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1 Introduction

In this paper, we give a survey of complementarity problems that covers some standard
results and presents a number of new developments in the field. These developments are
first described for the most basic problem, the nonlinear complementarity problem (NCP),
which is to find a vector z € IR" satisfying the system of equations and inequalities

or, equivalently,
z; >0, Fi(z)>0, z;Fi(zr)=0 fori=1,...,n.

Here F': X — IR" is a given function defined on a subset X C IR™ containing at least the
nonnegative orthant.

Due to expository and space considerations, we do not always present a result in its most
general form; for example, we will introduce the class of monotone functions in Section 3
and state a couple of important results for this class even though some of them actually hold
for the somewhat broader classes of pseudomonotone or Py-functions.

Many of the basic theoretical results in complementarity problems have been known for
a long time; an excellent survey of much of the research in this area prior to 1990 can be
found in [39]. Further references and more recent work can also be found in [31, 38, 75].
Here, we give just a flavor of the known existence and uniqueness results and concentrate
more on the algorithmic point of view.

The organization of this paper is as follows. Section 2 gives two typical applications of
complementarity problems as they arise in economics and engineering sciences. In Section 3
we then state a few existence and uniqueness results for the standard NCP, and Section 4
describes a couple of different solution techniques for NCP. Section 5 deals with some more
general equilibrium-type problems, namely mixed complementarity problems, variational
inequalities and mathematical programs with equilibrium constraints.

The notation used in this paper is assumed to be rather standard: Then n-dimensional
Euclidean space is denoted by IR™ with ||z|| being the Euclidean norm of a vector x € IR™.
The scalar product of two vectors x,y € IR" is written as x”y. An inequality z > 0 means
that all components of the vector x € IR™ are nonnegative. If F' : R™ — IR" is a continuously
differentiable function, we denote its Jacobian at a point z € IR™ by F'(z). Furthermore,
if M € R™™ denotes an arbitrary matrix with elements m;; and I,J C {1,... ,n} are two
given subsets, then M;; is an |I| x |J|-dimensional submatrix with entries m;; for i € I and
JjedJ.

2 Examples

Complementarity problems arise frequently in the general equilibrium theory [2] of eco-
nomics. Many complex computable general equilibrium models are used for various aspects
of policy design and analysis, including carbon abatement [60] and trade reform [40]. Other



economic applications use game theory [68]; new examples of this are becoming popular due
to deregularization of electricity markets [92].

Our particular example is taken from [88] and is a schematic Arrow-Debreu [2]| equi-
librium problem. The economy contains ¢ commodities, m utility-maximizing consumers
and n profit-maximizing producers. The key variables of the model are the prices p of the
commodities. Given these prices, it is assumed that the agents demand certain amounts
of the commodities, which are supplied so as to maximize profit in each production sector.
Complementarity is derived from Walras’ law, namely that supply will equal demand in the
equilibrium state.

The production side of the economy depends on a technology matrix

A=[a' a® -+ a" ] eR™™

that determines the unit output level of each sector. Generally, the entries of A are nonlinear
functions of the price vector p and can be calculated using production functions (see [32]).
For simplicity, we will assume here a constant technology matrix, and convert the activity
level z; of sector j into commodities using a’z;. Under the aforementioned assumption of
price taking, each sector maximizes profits for given prices p:

max{p”a’z; : z; > 0}.
The necessary and sufficient optimality conditions for production are therefore:
z2>0, A'p <0, p"Az = 0. (1)

For consumption, we derive a demand function for each of the consumers in the economy.
The ith consumer is endowed with an initial wealth w; and, assuming that he is also a price
taker, will maximize his utility subject to his budget constraints. As is typical in such
problems, the utility function is assumed to be either Cobb-Douglas

w'(d) =[]d¥ A>0, D A=1,

or constant elasticity of substitution (CES)

Y, 1/p
u'(d) := (Z )\cx’c’> , Ae>0, c=1,....¢,
c=1

where ). are given parameters dependent on the consumer ¢. The consumer solves
max{u’(d") : p"d" < w;, d' >0}, (2)
which in the case of Cobb-Douglas utility, gives

; )\cwi
de(p, wi) = . (3)




whereas for CES utility,

p) = S = ol 1), @

Typically, wealth is determined from an initial endowment of commodities €’, so that
w; = pTe.

While the prices were assumed above to be given to each of the agents in the economy,
the model actually uses Walras’ law to determine the prices so that markets clear. This
clearance condition is stated succinctly as follows:

p Z 07 Az — Zgl(dz(pa pTei) - ei) Z O: pT(AZ - Zﬁl(dz(pa pTei) - ez)) =0.

If the price p is positive then supply Az + >"'", e’ must equal demand >, d*(p, w;). Oth-
erwise, when excess supply is available, the price must be zero.

Summing all the information regarding production and consumption results in the fol-
lowing complementarity problem:

z2>0, —A'p >0, p"Az =0,
p>0, Az =Y (d'(p,p"e’) — €') > 0, p"(Az — Y12 (di(p, p"e’) — €')) = 0.

Note that if (p, z) solves the above problem, then so does (Ap,z) for any A > 0. This
frequently causes algorithms difficulty in determining a solution. Typically this singularity
is removed by fixing a numeraire, that is fixing a price and dropping the corresponding
complementary relationship.

The data for a particular instance of this model is available in MCPLIB [20]. Many ex-
tensions of this basic framework are possible [32, 86, 87]; examples using specialized software
are described in [27, 29, 86, 87].

Another example of the use of complementarity problems is in the field of structural anal-
ysis. One of the aims of structural analysis is to find displacement, stress and strain fields in
a given structure under given conditions. Typically, loads F' are specified and the problem is
to find displacements u, stresses () and strains g. Compatibility or kinematic relationships
relate u and ¢, equilibrium or statics relationships relate ' and ) and the constitutive laws
relate ) and g. There are many models in use by engineers due to different assumptions for
displacement and constitutive laws. For example, small or large displacements can be as-
sumed, different discretization or finite element models can be applied and time independent
plasticity relationships can be used or not.

Starting in the 1970’s, Maier and colleagues [54, 55, 56, 99, 100] proposed the use of
complementarity in mathematical models for structural mechanics. The general form of the
model is as follows. The compatibility relationships are determined from the geometry of
the structure using ¢ = ¢(u). The equilibrium relationships are normally given by

9%
ou’

so that in a small displacement model ¢ = Cu. The constitutive laws can be written

C'Q=F, C=

Q=Se, p=NA, qg=e+p,
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where e and p represent elastic and plastic strains, S corresponds to elastic stiffnesses for each
member of the structure, NV contains unit outward normals and A are the plastic multipliers.
The yield function satisfies the following complementarity relationship

A>0, —NTQ+Q.+h(X) >0, N'(-N"Q+ Q. +h()) =

The elastic limit @, and h (representing softening behavior) are material properties and are
typically given. Most of the previous work in this area has been concerned with linear models
of this format; typically, many of the above variables are eliminated to construct a standard
form linear complementarity model. A more reasonable modeling approach maintains the
sparsity and the mixed complementarity nature of the above formulation (see Section 5.1
and [98]). Nonlinear extensions of the models are detailed in [7, 32, 100].

3 Existence

In this section, we deal with the following questions: Does the NCP have at least one
solution? When is the solution unique? What is the structure of the solution set?

In general, it is impossible to give a satisfactory answer to any of these questions without
posing certain conditions on the function F. In order to give an idea of what can happen,
consider the following simple examples.

Example 3.1 In all examples given here, the function F' : R™ — IR" is defined for n = 1.

(a) If F(z) = —x — 1, then NCP has no solution since F(z) <0 for all z > 0.

(b) If F(x) =z — 1, then NCP has a unique solution z* = 1.

(c) If F(x) =0, then NCP has infinitely many solutions, namely the half line [0, +00).
(d) If F(z) = (x—1)*—1, then NCP has two isolated solutions, namely x* = 0 and z** = 2.

In order to state some existence and, possibly, uniqueness results, we now introduce some
classes of functions which play the role of corresponding convexity properties in optimization
problems.

Definition 3.2 Let X C IR" be a nonempty set and F' : X — IR™ be a given function. Then
F is said to be

(i) monotone (on X ) if (x — y)"(F(z) — F(y)) > 0 for all z,y € X;
(#1) strictly monotone (on X ) if (x — y)*(F(x) — F(y)) > 0 for all x,y € X with x # y;

(1ii) strongly monotone (on X ) if there exists a constant p > 0 (called modulus) such that
(& = 9)"(F(z) = F(y)) > pllz = yl* for all z,y € X.

Using these definitions, we can state the following result.



Theorem 3.3 Let F : X — IR" be a continuous function on X = IR%. Then the following
statements hold:

(a) If F is monotone on X, then NCP has a convex (possibly empty) solution set.
(b) If F is strictly monotone on X, then NCP has at most one solution.

(c) If F is strongly monotone on X, then NCP has a unique solution.

Unfortunately, the assumption in Theorem 3.3 (c) is rather strong and usually not satisfied in
many practical applications. On the other hand, the monotonicity assumption in Theorem
3.3 (a) is a much weaker condition which, in fact, can be guaranteed to hold in quite a
few situations. So it would be desirable to have an existence result also for monotone
complementarity problems. Fortunately, such a result exists if, in addition, we assume that
there is a strictly feasible point.

Definition 3.4 A vector & € IR" is called strictly feasible for NCP if £ > 0 and F(z) > 0.

The strict feasibility assumption is closely related to the well-known Slater condition in
convex optimization problems and allows us to state the following result.

Theorem 3.5 Let F': X — IR™ be a continuous function on X = IR}. Assume that F is
monotone on X and there is a strictly feasible point & for NCP. Then NCP has a nonempty
and compact solution set.

Proofs of most of the results stated in this section can be found in [66], see also [39, 17] for
some generalizations and specializations.

4 Algorithms

Here we want to describe the basic ideas of some solution methods for the nonlinear com-
plementarity problem. Suitable algorithms should have the following desirable properties:

1. globally convergent
2. locally fast convergent.

The first requirement says that, if possible, we want to have a method which is guaranteed
to find a solution of the NCP independent of how good or bad our starting point is. This
can usually be guaranteed only if F' has certain properties like being monotone or strongly
monotone.

For the second point, a method is viewed as being locally fast convergent if it is locally
superlinearly or quadratically convergent. Fast convergence can often be established under
a condition called strong regularity [81].



Definition 4.1 Let x* be a solution of NCP and define the indez sets
a:={i|lz; >0=F(z")} and p:={i|z]=0=F(z")}.

Then xz* is called a strongly regular solution if the submatriz F'(x*)aq s nonsingular and
the Schur-complement

F'(2")aug.aus/ F'(@%)aa = F'(2%) g — F'(27)gaF" (27) 5o F' (z")ag € RO
has positive principal minors.

The next subsections discuss several different algorithms. Most of these algorithms are based
on a suitable reformulation of the complementarity problem as a nonsmooth equation.

4.1 Projection-Type Methods

Projection-type methods are based on the following simple observation.

Proposition 4.2 A vector x* is a solution of NCP if and only if x* satisfies the fized-point
equation

z = (z—7F(z))+,
where v > 0 is an arbitrary constant and z, denotes the Fuclidean projection of a vector
z € IR™ onto the nonnegative orthant.

Projection-type methods typically attempt a fixed-point iteration. The simplest consists of
the iteration

‘rk+1 = (:rk - ,YF(‘rk))-H k= 05 17 2a RS (5)

where z° € IR" is any given starting point, see [4, 5, 91]. Using Banach’s fixed point
theorem, it follows easily that this method is globally convergent if F' is strongly monotone
and globally Lipschitzian provided the constant v > 0 is sufficiently small. Furthermore, the
rate of convergence one can expect is linear.

Modifications of this projection method have better global convergence properties. For
example, the extragradient method [49, 50, 62, 67] generates iterates using the formula

o*t = (2F — A F((2F —yF(2®) )y, k=0,1,2,..., (6)

i.e., the difference with (5) is that the function F' is not evaluated at the previous iterate x*,
but at a point which would already be the next iterate for (5).

The extragradient method can be shown to be globally convergent if F' is monotone
(rather than strongly monotone) and globally Lipschitzian provided the constant v > 0 is
sufficiently small, see [67].

In fact, it is even possible to remove the assumptions that F' is globally Lipschitzian and
v > 0 has to be sufficiently small (in practice, it is usually not known how small v has to
be). This is usually done by choosing vy dynamically in a suitable line search within the
extragradient method, see [94, 95, 41, 93].

These modified extragradient methods have nice global convergence properties for mono-
tone complementarity problems, but they are at best linearly convergent. Due to their slow
convergence, we recommend their use only if either the complementarity problem is huge or
if it is impractical to form F".
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4.2 Merit Functions

We first give the definition of a merit function as it will be used within this survey.

Definition 4.3 A function ¥ : R™ — R is called a merit function for NCP if it has the
following properties:

(a) ¥(x) >0 for all z € R";
(b) ¥(z) =0 if and only if x is a solution of NCP.
This definition suggests replacing the NCP by the unconstrained minimization problem
min ¥(z), z € R".

In order to apply standard optimization tools to this minimization problem, the merit func-
tion should satisfy certain smoothness conditions. In fact, the merit function ¥ should be at
least once continuously differentiable, if possible even twice. It turns out, however, that most
known merit functions are only once continuously differentiable. For example, the implicit
Lagrangian [59]

n

U(z) = Z {szZ(aj) + % (max*{0, z; — aF;(z)} — 27 + max*{0, Fj(z) — az;} — F,(x)Q)}
@)

(where o > 1 is a fixed parameter), the Fischer-Burmeister merit function [26, 37]

() :=§Z( z3+m<x)2—xi—ﬂ<x))2 (8)

i=1
or the penalized Fischer-Burmeister merit function [10]

n

v = 23 [0 (Vo B2 - @) (0 0 maxt0, 2 maxto, B ) 0

i=1

(where A € (0,1) is a fixed parameter) are all known to be merit functions that are once but
not twice continuously differentiable.

This is one of the reasons why we do not suggest minimizing a merit function directly
using existing unconstrained optimization software. Another reason is that most merit func-
tions can be derived from corresponding equation reformulations (see the following subsec-
tion), and it is the interplay between such an equation reformulation and its merit function
that makes these methods successful.

Apart from this, merit functions are often used in order to monitor global convergence of
different algorithms. We believe this is actually the major contribution of a merit function.

We close this subsection by stating two types of results for the above mentioned three
merit functions. The first result indicates sufficient conditions to ensure that a stationary
point of the merit function ¥ is a global minimum and hence a solution of NCP.



Theorem 4.4 Assume that F : R" — IR™ is continuously differentiable. If F s strongly
monotone, then every stationary point of the implicit Lagrangian (7) is a solution of NCP.
The same statement holds for the Fischer-Burmeister merit function (8) and the penalized
Fischer-Burmeister merit function (9) under the weaker assumption that F' is monotone.

Most algorithms guarantee that any accumulation point of the iterates is at least a stationary
point of ¥ and therefore, under the conditions of Theorem 4.4, a solution of the underlying
complementarity problem. The next result concerns the compactness of the level sets

L(c)={r € R"|¥(z) <c}

for a given constant c. This is a critical result, since a compact level set implies that the
sequence of iterates will have an accumulation point.

Theorem 4.5 Assume that F : IR"™ — IR"™ is continuous and let ¢ € IR be any given
constant. If F is strongly monotone, then the level sets L(c) for any of the three merit
functions (7)-(9) are compact (possibly empty). The same statement holds for the penalized
Fischer-Burmeister merit function (9) under the weaker assumption that F is monotone and
NCP has a strictly feasible point.

There have been many other merit functions proposed in the literature, see e.g. [53, 48, 46,
96]. Currently, the penalized Fischer-Burmeister merit function and those in [48, 96] have
the strongest properties.

4.3 Equation-Based Methods

It is possible to reformulate the NCP as a nonlinear system of equations using so-called
NCP-functions.

Definition 4.6 A function ¢ : R?> — IR is called an NCP-function if it satisfies the condition
#(a,b) =0<=a>0,b>0,ab=0.

The following functions are NCP-functions:

¢(a,b) = min{a, b};

d(a,b) = Va2 + b —a —b;

¢(a,b) = A (Va2 + 2 —a — b) — (1 — A\) max{0, a} max{0, b} with A € (0,1) fixed;

¢(a,b) =

Normally (a) is called the minimum function, and (b) is called the Fischer-Burmeister func-
tion (it first appeared in a paper by Fischer [33] where it is attributed to Burmeister).
Example (c) is termed the penalized Fischer-Burmeister function [10]. Example (d) is the
only NCP-function listed that is differentiable on the whole space IR? [24]. Many other
NCP-functions are known in the literature, see [57, 96].

(a
(b
(c

)
)
)
(d)

—ab + tmin*{0, a + b}.
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For any given NCP-function ¢, define ¢ : R™ — IR" by

¢(z1, Fi(z))
®(z) = : . (10)

We call ® the equation operator corresponding to ¢. As an immediate consequence of the
definition of ®, we obtain the following characterization of the complementarity problem.

Proposition 4.7 Let ¢ be an NCP-function and ® be the corresponding equation operator
defined by (10). Then x* is a solution of NCP if and only if z* is a solution of the nonlinear
system of equations ®(x) = 0.

If F' and the NCP-function ¢ are continuously differentiable, then the same holds for the
equation operator ®. In this case, we can apply the classical Newton method to ®(z) = 0
to solve the underlying NCP. This leads to the iteration

"= 2F — ' (2F) TR (aF), k=0,1,2,...

for a given starting point 2° € IR®. We can expect local fast convergence if the standard
assumptions for the Newton method are satisfied; in particular, the Jacobian matrix ®'(z*)
has to be nonsingular at a solution z* of NCP. Unfortunately, the following result from [45]
shows that this matrix is singular at any degenerate solution. (Here, a solution z* is called
degenerate if the index set § from Definition 4.1 is nonempty.)

Proposition 4.8 Let * be a degenerate solution of NCP. Assume that F' and the NCP-
function ¢ are differentiable, and let ® denote the corresponding equation operator. Then
the Jacobian ®'(x*) is singular.

One way to overcome the singularity problem is to use a nondifferentiable NCP-function.
This, in general, leads to a nondifferentiable equation operator ®. However, ® is usually
at least locally Lipschitzian, so ® is almost everywhere differentiable by a result due to
Rademacher. Let us denote by Dg the set of differentiable points of ®. Then we define the
so-called B-subdifferential [82]

0p®(z) := {H € RV | 3H{2*} C Dy : 2* — 2z and @' (z*) —» H}

as well as its convex hull

0®(z) := conv{op®(x)}

which is called the generalized Jacobian [15]. Elements from dp®(x) or 0®(x) can be used
instead of the classical (and in our situation sometimes not existing) Jacobian ®'(z), and a
typical nonsmooth Newton method then leads to the iteration

"= 2F — H'0(2%), k=0,1,2,..., (11)

where H is an arbitrary element from 9p®(z*).
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Although, in general, it is difficult to compute elements from the B-subdifferential, we are
interested only in particular operators ®, and for those it is usually not difficult to compute
an element Hy, € 0p®(x), see, e.g., [18, 10].

If @ is the equation operator corresponding to either the minimum function, the Fischer-
Burmeister function or the penalized Fischer-Burmeister function and z* is a strongly regular
solution of NCP, then it is possible to show that

(a) all elements H € 0p®(z*) are nonsingular, and

(b) @ satisfies further smoothness assumptions (called semismoothness/strong semismooth-
ness in [79]).

These two requirements are exactly those which are needed in order to prove local superlinear
or quadratic convergence of the iterates generated by (11), see [79, 78].

Furthermore, it is often relatively easy to make these methods globally convergent at
least for monotone problems. To this end, one typically uses the vector

d* == —H; ' ®(a%)

as a search direction and performs a line search along this direction to get sufficient decrease
in the corresponding merit function

U(z) = %@(z)Tq)(x). (12)

Such a decrease is possible if the merit function is continuously differentiable [18]. This con-
dition is satisfied for the Fischer-Burmeister function and the penalized Fischer-Burmeister
function discussed in the previous subsection. In general, these methods work well even for
nonmonotone complementarity problems.

Unfortunately, the merit function ¥ corresponding to the minimum function is not ev-
erywhere differentiable, and therefore the nonsmooth Newton iteration (11) based on the
minimum function is more difficult to globalize. The references [73, 74, 76, 36, 19] give
possible strategies.

4.4 Smoothing and Interior-Point Methods

Given an NCP-function ¢ and the corresponding equation operator ® defined by (10), Propo-
sition 4.8 suggests using nondifferentiable NCP-functions and nonsmooth algorithms. An-
other possibility to deal with nondifferentiable functions is the smoothing technique whose
basis will be described in this section.

Smoothing methods for the NCP typically approximate a nonsmooth NCP-function ¢
by a smooth function ¢, that depends on a smoothing parameter ;1 > 0. For example, it is
possible to approximate the Fischer-Burmeister function by

#la,b) =vVa?+b—a—-br a2+ +p—a—b=:¢,a,b). (13)

Using similar techniques, it is possible to smooth most known NCP-functions.

11



As soon as we have such a smooth approximation ¢,, we define the corresponding equa-
tion operator
Pu(a1, Fi(2))
Du(z) = :
Gu(Tn, Fu())

which is now a smooth approximation of ® if F' itself is smooth.

The main idea of any smoothing method is to apply a standard Newton method to the
nonlinear system of equations ®,(x) = 0 and to drive the smoothing parameter y down to
zero. If we denote the value of 1 at the kth iteration by uy, a typical iteration of a smoothing
method is given by

=g - B, (F) B, (), k=012,

A critical point of all smoothing methods is the way the smoothing parameter pu; gets
updated at each iteration. If this is done in an appropriate way, it is possible to prove global
convergence for monotone problems, and even local fast convergence if a solution x* of the
NCP satisfies the strong regularity assumption, see [8, 9, 12, 13, 102] for a couple of different
smoothing methods.

Smoothing methods have an interesting connection to interior-point methods as pointed
out in [44]. For example, let ¢, denote the function defined in (13). Then it is easy to see
that

éu(a,b) =0<=a>0,b>0,ab = p.

Hence solving the nonlinear system of equations
®,(z) =0 (14)
is equivalent to solving the central path conditions
z; >0, Fi(zx)>0, z;Fi(x)=p Vi=1,...,n (15)

which are typically used as the basis of path-following interior-point methods. However, the
way smoothing methods and interior-point methods solve their (theoretically equivalent)
subproblems (14) and (15), respectively, is completely different. Furthermore, there exist
smooth approximations ¢, of NCP-functions ¢ that are not related to the central path
conditions, see [11].

So far, the theory developed for interior-point methods (see, e.g., the books [101, 104, 85])
is much stronger than the one developed for smoothing methods. For example, interior-point
methods can often be shown to have polynomial complexity and local fast convergence even in
the absense of the strong regularity condition. On the other hand, smoothing-type methods
seem to be quite promising from a numerical point of view, see [11, 6, 47]. We therefore
expect further theoretical improvements in the field of smoothing methods in the near future.

12



4.5 Linearization Methods

Here, the fundamental idea is to linearize F' about the current iterate z* and solve the
corresponding linear complementarity problem

>0, F(z*)+F'(2")(z—2*) >0, 2" (F(z")+ F'(z*)(z—2%)) =0 (16)

to generate z¥*!. In the context of generalized equations, this method, which has been
commonly termed SLCP (for sequential LCP), was shown to be locally well-defined and
fast convergent under the strong regularity condition [43]. Mathiesen [65, 64] successfully
used this scheme for solving equilibrium models such as those outlined in Section 2. While
this method works extremely well in the neighborhood of a solution, there are substantial
difficulties in globalizing the approach. Two key difficulties are subproblems not having
solutions and choosing appropriate merit functions that do not destroy fast local convergence.
It is no mere coincidence that these problems plague sequential quadratic programming
methods too — their theory can be treated analogously.

For strongly monotone variational inequalities, convergence of line search schemes based
on (16) are shown in [34, 97]. A theoretically more general approach is via reformulation of
the problem as a nonsmooth system of equations. The normal map [83] defined as

Fi(y) =F(y:) +y—ys (17)

is equivalent to solving the NCP in the following sense. If y is a zero of (17) then y, solves
the NCP. Furthermore, if x is a solution of the NCP, then 2 — F(z) is a zero of the normal
map. Note two points that contrast the normal map from previously mentioned nonsmooth
equivalents of the NCP. First, it is defined for all points in IR" even if I is only defined on IR} .
It is known to be a piecewise smooth map, the “pieces” correspond to the orthants of IR", a
subdivided manifold [23], typically called the normal manifold. Secondly, the nonsmoothness
is inside the function F' as opposed to around the function F', so that F' is only evaluated
on the positive orthant.

The Newton method proposed in [84], in the context of the normal map, approximates
F. (y) with a piecewise linear normal map

Af(y) = F(yh) + F' () (v — %) + vy — v

The Newton point is a zero of A*. It is well known that this is equivalent to SLCP by
taking z¥ = y%. However, in [80], a globalization scheme was proposed that extends damped
Newton methods for smooth equations to the above situation. Instead of using Lemke’s
method [16, 51] to solve (16), a path p¥(t) is constructed [21] from y* to y**' with the
property that
ARPR(Y) = (1= O FL(y").

This path has exactly the same properties that are required for standard line search methods,
namely that small steps guarantee sufficient decrease. That theory can be extended to this

case, provided that ||F'y (y)|| is used as the merit function, to prove standard global and local
convergence results [21, 80].
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Considerable success has been reported for an implementation of this approach called the
PATH solver [21, 30]. This implementation uses standard large scale linear programming
(simplex) technology [69] to generate the required path. SLCP methods typically use similar
technology, except the subproblems use ray starts in Lemke’s method as opposed to the
required regular point starts in PATH. Some advanced techniques for choosing the initial
piece of the normal manifold can be found in [1, 22].

Most of the above implementations rely on heuristics to deal with the case where the
subproblems have no solution. Recent work in this area has extended the global convergence
theory along different lines. A theoretical framework for globalization of feasible descent
methods was proposed in [28] that uses (8) as a merit function. The main features of
this framework are: (a) it is well-defined for an arbitrary complementarity problem, (b) it
generates only feasible iterates, (c) it has a strong global convergence theory, and (d) it is
locally fast convergent under standard regularity assumptions. The key observations of such
a globalization are that if the subproblems are unsolvable, then a projected gradient step can
be taken for the merit function, guaranteeing progress and that eventually the full Newton
step will be accepted. Numerical results in the cited paper indicate this framework leads to
substantial computational improvements.

5 Extensions

5.1 Mixed Complementarity Problems

While most of this paper has been written in the context of nonlinear complementarity
problems, many practical applications generate problems for which some of the variables
are nonnegative, others are bounded, and others are completely free. To accomodate these
problems, many researchers have investigated the mixed complementarity problem (MCP),
of finding a vector = € [l,u] such that exactly one of the following holds:

x; =1; and Fj(x)
z;=u; and Fi(z)
x; € [l;,u;] and  Fi(x)

NV

0,
0,
0.

Note that [; and u; can be infinite. Two special cases are of importance. When [; = —o0
and u; = oo then the MCP is exactly the problem of finding a zero of F'. This shows why
many of the techniques for solving complementarity problems are closely related to nonlinear
equation theory, as opposed to standard optimization techniques. Furthermore, when I; =0
and u; = oo the NCP is recovered, and thus it is clear that MCP is a generalization of NCP.
Although there are many computational issues related to exploiting this framework, it is well
known that appropriate changes of variables can reduce the MCP to a (larger dimensioned)
NCP. Therefore, for theoretical purposes it is entirely adequate to deal exclusively with
NCP’s. In practice, however, exploiting the MCP structure is of paramount importance
(20, 32].
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5.2 Variational Inequalities

Given a nonempty, closed and convex subset X C IR" and a function F' : X — IR", the
variational inequality problem (VIP) is to find a vector z* € R™ such that

F(z")(x —z*) >0 forall z € X.

It is not difficult to see that the variational inequality problem VIP reduces to NCP if the
feasible set X is equal to the nonnegative orthant IR}, and becomes the MCP if X = [/, u].

Many results and algorithms described above for the complementarity problem can actu-
ally be extended to the more general variational inequality problem. For example, Theorem
3.3 still holds if NCP is replaced everywhere by VIP. Also Theorem 3.5 has an analogous
result for variational inequalities [39].

For solution techniques, all the projection—type methods outlined in Section 4.1 can be
applied to VIP and have the same global convergence properties if we interpret the symbol
z; as the Euclidean projection of a vector z € IR™ onto the feasible set X (rather than the
projection onto IR"}).

Also the linearization methods have a direct translation for variational inequalities. For
example, the SLCP method for VIP generates a sequence {z*} in such a way that z**! is a
solution of the linearized variational inequality

(F(z*) + F'(z*)(z — xk))T (y—x)>0 forallye X,

with similar convergence to that described in Section 4.5.

Furthermore, there exist a couple of gap function approaches for the solution of VIP which
may be viewed as a generalization of the merit function approaches used for complementarity
problems although the situation is much more complicated for VIP.

The gap function was introduced in [4] and is defined by

g(z) :=sup {F(z)"(z —y)}.
yeX
It is not difficult to see that g is nonnegative on the feasible set X and that g(z) = 0
and x € X if and only if x solves VIP. Hence VIP can be rewritten as the constrained

minimization problem
min g(z) s.t. z € X.

Some algorithms based on this are given in [61, 63]. However, the gap function g is not
differentiable in general. Moreover, when X is unbounded, g is in general not finite-valued.
These drawbacks can be avoided by using the regularized gap function [3, 34]

fola) = max { F@)"(@ — ) - 5 o~ ylI"}

yeX

where « is any positive parameter. It is also nonnegative on the set X and x solves VIP if
and only if f,(z) =0 and z € X. Hence, VIP is equivalent to the constrained optimization
problem

min f,(z) s.t. z€X. (18)
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In addition, f, can be shown to be continuously differentiable and finite-valued everywhere.

However, the regularized gap function has a serious drawback: If z* denotes a constrained
stationary point of (18), then F' has to be strongly monotone in order to guarantee that z*
is a solution of VIP. Another extension, the D-gap function [77, 103] also suffers from the
same drawback.

5.3 Mathematical Programs with Equilibrium Constraints

A mathematical program with equilibrium constraints (MPEC) is a constrained optimiza-
tion problem with some of the constraints representing certain equilibrium conditions. For
example, if these equilibrium conditions are described by a complementarity problem, then
an MPEC can be formulated as

min f(z,y) st. z€X,y>0, F(z,y) >0, y"F(z,y) =0; (19)

here, f : R®" x R™ — IR and F : IR" x R™ — IR™ are given functions and X C IRR"
is an abstract constraint which can usually be represented by standard equality/inequality
constraints.

Note that the MPEC (19) has two types of variables, the design variables x and the
state variables y. The complementarity constraints in (19) are parameterized in the design
variables. While extensions or particular instantiations of (19) are possible, we will restrict
ourselves to this form in order to convey the main algorithmic ideas.

The first point is that (19) should not be treated as a standard constrained optimization
problem, since it is well known that it does not even satisfy the Mangasarian-Fromovitz
constraint qualification [14]. Therefore, standard methods from constrained optimization
are prone to failure.

Several researchers have proposed more specialized solution methods for MPEC problems.
Given there is much current research in this area, we will only summarize a few central ideas.

One way to overcome the previously mentioned difficulty in (19) is to add the constraint
y"F(x,y) = 0 to the objective function and then to solve a sequence of penalized problems

min f(x,y) +py"F(z,y) st. z€ X, y>0, F(z,y) >0

with penalty parameter p > 0. In general, this gives only an inexact penalty reformulation
unless some strong conditions hold [52, 58, 89, 90]. Some researchers also proposed exact
penalty functions for the MPEC (19) which, however, are severely nondifferentiable and
therefore difficult to deal with from a numerical point of view.

Another technique for the solution of the MPEC (19) is the implicit programming ap-
proach. These methods assume that, for any given x € X, one can find a solution y(z) of
the complementarity constraints in (19). They replace the variable y by the function y(x)
in the objective function f and try to solve the optimization problem

min f(z,y(z)) st. z€X (20)

which is a problem in the design variables only. The function y(z) is usually nondifferentiable,
so one has to use nondifferentiable optimization methods to solve (20), see [71, 72].
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Another possibility to deal with the MPEC (19) is to reformulate the complementarity
constraints using an NCP-function ¢. One obtains a constrained optimization problem of
the form

min f(z,y) st. z€X, ¢y, Fi(z,y) =0 (i=1,...,m).

In order to avoid the nonsmooth constraints ¢(y;, Fi(z,y)) = 0, we can use the smoothing
idea and approximate this problem by the smooth optimization problem

min f(z,y) st. z€X, ¢u(yi, Fi(z,y)) =0 (i=1,...,m),

where, of course, ¢, is a smooth approximation for ¢, see e.g., (13). This idea has been
exploited in [25, 35, 42]. Alternatively, and closely related to the smoothing idea, we can
apply interior-point techniques to the perturbed problem

min f(z,y) st. z€ X,y >0 Fi(x,y) >0, y;Fi(z,y)=p (G=1,...,m).

For some further techniques and several theoretical results about MPECs, we refer the reader
to [52, 70].
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