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Abstract

By setting apart the two functions of a support vector machine: sep-
aration of points by a nonlinear surface in the original space of patterns,
and maximizing the distance between separating planes in a higher di-
mensional space, we are able to define indefinite, possibly discontinuous,
kernels, not necessarily inner product ones, that generate highly nonlin-
ear separating surfaces. Maximizing the distance between the separating
planes in the higher dimensional space is surrogated by support vector
suppression, which is achieved by minimizing any desired norm of sup-
port vector multipliers. The norm may be one induced by the separation
kernel if it happens to be positive definite, or a Euclidean or a polyhe-
dral norm. The latter norm leads to a linear program whereas the former
norms lead to convex quadratic programs, all with an arbitrary separation
kernel. A standard support vector machine can be recovered by using the
same kernel for separation and support vector suppression. On a simple
test example, all models perform equally well when a positive definite ker-
nel is used. When a negative definite kernel is used, we are unable to solve
the nonconvex quadratic program associated with a conventional support
vector machine, while all other proposed models remain convex and easily
generate a surface that separates all given points.

1 Introduction

Support vector machines [18, 1, 13, 19, 7, 16, 17] attempt to separate points
belonging to two given sets in n-dimensional real (Euclidean) space R™ by a
nonlinear surface, often only implicitly defined by a kernel function. Since the
nonlinear surface in R™ is typically linear in its parameters, it can be represented
as a linear function (plane) in a higher, often much higher, dimensional space,
say RF. Also, the original points of the two given sets can also be mapped
into this higher dimensional space. If the two sets are linearly separable in R¥,
then it is intuitively plausible to generate a plane mid-way between the furthest



parallel planes apart that bound the two sets. Using a distance induced by the
kernel generating the nonlinear surface in R™, it can be shown [18] that such a
plane optimizes the generalization ability of the separating plane. If the two sets
are not linearly separable, a similar approach can be used [8, 18] to maximize
the distance between planes that bound each set with certain minimal error.

In this paper we start with a nonlinear separating surface (1), implicitly
defined by some chosen kernel and by some linear parameters v € R™, to be
determined, that turn out to be closely related to some dual variables. Based
on this surface we derive a general convex mathematical program (5) that at-
tempts separation via the nonlinear surface (1) while minimizing some function
f of the parameters u. The function f which attempts to suppress v can be
interpreted as minimizing the number of support vectors, or under more conven-
tional assumptions as maximizing the distance between the separating planes
in R*. The choice of f leads to various support vector machines. We consider
two classes of such machines based on whether f is quadratic or piecewise lin-
ear. If we choose f to be a quadratic function generated by the kernel defining
the nonlinear surface (1), then we are led to the conventional dual quadratic
program (9) associated with a support vector machine which requires positive
definiteness of this kernel. However the quadratic function choice for f can be
divorced from the kernel defining the separating surface and this leads to other
convex quadratic programs such as (10) without making any assumptions on the
kernel. Another class of support vector machines are generated by choosing a
piecewise linear convex function for f and this leads to linear programs such as
(11) and (12), both of which make no assumptions on the kernel. In Section 5
we give some simple applications of all four formulations to the Exclusive-Or
(XOR) problem using first a positive definite second-order polynomial kernel
and then a negative definite third-order polynomial kernel. For the positive
definite kernel all four convex formulations are easily solved and the resulting
nonlinear surface separates all points in all cases. However, for the negative
definite kernel, a powerful state-of-the-art package fails to solve the nonconvex
quadratic program associated with the conventional support vector machine,
whereas all other three convex formulations are easily solved and lead to com-
plete separation of the data by the nonlinear surface.

A word about our notation and background material. All vectors will be
column vectors unless transposed to a row vector by a prime superscript . For
a vector x in the n-dimensional real space R™, the step function z, of z € R™ is
defined as a vector of ones and zeros in R™, with ones corresponding to positive
components of z and zeros corresponding to nonpositive components. The scalar
(inner) product of two vectors z and y in the n-dimensional real space R"™ will
be denoted by z'y. For an m x n matrix A, A; will denote the ith row of A
and A.; will denote the jth column of A. The identity matrix in a real space
of arbitrary dimension will be denoted by I, while a column vector of ones of
arbitrary dimension will be denoted by e. We shall employ the MATLAB “dot”
notation [15] to signify application of a function to all components of a matrix
or a vector. For example if A € R™*", then A2 € R™*" will denote the matrix
of elements of A squared. The base of the natural logarithm will be denoted by



We begin by defining a general kernel function as follows.

Definition 1.1 Let A € R™*" and B € R"*‘. The kernel K (A, B) maps
RMXn Rnxf into Rle.

In particular if  and y are column vectors in R™ then, K (2', A') is a row vector
in R™, K(z',y) is a real number and K (A, A') is an m x m matrix. Note that
for our purposes here K (A, A’) need not be symmetric in general. Examples of
kernels follow, where a € R™, b € R®, u € R and d is an integer.

Example 1.2 Polynomial Kernel (AB + pab')?

Example 1.3 Neural Network Kernel (AB + pab’)e «
Example 1.4 Radial Basis Kernel 5_””‘42_34”2, h,ji=1,...,m, L =m.

Note that our approach allows discontinuous kernels such as the neural net-
work kernel with a discontinuous step function without the need for a smoothing
approximation such as the sigmoid or hyperbolic tangent approximation as is
usually done [18, 7].

2 GSVM: The General Support Vector Machine

We consider a given set 4 of m points in real n-dimensional space of features
R™ represented by the matrix A € R™*™. Each point A;, i =1,..., m, belongs
to class 1 or class -1 depending on whether D;; is 1 or -1, where D € R™*™ is a
given diagonal matrix of plus or minus ones. We shall attempt to discriminate
between the classes 1 and -1 by a nonlinear separating surface, induced by some
kernel K (A, A"), as follows:

K(z',A"YDu =+, (1)

where K (2', A") € R™, according to Definition 1.1. The parameters u € R™ and
v € R are determined by solving a mathematical program, typically quadratic
or linear. A point € R™ is classified in class 1 or -1 according to whether the
decision function

(K(a', A") Du — 7)., (2)

yields 1 or 0 respectively. The kernel function K (z', A") implicitly defines a
nonlinear map from z € R to some other space z € R* where k may be much
larger than n. In particular if the kernel K is an inner product kernel under
Mercer’s condition [9, pp 138-140],[18, 7, 6] (an assumption that we will not
make in this paper) then for z and y in R™:

K(z,y) = h(z)'h(y), 3)



and the separating surface (1) becomes:
h(z)'h(A")Du = v, (4)

where h is a function, not easily computable, from R" to R*, and h(A') € Rk*™
results from applying h to the m columns of A’. The difficulty in computing
h and the possible high dimensionality of R* have been important factors in
using a kernel K as a generator of an implicit nonlinear separating surface in
the original feature space R™ but which is linear in the high dimensional space
RF. Our separating surface (1) written in terms of a kernel function retains this
advantage and is linear in its parameters, u,y. We now state a mathematical
program that generates such a surface for a general kernel K as follows:

min ve'y + f(u)
u7’77y
st. D(K(A,A)Du—ey)+y > e (5)
y =2 0.

Here f is some convex function on R™, typically some norm or seminorm, and v
is some positive parameter that weights the separation error e’y versus suppres-
sion of the separating surface parameter u. Suppression of u can be interpreted
in one of two ways. We interpret it here as minimizing the number of support
vectors, i.e. constraints of (5) with positive multipliers. A more conventional
interpretation is that of maximizing some measure of the distance or margin be-
tween the bounding parallel planes in R*, under appropriate assumptions, such
as f being a quadratic function induced by a positive definite kernel K as in (9)
below. As is well known, this leads to improved generalization by minimizing
an upper bound on the VC dimension [18, 16].

We term a solution of the mathematical program (5) and the resulting deci-
sion function (2) a generalized support vector machine, GSVM. In the following
sections of the paper we derive a number of special cases, including the stan-
dard support vector machine. First, however, it is important to state under
what conditions does the mathematical program (5) have a solution.

Proposition 2.1 Existence of a GSVM For any given A € R™*™, any
D € R™ ™, v > 0 and any kernel K, the mathematical program (5) has a
solution whenever f is a piecewise-linear or quadratic function bounded below
on R™.

Proof The feasible region of (5) is always nonempty. Just take: u =0, v =0
and y = e. When f is piecewise-linear, existence follows from the standard linear
programming result, that a feasible linear program with a bounded objective has
a solution. Just apply this result to each piece of the objective on its polyhedral
region. For a quadratic f the result is a direct consequence of the Frank-Wolfe
existence result for quadratic programming [12]. ¢

We note that no convexity of f was needed for this existence result. However
in our specific applications where duality theory will be invoked, f will need to
be convex.



3 Quadratic Programming Support Vector Ma-
chines

We consider in this section support vector machines that include the standard
ones [18, 7, 6] and which are obtained by setting f of (5) to be a convex quadratic
function f(u) = su'Hu, where H € R™*™ is some symmetric positive definite
matrix. The mathematical program (5) becomes the following convex quadratic
program:

min ve'y + Lu'Hu
w7,y
st. D(K(A,AYDu—ey)+y > e (6)
y =2 0.

The Wolfe dual [20, 14] of this convex quadratic program is:

Iél}iir}n ir'DK(A,A"YDH DK (A, A" Dr —e'r
s.t. e'Dr

0<r < ve
Furthermore, the primal variable u is related to the dual variable r by:
u=H'DK(A, A" Dr. (8)

If we assume that the kernel K(A, A’) is symmetric positive definite and let
H = DK(A, A")D, then our dual problem (7) degenerates to the dual problem
of the standard support vector machine [18, 7, 6] with u = 7:
min  fu/'DK(A,A")Du—e€'u
ueR™
s.t. eDu = 0 )
0<u < ve

The positive definiteness assumption on K (A, A') in (9) can be relaxed to posi-
tive semidefiniteness while maintaining the convex quadratic program (6), with
H =DK(A,A")D, as the direct dual of (9) without utilizing (7) and (8). The
symmetry and positive semidefiniteness of the kernel K (A, A") for this version
of a support vector machine is consistent with the support vector machine liter-
ature. The fact that r = v in the dual formulation (9), shows that the variable u
appearing in the original formulation (6) is also the dual multiplier vector for the
first set of constraints of (6). Hence the quadratic term in the objective function
of (6) can be thought of as suppressing as many multipliers of support vectors
as possible and thus minimizing the number of such support vectors. This is
another interpretation of the standard support vector machine that is usually
interpreted as maximizing the margin or distance between parallel separating
planes.

This leads to the idea of using other values for the matrix H other than
DK(A, A")D that will also suppress u. One particular choice is interesting
because it puts no restrictions on K: no symmetry, no positive definiteness or



semidefiniteness and not even continuity. This is the choice H = I in (6) which
leads to a dual problem (7) with H = I and u = DK (A, A")' Dr as follows:

rélli%r# ir'DK(A,A"K(A,A")'Dr —e'r
s.t. e'Dr

0<r

0 (10)

IA

We note immediately that K (A, A")K(A, A")" is positive semidefinite with no
assumptions on K (A, A'), and hence the above problem is an always solvable
convex quadratic program for any kernel K (A4, A"). In fact by Proposition 2.1
the quadratic program (6) is solvable for any symmetric positive definite matrix
H, and by quadratic programming duality so is its dual problem (7), the solution
r of which can be immediately used to generate a decision function (2). Thus
we are free to choose any symmetric positive definite matrix H to generate a
support vector machine. Experimentation will be needed to determine what are
the most appropriate choices for H.
We turn our attention to linear programming support vector machines.

4 Linear Programming Support Vector Machines

In this section we consider problems generated from the mathematical program
(5) by using a piecewise linear function f in the objective function thus leading
to linear programs.

The most obvious choice for f is the 1-norm of u, which leads to the following
linear programming formulation:

min ve'ly+e's
UyY,Y,8
st. D(K(A,A)Du—ey)+y > e (11)
s>u > —s
y =2 0.

A solution (u,7,y,s) to this linear program for a chosen kernel K (A, A") will
provide a decision function as given by (2). This linear program parallels the
quadratic programming formulation (10) that was obtained as the dual of (5) by
setting f(u) therein to half the 2-norm squared of u whereas f(u) is set to the
1-norm of u in (11). Another linear programming formulation that somewhat
parallels the quadratic programming formulation (9), which was obtained as the
dual of (5) by setting f(u) therein to half the 2-norm squared of K (A, A')3 Du, is
obtained setting f to be the 1-norm of K (A, A")Du. This leads to the following
linear program:

min ve'y +e's
UyYyY,8
st. D(K(A,A)Du—ey)+y > e (12)
s>K(A,A)YDu > -s
y =2 0.



No assumptions of symmetry or positive definiteness on K(A, A’) are needed
in either of the above linear programming formulations as was the case in the
quadratic program (9).

It is interesting to note that if the linear kernel K (A, A") = AA’ is used
in the linear program (11) we obtain the high-performing 1-norm linear SVM
proposed in [5] and utilized successfully in [4, 2, 3]. Hence, if we set w = A'Du
in (11) we obtain [3, Equation (13)].

5 A Simple Illustrative Example

We first demonstrate the workings and sometimes different, yet equally effective,
decision surfaces obtained by the various proposed mathematical programming
formulations, for a positive definite symmetric kernel. We then show that for
a negative definite symmetric kernel, the conventional support vector machine
fails to generate a decision function that correctly separates the given points,
whereas all the new formulations do succeed in generating a decision surface
that correctly separates all the given points.

For our positive definite kernel we use a polynomial kernel of order 2, based
on Example 1.2 with B= A", uy =1, a=b =e and d = 2, and apply it to the
classical Exclusive-Or (XOR) problem. We thus have:

1 1 1 0 0 O
1 -1 0 -1 0 O

A= -1 -1’ D= 0 0 1 0 (13)
-1 1 0 0 0 -1

Hence with the MATLAB [15] “dot” notation signifying componentwise expo-
nentiation we get that:

K(A A" = (AA" + ee')? =

=== O
== O =

— O =
© = = =

and

K(' A = ('A'+e)2 =[x1+m2+1 21 —220+1 —21—22+1 —21 +20+1)2.

(15)
Solution of the linear program (11) with v > 1 gives:
1 1 1
u:ge,'y:(),y:&s:ge, Ve'y+e's:§. (16)

Note that the y = 0 in the above solution means that the decision surface
correctly classifies all given points represented by A and D. Solution of either
quadratic program (9) or (10) with the same kernel and for v > 1 also yields

u = ge. Substitution of this u in (6) and solving the resulting linear program



gives the same v,y as in (16). Thus all mathematical programs (9), (10) and
(11) yield exactly the same decision surface (2):

(K (2", A")Du —7)s = (&' A" + )i Du — 7)s = (z122)x, (17)

a step function of the quadratic function x5, which correctly classifies the two
categories class 1 and class -1 and is in agreement with the solution obtained
in [7, pages 372-375] for the conventional support vector machine (9). Note
that neither mathematical program (10) or (11) required positive definiteness
of K(A,A"), whereas (9) does.

However, it is rather interesting to observe that the linear programming
solution (16) is not unique. In fact another solution is the following:

3
5;:‘}:0;3:

1
, vely+e's = 3 (18)

<
Il
Wi Onl= O
2
I
|
B ORI~ O

For this solution the decision surface (2) turns out to be:
1
(K(a', A)Du = 7). = ((@'A" +)eDu=7)s = 52 = (21 = 22)").. (19)

This decision surface is rather different from that of (17), but it does separate
the two classes correctly and in fact it consists of two parallel lines separating R?
into 3 regions, whereas (17) separates R? into four quadrants each pair of which
contains one class. Both of these decision functions are depicted in Figures 1
and 2.

Solution of the linear program (12) with v > 1 yields:

”Y:_]‘Jy:OJS: (20)

IS

Il
NN
N OO

which gives the decision surface:
1
(z'A" +€)2Du—~), = 5(2 + z120 — (21 — 22)?),. (21)

This decision function divides R? into three regions by a pair of “square root”
curves that correctly classify the two classes as depicted in Figure 3.

Finally in order to show that positive definiteness of the kernel K (A4, A") is
not essential in any of our new mathematical programming formulations (10),
(11) or (12), whereas it is in the conventional quadratic programming formula-
tion (9), we consider the following negative definite kernel:

K(A,A") = (—AA" — ee')3, (22)
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Figure 1: XOR discrimination by a step function of a quadratic func-
tion: (z1z2). obtained by the linear program (11) and the quadratic
programs (9) and (10).

and attempt to solve the mathematical programs (9),(10), (11) and (12) with
this kernel and with v = 1. The powerful PATH mathematical programming
package [11, 10] failed to solve the nonconvex quadratic programming formu-
lation (9) for the conventional support vector machine. In contrast, the same
package solved the quadratic program (10) giving r = gize and a corresponding
u= DK (A, A") Dr = —Le. Substitution of this u in the quadratic program (6)
and solving the resulting linear program gives: v =0, y = 0. The solution y =0
indicates that all points represented by A have been correctly classified, which is
corroborated by the resulting decision surface (z1x2)+, the same as that of (17).
This indicates the effectiveness of the quadratic program (10) in its ability to
extract from the negative definite cubic kernel just the required quadratic term
to achieve correct separation. Similarly both linear programs (11) and (12) gave
y = 0 thus also achieving complete separation with this negative definite kernel.
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Figure 2: XOR discrimination by a step function of a quadratic func-
tion: (2—(z1—x2)?). obtained by another solution of the linear program
(11).

6 Conclusion

We have proposed a direct mathematical programming framework for general
support vector machines that makes essentially no or few assumptions on the
kernel employed. We have derived new kernel-based linear programming for-
mulations (11) and (12), and a new quadratic programming formulation (10)
that require no assumptions on the kernel K. These formulations can lead
to different but equally satisfactory decision functions as that obtained by the
quadratic programming formulation (9) for a conventional support vector ma-
chine that requires symmetry and positive definiteness of the kernel. Even for
negative definite kernels these new formulations can generate decision functions
that separate the given points whereas the conventional support vector machine
does not. This leads us to suggest that further testing and experimentation
with mathematical programming formulations such as (11), (12) and (10) and
others are worthwhile. These formulations may open the way for a variety of
of support vector machines that could be tested computationally against each
other and against existing ones. Furthermore, broad classes of serial and parallel
optimization algorithms can be brought to bear on these different formulations
exploiting their structure in order to permit the processing of massive databases.
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Figure 3: XOR discrimination by a step function of a quadratic func-
tion: (2 + 2172 — (1 — 72)?). obtained by the linear program (12).
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