in practical applications.

Condor and modeling languages form a synergistic combination. Linking
them together gives us expressive power and allows us to easily generate simple
parallel programs. Successful applications of our mechanism should possess two
key properties; they should generate a large number of independent tasks and
each individual task should take a long time to complete. Applications with the
above two properties cannot be reasonably performed serially. Furthermore, the
model generation time and scheduling overhead are ameliorated by the resources
spent solving each individual task.

The programming paradigm envisioned is the master/worker model in which
a master program generates a large number of independent subproblems, the
workers, that can be solved in parallel. Once the subproblems finish, the master
program performs additional computations and creates a new set of subprob-
lems. This cycle repeats.

The framework we postulate uses two functions. The first is a way to spawn
tasks for solution on a metacomputer. The corresponding retrieve function is
used to obtain the results. We implemented these commands using the Condor
resource manager and the AMPL and GAMS modeling language. We then use
the tool for solving the feature selection problem. The key contribution of this
paper is the general framework provided for solving such problems in parallel.
The feature selection problem developed is only one example that uses this
mechanism. All of the code and examples developed in this paper are available
for download at [14].

Our formulation of the feature selection problem, described in Section 2,
is an ideal candidate for parallelization. The mechanism that we develop is
simple and easy to use and can also be adapted for use in other applications.
Section 3 provides simple examples in both the AMPL [17] and GAMS [8] mod-
eling languages of how the tool is used. The implementation of the feature
selection problem in this framework is also discussed. We present technical
details of the tool in Section 4. Results of the feature selection using several
representative datasets are found in Section 5. They demonstrate that signifi-
cant improvements in overall solution time can be reliably achieved by running



state-of-the-art MIP solvers such as XPRESS [10] in parallel. Finally, we draw
some conclusions and point out relevant extensions of the work in Section 6.

2 Feature Selection

Researchers in the machine learning community studying supervised learning
[3, 18, 19] attempt to construct a scheme based upon known historical data
to classify unknown observations. While no guarantee can be made that the
forecast is correct, a best possible guess is desired. We consider the two category
case, in which the given data consists of measurements taken from elements in
each of two categories. Many important applications can be posed within this
framework [2, 6, 26].

Let A C RY and B C RY, be finite sets of observations taken from elements
in category 1 and 2 respectively. Each point measures the same set of F' char-
acteristics, with elements in the same category sharing similar properties. By
A € RMAXF and B € RIBIXF we denote the matrices formed from all elements
in A and B, where | - | is used to denote the cardinality of a set.

The approach considered in this paper attempts to quantify differences
between the two categories by constructing a separating hyperplane [1, 25],
P:={z e R | 27w = ~} with w € RF and v € R such that for all a € A,
a’w > v and for all b € B, bTw < ~. If y € RF is an unknown observation we
want to classify, we use the following process to categorize it:

1. If yTw > ~ then y likely belongs to category 1.
2. If yTw < v then y likely belongs to category 2.
3. Otherwise, we cannot make any determination.

Typically, we cannot construct such a separating hyperplane, so we choose
one minimizing a measure of the misclassification on the known data. Further-
more, recent work [5, 6, 23] has shown that it is typically beneficial to use a
subset of the measured features for the classification. If we employ too few
features, we will not have enough information to correctly classify future data.
However, if we have too many features, we will over-classify the system and
perform poorly on the unseen data. We want to choose the optimal number of
features, i.e. that with a minimal expected misclassification percentage.

In the next subsection, we discuss a mechanism for constructing a hyperplane
minimizing the one-norm of the mean violation for a given number of features.
The following subsection describes how 10-fold cross validation [30] is used to
determine the effectiveness of the hyperplane by calculating the expected mis-
classification percentage. The final subsection discusses the issues involved in
finding the best number of features to use and the computational aspects that
make this application ideal for our parallelization tool.



2.1 Classification

We use linear programming to construct a hyperplane such that a measure of
the violation of the misclassified points is minimized. In the best case, we want
to choose w and v such that:

Aw > ey and Bw < ey

where e is a vector of ones of the appropriate dimension. We can remove the
strict inequalities by normalizing the problem [1] to obtain an equivalent system:

Aw > e(y+1) and Bw <e(y—1).

We want to minimize the mean of the one-norm violations to this condition [1].
Stated as a linear program, we have:

1 el
es+ t
IA\ E

subject to — Aw+e(y+1) <s
Bw+e(l—7)<t
5,1 >0

We note that if w; = 0, then feature ¢ is not used in the construction of the
hyperplane, and is hence irrelevant to the classification process.

Since we want to vary the number of features selected, we use a mixed integer
programming reformulation that forces some of the components of w to zero. If
we want to use at most f of the F' features when constructing the hyperplane,
we can solve the following problem:

1 el
— eTs+ —eTt
IA\ Eh

subject to — Aw+e(y+1) <s
Bw+e(l—v)<t
—ay <w < oy

ly=f

s,t >0,y € {0,1}F

where « is a large positive constant. For y; = 0, we have that w; = 0. Since
eTy = f also holds, at most f features can be used. We note that this model
does not preclude the selection of fewer than f features. If y; = 1, then we can
still set w; = 0, i.e. feature 7 is not used.

The w and ~ resulting from solving this mixed integer program provides
one hyperplane minimizing the one norm of the mean misclassification using
at most f features. We now want to determine the expected misclassification
percentage, which is done using 10-fold cross validation.



2.2 Validation

10-fold cross validation [30] is a statistical technique used to measure general-
ization ability. In our case, we use the technique to determine the expected
misclassification percentage when f features are used to construct a hyperplane
minimizing violation. The procedure starts by splitting the given data, A and
B, into 10 random subsets of approximately equal size, A;p,..., A9 € A and
Bi,...,Bip C B. Each element of A is placed into exactly one of the subsets A;;
similarly for each element of B. Let Aj := A\ A; and let AS € RIAIXE denote
the matrix formed from the elements of A$. Furthermore, let Bf := B\ B; and
let B¢ € RMIIXF denote the matrix formed from the elements of B5. For a fixed
j €{1,...,10}, the set A U Bf is known as the training set, while A; U B; is
known as the testing set. We note that approximately 90% of the data will be
used for training and 10% for testing.

For each j € {1,...,10}, we solve the following classification problem:
min el's+ 1 eTt
| A5 | | BS |

subject to — Ajw +e(y+1) <s
Bjw +e(l—7) <t

—ay <w < oy

ely=r

s,t >0,y €{0,1}F

for a fixed f giving (w?,~7,47). Using the hyperplanes generated for the training
sets, we calculate the percentage of misclassified elements on the corresponding
testing data. We define the following error functions:

1 ifzTw< v,

errora(w, w, ) = {O otherwise

( ) 1 if 27w >,

errorg(x,w,y) := .

B 7 0 otherwise.

These functions indicate if a point has been misclassified with regard to the
hyperplane define by w and v and the sets A and B respectively. We then
determine the percent misclassified as follows:

VST ; 57 (S, emrora(@ w),77) + Xy, ersors (b7, 77))

The final number generated is the average percentage of misclassified elements
over all 10 folds, p := % 2;0:1 p?. This number indicates how well we can be
expected to perform on unseen data, assuming that A and B accurately represent
the real world. Since we use random subsets, we need to run the validation
several times to truly obtain a good estimate of expected performance.



2.3 Selection

In order to select the best number of features to use, we vary f from 1,... | F
and perform the 10-fold cross validation procedure L times for each selected f,
tracking the expected misclassification percentage for each validation run. We
calculate the mean and standard deviation of the measure over all L validation
runs. We choose the number of features producing the smallest mean value as
our optimal solution.

From a computational perspective, each of the independent tasks spawned
is a mixed integer program. These problems can be very difficult to solve and
can require a large amount of computational resources. For a fixed f, we can
run 10L independent tasks concurrently; each run of 10-fold cross validation
generates 10 mixed integer programs and we perform L such validations at a
time. The feature selection problem therefore satisfies our candidate criteria and
is ideal for the parallelization envisioned. We now turn our attention towards
how our tool is used and the implementation for the feature selection problem.

3 Examples

Our tool for solving multiple models in parallel is flexible and powerful, yet can
be easily incorporated into pre-existing applications written using the AMPL or
GAMS modeling languages. New versions of these packages are not required in
order to use our software. Two procedures were developed for our implementa-
tion; one to spawn jobs and the other to retrieve the results. Modelers do not
have to entirely rewrite their code to exploit inherent parallelism, they simply
replace the solve with a spawn command and later issue a retrieve. The com-
mands are implemented within the modeling language framework. The spawn
is non-blocking, which means we immediately resume processing the application
code after the command is issued, thus enabling us to put multiple models into
a job queue before waiting for results. Users are also able to interleave solves
performed under Condor and those run on the host machine. For example,
problems that contain confidential data can be solved locally, while less sensi-
tive subproblems can be solved elsewhere. Furthermore, Condor allows us to
utilize the full resources of a heterogeneous computing environment and allows
the state of long running jobs to be saved and restored at a later time.

In the rest of this section, we provide some simple examples illustrating the
basic features of our mechanism. We then discuss the issues encountered when
coding the feature selection problem.

3.1 Simple Examples

The simplest way to use our tool is to replace a single solve command with a
spawn/retrieve combination. This technique illustrates the basic method, but
fails to exploit the full capabilities of the mechanism. Two simple examples,
one within the AMPL modeling language and the other from GAMS, highlight
how we can use the spawn and retrieve to solve multiple models in parallel.



3.1.1 AMPL

The AMPL implementation consists of two routines called via the commands
function, condor_spawn and condor_retrieve. Instead of issuing a solve, the
modeler simply replaces it with a condor_spawn, and later issues the corre-
sponding condor_retrieve.

The example selected for exposition in AMPL is an implementation of Dantzig-
Wolfe decomposition for a multi-commodity transportation problem. The orig-
inal code is available at:

http://www.ampl.com/cm/cs/what/ampl/NEW/LO0P2/multi2.run

We only show the portion of the source code modified to run under Condor.
The original code uses a looping construct to solve several subproblems se-
rially:

for {p in PROD} { printf "\nPRODUCT %s\n\n", p;
solve SublI[p];
display Artif_Reduced_Cost[p];

};

We can solve each individual subproblem via Condor by replacing the solve
with the following spawn/retrieve combination:

for {p in PROD} { printf "\nPRODUCT %s\n\n", p;
problem SubI[p];
commands condor_spawn; commands condor_retrieve;
display Artif_Reduced_Cost[p];

};

In this case, one problem is submitted to Condor and then we immediately wait
for the result. This approach is likely to give worse performance than the serial
code because of the additional scheduling overhead. A better technique is to
repeat the loop, once to spawn all the jobs and the second time to retrieve all
the results:

for {p in PROD} {
problem SublI[p]; commands condor_spawn;

};

for {p in PROD} { printf "\nPRODUCT %s\n\n", p;
problem SubI[p]; commands condor_retrieve;

display Artif_Reduced_Cost[p];

};



We note that the first loop just spawns the jobs, while the second does all of the
output relevant to the application. In this case, all the subproblems are spawned
out to separate processors (i.e. machines) before any results are collected into
AMPL.

3.1.2 GAMS

Performing the spawn and retrieve in GAMS involves “solving” the model twice.
The first time, we replace the solver with one that submits the job to Condor.
The second uses a “solver” that retrieves the result from Condor. A simple
example of the process is carried out within the GAMS code given below. In
this application, we have two trivial problems, probA and probB. The models
are spawned to Condor to run independently and their results are retrieved
after performing a solve task locally. Although seemingly trivial, this example
shows how a master/worker program can be formulated and solved in parallel
using Condor. Note in particular, that some (sub)problems can be spawned and
solved elsewhere, during which time other optimizations (for example, master
or synchronization problems) can be carried out on the host machine.

variables obj; equation f, g;

f.. (obj - 1) =g= 0.;
g.. sqr( obj ) =1= 2;

model probA / f /; model probB / g /;

* Spawn jobs

option nlp = mnsbcon;

solve probA using nlp minimizing obj;
solve probB using nlp minimizing obj;

* Perform other tasks
option nlp = minos5;
solve probA using nlp minimizing obj;

* Retrieve results

option nlp = rescon;

solve probA using nlp minimizing obj;
solve probB using nlp minimizing obj;

In this case, the modeler just needs to know which solvers are available on the
substituting machine (e.g. minos5) and what the Condor solvers are called (e.g.
mns5con). The special rescon solver is provided by us to retrieve the results.



3.2 The Feature Selection Problem

The implementation of the feature selection problem presented in Section 2
is quite sophisticated. We chose the GAMS modeling language in which to
implement it. Before running the application, we need to generate data readable
by GAMS. To accomplish this task, we wrote a simple program that converts
the data set given into one ready for importation by GAMS. At the same time
we also calculate random permutations which are used to split the data for
validation. We note that the permutations can be created within GAMS, but
we found it easier to calculate them outside of the modeling language.

Initially, the code declares appropriate sets and imports the observation data.
We give a small section of this portion of the code below:

set a / 1 * 358 /;
set o /1 % 30 /;

parameter a_data(a, o) /
$include "a_data.inc"

/;

We read data for the second category in a similar fashon.
We then declare dynamic subsets for the testing and training data and define
some equations:

set a_test(a);
set a_trai(a);

positive variable s(a);
variables w(o), gamma;

equations a_def(a);

a_def(a_trai)..
-sum(o, a_data(a_trai, o) * w(o)) + gamma + 1 =1= s(a_trai);

In looping statements, we dynamically determine the elements in a_test and
a_trai and submit a mixed integer program to Condor. Since the equations are
just defined over the training set, only the relevant ones are generated.

To make the times for each task more reasonable, we only perform the val-
idations for a fixed f at a time. This technique allows us to use information
obtained for f features when we solve the mixed integer program for f + 1
features. In particular, the objective value for the f features problems is an
upper bound on the objective value for f + 1 features. Therefore, we have two
groups of looping statements. The first set is simple and generates all of the
problems needed for the one feature case and submits them to Condor using
the aforementioned syntax. The second set is slightly more complex because it
needs to retrieve the results, check for errors and then generate the problem for
f + 1 features. The inner part of the loop consists of the following:



option mip = rescon;
solve train using mip minimizing c;

if (execerror or train.solvestat eq 7 or train.modelstat eq 11,
execerror = 0;
option mip = xpress;
solve train using mip minimizing c;

)
* Generate report data here.

if (ord(f) 1t 8,
features = ord(f) + 1;
option mip = xprcon;
solve train using mip minimizing c;

)

The first solve retrieves the solution to the problem from Condor. The first
if-statement checks for execution errors and licensing problems and solves the
same problem locally if such a condition exists. An execution error is generated
for example if the solver fails to write a solution file. Because of some limita-
tions in the way Condor migrates tasks and the nature of the code used, this
error condition is sometimes encountered. The problem arose primarily due to
simultaneously reading and writing to the same file. Another potential diffi-
culty is that we can run out of licenses for a particular solver. We check this
condition in GAMS by looking at the solver and model status reported. The
last if-statement spawns the next problem in the sequence if required. Between
the two if-statements, we calculate and store the percent misclassification on
the testing data. At the end of all the loops, we calculate the average misclas-
sification percentage and report our findings to the user.

The complete listing of the GAMS program and all relevant data can be
downloaded by anonymous ftp [14]. This example demonstrates many of the
features incorporated into our tool. Clearly, by adding statements to the AMPL
or GAMS languages, we could implement the process more efficiently. However,
we believe the strength of our approach derives from its simplicity and the fact
that operations researchers can easily and in many practical instances effectively
exploit parallelism using it.

4 Technical Details

The spawn procedure is a non-blocking call used to submit a task for solution.
Before delving into how the mechanism is implemented, we need to first examine
how AMPL and GAMS behave when a normal model is solved. The solve state-
ment first writes an internal representation of the model to disk. We note that
both modeling languages considered can write a machine independent represen-
tation, thus allowing heterogeneous solves. The particular solver executable is
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then run with appropriate command line arguments. The implementation of
the spawn command replaces the solver in this two-step process with a more
complex series of statements that implement the following steps:

1. Create a new temporary directory.

2. Copy the internal model representation to the temporary directory.

3. Submit the task to Condor and obtain the associated Condor job number.
4. Place the user job number and Condor job number on a job queue.

5. Return control to the modeling language.

The job queue plays a critical role when we want to retrieve the results.
To submit a job to Condor, we create a job description file. One such file
for a GAMS model is provided below:

Executable = gamsxprcon.out

Initialdir = condor_home/temporary_directory
Arguments = gamscntr.scr

Log = condor_home/log

Notification = never

Queue

We then submit the job using the command condor_submit -v. This gives
“verbose” output which we process to obtain the Condor job number. If for
some reason the submission fails, we wait a small amount of time and then
reattempt the submission.

The retrieve is a blocking call used to obtain the results. When the solver
executable finishes, a solution file is written. Essentially, the retrieve places
the solution file in the correct location for the modeling language to read. The
problem whose solution is desired needs to be in scope before issuing the retrieve
command, otherwise problems can occur when the modeling language tries to
import the solution. Therefore, we require that results for the models be re-
trieved in precisely the order they were spawned. While this may be inefficient
in terms of load balancing, it is simple to implement and ensures the modeler
knows precisely the ordering of jobs. To retrieve a job, we perform the following
steps:

1. Take a user job number and Condor job number off the job queue.
2. Wait for the Condor job to finish.

3. Copy the solution file into the correct location.

4. Remove the temporary directory.
5

. Return control to the modeling language.
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We check to see whether the Condor job has finished by periodically checking
the log specified in the job description file. Whenever the Condor job changes
state, an appropriate event is noted in this log. We look for the “job completed”
event which tell us that the Condor job has finished.

The basic mechanism is the same for the procedures in both AMPL and
GAMS. However, differences in the modeling language lead to different imple-
mentations. In the next two subsections we discuss the relevant features of the
implementation for each of the modeling languages considered. We finish the
section by mentioning some Condor related issues.

4.1 AMPL Details

AMPL allows us to execute a script via the commands feature. The condor_spawn
is implemented as the following script:

write bcondor;
shell ’condor_sub minos x86°;

The first command writes out a (binary) file called condor.nl which is a repre-
sentation for the problem currently in scope. The second command executes a
perl script called condor_sub that submits the model to Condor for execution.
In this particular case, the solver used is MINOS and we run it on the x86
machines in the pool.

Similarly, the condor_retrieve is implemented as:

shell ’condor_results .’;
solution condor.sol;

Here, the condor_results script waits for the model to finish processing before
returning back to the modeling language. The solution command reads in the
condor.sol file generated by the solver.

4.2 GAMS Details

The solver GAMS uses can be any executable. Therefore, for the submission
call, we created a perl script that is invoked instead of an actual solver. However,
GAMS presents some unique issues that needed to be resolved.

The first is that when we copy the model, we also need to copy the options
file if one exists. Otherwise, we can run into some file permission problems with
Condor. At the same time, we update the gamscntr.scr file so that it looks in
the appropriate temporary directory for the model and options.

Another detail is that if we fail to provide a solution to GAMS from any
solve statement, we would get an execution error. This is undesirable since the
user would have to perform additional checks to remove the error. Therefore,
we have implemented a very simple solver that writes a solution file containing
the initial, user-specified point and the function evaluation at that point. This
simple solver is called at the end of the submission script. In this way, we avoid
the problem.
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The retrieve is implemented as a special solver that waits for the results and
then copies the solution to the correct location, essentially as in Section 4.1.

4.3 Condor Issues

The Condor tool is designed for high-throughput computing in a dynamic envi-
ronment. Machines which are currently idle are available for our use. When the
owner of the resource returns and wants to work, the machine is removed from
the pool and any job currently running on it is stopped and migrated to another
available computer. The same mechanisms are used to provide fault tolerance
when machines unexpectedly become unavailable. Condor provides two modes
of operation for such cases. The ‘vanilla’ universe is primarily used for jobs
that do not require a long time to complete. When ‘vanilla’ jobs are migrated,
the computational effort already expended is lost and the job is restarted from
the beginning. All that is required in this case is an executable. For example,
existing executables for solver links to AMPL and GAMS could be used in this
‘vanilla’ universe without any modification whatsoever.

The ‘standard’ environment is preferred for long running programs and en-
ables a job to be checkpointed and restarted without losing all of the time
spent in the code. The checkpoint appears as a normal executable but con-
tains a “snapshot” of the job at its current state. When the checkpoint is run,
it resumes the computation from the exact state at which the checkpoint was
made. In order to submit a ‘standard’ job, the program called need only be
relinked using the ‘condor_compile’ command. This command incorporates the
appropriate Condor libraries into the code to perform checkpointing.

Some limitations are placed upon the jobs that we want to checkpoint. The
main one we encountered is that we are not allowed to simultaneously read and
write to the same file. The results are unpredicatable if a code does this type of
i/o. Another problem has to do with the use of sockets, which are not allowed
under Condor. The could cause potential problems with some license managers.
Other limitations have to do with signal handlers and forking processes; these
are detailed in [9].

There are several advantages that accrue to a Condor user. First of all,
we note that we are not required to have an account on all of the machines
in the Condor pool. Condor can start jobs on machines for which we do not
have permission to directly use. Condor makes the processor and memory on
these machines available to the job submitter. Data is read from and results are
written to the submitter’s disk either through a “shared file system” or by using
remote callbacks. These mechanisms make Condor an ideal “intranet” tool to
facilitate large scale computations over a local network of workstations. Internet
usage is also possible as documented in [13]; however, in this environment other
security issues also arise.

A second key feature is that Condor enables us to run our solvers in a hetero-
geneous environment. This power comes with one cavéat. Since the checkpoints
use system dependent information, once we start a job on a particular architec-
ture, we cannot migrate the job to a different architecture without restarting
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the job from the beginning. For ‘standard’ universe jobs, we need to specify the
exact platform on which to run the jobs because of this limitation.

Finally, we note that all machines in the pool are not equal. Some of them
may have fast processors with a large amount of memory, while others may be
slower. The classified ad mechanism provided by Condor allows us to priori-
tize the available machines. We consequently rank the machines based upon
processor speed and available memory. Documentation on the Condor supplied
commands, job universes, checkpointing, and classified ads can be obtained from
the Condor website [9].

5 Results

Two standard datasets were used for our tests with different characteristics.
The galaxy dataset [27] contains a large number of observations, but has a small
number of features. There are 1505 and 957 elements in the two categories, dim
and bright, respectively. Each has 14 measured features. The WDBC database
[26] contains observations of malignant and benign breast tumors. The set
consists of observations for 358 benign tumors and 212 malignant tumors. Each
observation measures 30 attributes.

Instead of performing the validation for all of the features in each dataset,
we varied the number of features selected from 1 to 8. The difficulty of the
mixed integer programs solved for the WDBC data set increases dramatically
as the number of features selected increases. A model is solved for f features
before moving on to selecting f + 1 features. The objective function value for f
features is an upper bound on the objective function value for f+1 features. The
branch and bound code used, in this case XPRESS [10], can use this information
to significantly limit the size of the tree generated, making the problem more
tractable. For each of the runs, we prove the optimality of our solution. We
plot the average number of nodes explored and the average time per solve in
Figures 1 and 2. While in practice it may be sufficient to solve the problems to
within a prespecified error tolerance, this was not carried out here since both
the quality of the solution and utility of our tool were deemed more important.

To maintain efficiency, we attempt to keep as many tasks in the job queue
as possible. To do this we immediately spawn 10L tasks. Whenever we retrieve
results for a model, we immediately add another job to the queue. We decided
to perform 10-fold cross validation 20 times, leading to a maximum of 200 jobs
in the job queue at a time. We use up to 8 features, so a total of 1600 jobs were
created and solved. Each of the jobs can take from several seconds up to several
hours to complete.

Because of the way the branch and bound code is written, it is possible
that a license might not be available. Therefore, we need to detect that an
error occurred in the GAMS code and recover from it. Fortunately, in GAMS,
we can check the model and solver status to determine when such a case was
encountered. We also check for execution errors and reset the value of the
execerror flag. Problematic subproblems are then solved on the local machine.
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Figure 1: Plots of Average Number of Nodes Explored

Figure 2: Plots of Average Time Per Problem
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Figure 3: Plots of Average Misclassification Percentage

In this way, we can detect and recover from the problems encountered.

The Condor pool at the University of Wisconsin-Madison, containing around
300 workstations, was used as our testbed. Our critical resource with this model
is disk space on the submitting machine. Due to this limitation, we only allowed
200 jobs to be concurrently running.

A serial version of the code ran in 3.3 days for the galaxy set and 6.9 days
for the WDBC dataset. 8% and 3% of this total time was spent generating the
models in GAMS. Using Condor we were able to get the results back in 0.6,
1.4 days respectively. The total speed up is then 5.5 and 4.9 time. A plot of
the misclassification error versus the number of features is found in Figure 3.
We can see from the plot that the optimal number of features to choose for the
galaxy dataset is 5 and the best number of features to select for the WDBC
database is 3.

6 Conclusion

In this paper, we have described an easy to use tool that provides enormous
computational resources to a mathematical modeler. The computational power
is harnessed from an existing network of workstations using the Condor resource
manager to detect and deliver idle cycles within this network.

To facilitate high throughput within this metacomputing environment, we
have built an interface to the two most popular modeling languages in opti-
mization, namely AMPL and GAMS. Our system requires no changes to these
languages, but is provided as an add-on feature, built within the confines of the
existing language structures. Once our system is installed, only very minor and
simple changes are required to an optimizer’s model file.

The tool developed is suitable for solving multiple optimization models in
parallel from within AMPL and GAMS. We were able to obtain significant
speed-up for a particular application, namely the feature selection problem.
Other applications, such as multimedia architecture design [11] and radiation
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therapy [28], can also use the mechanisms provided to improve performance.
The only limitation to the number of concurrent jobs is the availability of com-
putational resources.

Our facility can be used in other situations where we can exploit a larger
metacomputer concept. For example, we can have one machine dedicated to
visualization of results and another pool of workstations for solving problems.
Furthermore, due to the tool’s generality, we can also exploit other resources,
such as supercomputers. The only facilities required are a mechanism to spawn
an optimization task on a remote machine and a way to retrieve the results. A
key contribution of our work is that we provide a template for these mechanisms
in the Condor implementation. Other utilities, such as GLOBUS [15], could be
used for a simlilar implementation in a broader metacomputing environment.

Finally, our work would benefit by Condor providing additional facilities.
The ability to add tasks to a pre-existing Condor cluster would help to reduce
the resources spent scheduling. Another feature would be the ability to obtain a
resource and use it to solve several subproblems without relinquishing it. Both
of these features would help to reduce Condor’s overhead. An additional facility
that would simplify the spawn would be for Condor to allow us to submit jobs
to multiple platforms with Condor deciding which one is used based upon our
current ranking of the machines.
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