
FATCOP: A Fault Tolerant Condor-PVM Mixed Integer

Programming Solver ∗

Qun Chen

Dept. of Industrial Engineering

University of Wisconsin

Madison, WI 53706

email: chenq@cae.wisc.edu

Michael C. Ferris

Department of Computer Sciences

University of Wisconsin

Madison, WI 53706

email: ferris@cs.wisc.edu

March 1999, Revised December 1999

Abstract

We describe FATCOP, a new parallel mixed integer program solver written in PVM.
The implementation uses the Condor resource management system to provide a virtual
machine composed of otherwise idle computers. The solver differs from previous parallel
branch-and-bound codes by implementing a general purpose parallel mixed integer pro-
gramming algorithm in an opportunistic multiple processor environment, as opposed to
a conventional dedicated environment. It shows how to make effective use of resources as
they become available while ensuring the program tolerates resource retreat. The solver
performs well on test problems arising from real applications, and is particularly useful
for solving long-running hard mixed integer programming problems.

1 Introduction

Mixed integer programming (MIP) problems are difficult and commonplace. For many of
these hard problems, only small instances can be solved in a reasonable amount of time
on sequential computers, resulting in mixed integer programming being a frequently cited
application of parallel computing. Most available general-purpose large-scale MIP codes
use branch-and-bound to search for an optimal integer solution by solving a sequence of
related linear programming (LP) relaxations that allow possible fractional values. This paper
discusses a new parallel mixed integer program solver, written in PVM, that runs in the
opportunistic computing environment provided by the Condor resource management system.

Parallel branch-and-bound algorithms for MIP have attracted many researchers (see [8,
12, 21] and references therein). Most parallel branch-and-bound programs were developed
for large centralized mainframes or supercomputers that are typically very expensive. Users
of these facilities usually only have a certain amount of time allotted to them and have to
wait their turn to run their jobs. Due to the decreasing cost of lower-end workstations, large
heterogeneous clusters of workstations connected through fast local networks are becoming
common in work places such as universities and research institutions. In this paper we shall

∗This material is based on research supported in part by National Science Foundation Grants CDA-9726385,

CCR-9619765 and CCR-9972372 and Air Force Office of Scientific Research Grant F49620-98-1-0417.



refer to the former resources as dedicated resources and the later as distributed ownership
resources. The principal goal of the research outlined in this paper is to exploit distributed
ownership resources to solve large mixed integer programs. We believe that a parallel branch-
and-bound program developed to use these types of resources will become highly applicable
in the future.

A parallel virtual machine (PVM) is a programming environment that allows a heteroge-
neous network of computers to appear as a single concurrent computational resource [11]. It
provides a unified framework within which parallel programs for a heterogeneous collection of
machines can be developed in an efficient manner. However PVM is not sufficient to develop
an efficient parallel branch-and-bound program in a distributed ownership environment. The
machines in such an environment are usually dedicated to the exclusive use of individuals.
The application programming interface defined by PVM requires that users explicitly select
machines on which to run their programs. Therefore, they must have permission to access
the selected machines and cannot be expected to know the load on the machines in advance.
Furthermore, when a machine is claimed by a PVM program, the required resources in the
machine will be “occupied” during the life cycle of the program. This is not a desirable
situation when the machine is owned by a person different from the user of the MIP solver.

Condor [9, 16] is a distributed resource management system that can help to overcome
these problems. Condor manages large heterogeneous clusters of machines in an attempt to
use the idle cycles of some users’ machines to satisfy the needs of others who have computing
intensive jobs. It was first developed for long running sequential batch jobs. The current
version of Condor provides a framework (Condor-PVM) to run parallel programs written
in PVM in a distributed ownership environment. In such programs, Condor is used to
dynamically construct a PVM out of non-dedicated desktop machines on the network. Condor
allows users’ programs to run on any machine in the pool of machines managed by Condor,
regardless of whether the user submitting the job has an account there or not, and guarantees
that heavily loaded machines will not be selected for an application. To protect ownership
rights, whenever a machine’s owner returns, Condor immediately interrupts any job that is
running on that machine, migrating the job to another idle machine. Since resources managed
by Condor are competed for by owners and many other Condor users, we refer to such
resources as Condor’s opportunistic resources and the Condor-PVM parallel programming
environment as the Condor-PVM opportunistic environment.

FATCOP represents a first attempt to develop a general purpose parallel solver for mixed
integer programs in Condor’s opportunistic environment. It is hoped that many of the lessons
learned in developing FATCOP can be incorporated into more general branch-and-bound
codes for other applications. FATCOP is implemented on top of both SOPLEX, a public
available simplex object-oriented linear programming solver [24], and the CPLEX LP solver
[6]. FATCOP is written in the C++ programming language with calls to PVM library. It
is designed to make best use of participating resources managed by Condor while handling
resource retreat carefully in order to ensure the eventual and correct completion of a FATCOP
job. Key features of FATCOP include:

• parallel implementation under Condor-PVM framework;

• greedy utilization of Condor’s opportunistic resources;

• powerful MIP techniques including strong branching, pseudocost estimation searching,
preprocessing, and cutting plane generation;

2



• the ability to process both MPS [18] and GAMS [5] models;

• the use of both CPLEX and SOPLEX as its LP solver.

The remainder of this paper is organized as follows. Section 2 is a review of the standard
MIP algorithm components of FATCOP that are implemented to ensure the branch-and-
bound algorithm generates reasonable search trees. Section 3 introduces Condor-PVM par-
allel programming framework and the parallel implementation of FATCOP. In section 4, we
present some numerical results that exhibit important features of FATCOP. A brief summary
and future directions are given in section 5.

2 Components of Sequential Program

A MIP can be stated mathematically as follows:

min cT x

s.t. Ax ≤ b

l ≤ x ≤ u

xj ∈ Z ∀j ∈ I.

Here Z denotes the integers, A is an m×n matrix, and I is a subset of the indices identifying
the integer variables.

Integer programming textbooks such as [19] describe the fundamental branch-and-bound
algorithm for the above MIP problem. Basically, the method explores a binary tree of sub-
problems. Branching refers to the process of creating refinements of the current relaxation,
while bounding of the LP solution is used to eliminate exploration of parts of the tree. The
remainder of this section describes refinements to this basic framework.

2.1 Preprocessing

Preprocessing refers to a set of reformulations performed on a problem instance. In linear
programming this typically leads to problem size reductions. FATCOP identifies infeasibilities
and redundancies, tighten bounds on variables, and improves the coefficients of constraints
[22]. At the root node, FATCOP analyzes every row of the constraint matrix. If, after
processing, some variables are fixed or some bounds are improved, the process is repeated
until no further model reduction occurs.

In contrast to LP, preprocessing may reduce the integrality gap, i.e., the difference between
the optimal solution value and its LP relaxation as well as the size of a MIP problem. For
example, for the model p0548 from MIPLIB [17], an electronically available library of both
pure and mixed integer programs arising from real applications, the FATCOP preprocessor
can only remove 12 rows, 16 columns, and modify 176 coefficients from the original model
that has 176 rows, 548 columns and 1711 non zero coefficients, but pushes the optimal value
of the initial LP relaxation from 315.29 up to 3125.92.

2.2 Cutting Planes and Reduced Cost Fixing

It is well known that cutting planes can strengthen MIP formulations. FATCOP generates
knapsack cuts at each subproblem as described in [14]. There are about 10 models in MIPLIB
for which knapsack cuts are useful. We again take p0548 as an example; the FATCOP code

3



can solve the model in 350 nodes with knapsack cuts applied at each node. However, it is
not able to solve the problem to optimality in 100,000 nodes without knapsack cuts.

FATCOP also incorporates a standard reduced cost fixing procedure [8] that fixes integer
variables to their upper or lower bounds by comparing their reduced costs to the gap between
a linear programming solution value and the current problem best upper bound.

2.3 Variable and node selection

Several reasonable criteria exist for selecting branching variables. FATCOP currently provides
four variable selection options: pseudocost [15], strong branching [4], maximum and minimum
integer infeasibility [1]. Since the pseudocost method is widely used and known to be efficient,
we set it as the default branching strategy. FATCOP can also accept user defined priorities
on integer variables.

FATCOP provides five options for selecting a node from those remaining: depth-first,
best-bound, best-estimation [1], a mixed strategy of depth-first and best-bound [8] (mixed
strategy 1), and a mixed strategy of best-estimation and best-bound (mixed strategy 2).

Mixed strategy 1 expands the subproblems in the best-first order, but with an initial
depth-first phase. FATCOP keeps track of the number of node evaluations over which the
best integer solution has not been updated. It then switches searching strategy from depth-
first to best-first after this number exceeds a pre-specified fixed number. Mixed strategy 2 is
similar to mixed strategy 1, but starts the algorithm with best-estimation search first. Since
best-estimation often finds better solutions than depth first does, mixed strategy 2 is set as
default searching strategy for FATCOP.

3 Condor-PVM parallel implementation of FATCOP

In this section we first give a brief overview of Condor, PVM and the Condor-PVM parallel
programming environment. Then we discuss the parallel scheme we selected for FATCOP
and the differences between normal PVM and Condor-PVM programming. At the end of the
section, we present a detailed implementation of FATCOP.

3.1 Condor-PVM Parallel Programming Environment

Heterogeneous clusters of workstations are becoming an important source of computing re-
sources. Two approaches have been proposed to make effective use of such resources. One
approach provides efficient resource management by allowing users to run their jobs on idle
machines that belong to somebody else. Condor, developed at University of Wisconsin-
Madison, is one such system. It monitors the activity on all participating machines, placing
idle machines in the Condor pool. Machines are then allocated from the pool when users
send job requests to Condor. Machines enter the pool when they become idle, and leave when
they get busy, e.g. the machine owner returns. When an executing machine becomes busy,
the job running on this machine is initially suspended in case the executing machine becomes
idle again within a short timeout period. If the executing machine remains busy then the job
is migrated to another idle workstation in the pool or returned to the job queue. For a job
to be restarted after migration to another machine a checkpoint file is generated that allows
the exact state of the process to be re-created. This design feature ensures the eventual com-
pletion of a job. There are various priority orderings used by Condor for determining which

4



Figure 1: Architecture of Condor-PVM

jobs and machines are matched at any given instance. Based on these orderings, running jobs
may sometimes be preempted to allow higher priority jobs to run instead. Condor is freely
available and has been used in a wide range of production environments for more than ten
years.

Another approach to exploit the power of a workstation cluster is from the perspective
of parallel programming. Research in this area has developed message passing environments
allowing people to solve a single problem in parallel using multiple resources. One of the
most widely used message passing environments is PVM that was developed at the Oak
Ridge National Laboratory. PVM’s design centers around the idea of a virtual machine, a
very general notion that can encompass a nearly arbitrary collection of computing resources,
from desktop workstations to multiprocessors to massively parallel homogeneous supercom-
puters. The goal of PVM is to make programming for a heterogeneous collection of machines
straightforward. PVM provides process control and resource management functions that al-
low spawning and termination of arbitrary processes and the addition and deletion of hosts
at runtime. The PVM system is composed of two parts. The first part is a daemon that
resides on all the computers comprising the virtual machine. The second part of the system
is the PVM library. It contains user-callable routines for message passing, process spawning,
virtual machine modification and task coordination. PVM transparently handles all message
routing, data conversion and task scheduling across a network of incompatible computer ar-
chitectures. A similar message passing environment is MPI [13]. Both systems center around
a message-passing model, providing point-to-point as well as collective communication be-
tween distributed processes.

The development of resource management systems and message passing environments
have been independent of each other for many years. Researchers at the University of Wis-
consin have recently developed a parallel programming framework that interfaces Condor

5



and PVM [20]. The reason to select PVM instead of MPI is that the implementation of
MPI has no concept of process control, hence cannot handle resource addition and retreat
in a opportunistic environment. Figure 1 shows the architecture of Condor-PVM. There are
three processes on each machine running a Condor-PVM application: the PVM daemon, the
Condor process and the user application process. The Condor-PVM framework still relies
on the PVM primitives for application communication, but provides resource management
in the opportunistic environment through Condor. Each PVM daemon has a Condor process
associated with it, acting as the resource manager. The Condor process interacts with PVM
daemon to start tasks, send signals to suspend, resume and kill tasks, and receive process
completion information. The Condor process running on the master machine is special. It
communicates with Condor processes running on the other machines, keeps information about
the status of the machines and forwards resource requests to the Condor central manager.
This Condor process is called the global resource manager. When a Condor-PVM applica-
tion asks for a host (we will use host and machine interchangeably in the sequel), the global
resource manager communicates with Condor central manager to schedule a new machine.
After Condor grants a machine to the application, it starts a Condor process (resource man-
ager) and a PVM daemon on the new machine. If a machine needs to leave the pool, the
resource manager will send signals to the PVM daemon to suspend tasks. The master user
application is notified of that via normal PVM notification mechanisms.

Compared with a conventional dedicated environment, the Condor-PVM opportunistic
environment has the following characteristics:

1. There usually are a large amount of heterogeneous resources available for an application,
but in each time instance, the amount of available resources is random, dependent on
the status of machines managed by Condor. The resources are competed for by owners
and other Condor users.

2. Resources used by an application may disappear during the life cycle of the application.

3. The execution order of components in an application is highly non-deterministic, leading
to different solution and execution times.

Therefore a good Condor-PVM application should be tolerant to loss of resources (host
suspension and deletion) and dynamically adaptive to the current status of Condor pool in
order to make effective use of opportunistic resources.

3.2 Parallel Scheme for FATCOP

FATCOP introduces parallelism when building the branch-and-bound tree. It performs
bounding operations on several subproblems simultaneously. This approach may affect the
order of subproblems generated during the expansion of the branch-and-bound tree. Hence
more or less subproblems could be evaluated by the parallel program compared with its se-
quential version. Such phenomena are known as search anomalies and examples are given in
Section 4.

FATCOP was designed in the master-worker paradigm: One host, called the master
manages the work pool, and sends subproblems out to other hosts, called workers, that solve
LPs and send the results back to the master. When using a large number of workers, this
centralized parallel scheme can become a bottleneck in processing the returned information,
thus keeping workers idle for large amounts of time. However this scheme can handle different

6



kinds of resource failure well in Condor’s opportunistic environment, thus achieve the best
degree of fault tolerance. The basic idea is that the master keeps track of which subproblem
has been sent to each worker, and does not actually remove the subproblem out of the work
pool. All the subproblems that are sent out are marked as “in progress by worker i”. If the
master is then informed that a worker has disappeared, it simply unmarks the subproblems
assigned to that worker.

The remaining design issue is how to use the opportunistic resources provided by Condor
to adapt to changes in the number of available resources. The changes include newly avail-
able machines, machine suspension and resumption and machine failure. In a conventional
dedicated environment, a parallel application usually is developed for running with a fixed
number of processors and the solution process will not be started until the required number
of processors are obtained and initialized. In Condor’s opportunistic environment, doing so
may cause a serious delay. In fact the time to obtain the required number of new hosts from
Condor pool can be unbounded. Therefore we implement FATCOP in such a way that the
solution process starts as soon as it obtains a single host. The solver then attempts to acquire
new hosts as often as possible. At the beginning of the program, FATCOP places a number
of requests for new hosts from Condor. Whenever it gets a host, allocates work to this host
then immediately requests a new host. Thus, in each period between when Condor assigns
a machine to FATCOP and when the new host request is received by Condor, there is at
least one “new host” request from FATCOP waiting to be processed by Condor. This greedy
implementation makes it possible for a FATCOP job to collect a significant amount of hosts
during its life cycle.

3.3 Differences between PVM and Condor-PVM programming

PVM and Condor-PVM are binary compatible with each other. However there exist some
run time differences between PVM and Condor-PVM. The most important difference is the
concept of machine class. In a regular PVM application, the configuration of hosts that
PVM combines into a virtual machine usually is defined in a file, in which host names have
to be explicitly given. Under the Condor-PVM framework, Condor selects the machines on
which a job will run, so the dependency on host names must be removed from an application.
Instead the applications must use class names. Machines of different architecture attributes
belong to different machine classes. Machine classes are numbered 0, 1, etc. and hosts are
specified through machine classes. A machine class is specified in the submit-description
file submitted to Condor, that specifies the program name, input file name, requirement on
machines’ architecture, operating system and memory etc.

Another difference is that Condor-PVM has “host suspend” and “host resume” notifi-
cations in addition to “host add”, “host deletion” and “task exit” notifications that PVM
has. When Condor detects activity of a workstation owner, it suspends all Condor processes
running there rather than killing them immediately. If the owner remains for less than a pre-
specified cut-off time, the suspended processes will resume. To help an application to deal
with this situation, Condor-PVM makes some extensions to PVM’s notification mechanism.

The last difference is that adding a host is non-blocking in Condor-PVM. When a Condor-
PVM application requests a new host be added to the virtual machine, the request is sent
to Condor. Condor then attempts to schedule one from the pool of idle machines. This
process can take a significant amount of time, for example, if there are no machines available
in Condor’s pool. Therefore, Condor-PVM handles requests for new hosts asynchronously.

7



Figure 2: Interactions among Condor, FATCOP and GAMS

The application can start other work immediately after it sends out a request for new host.
It then uses the PVM notification mechanism to detect when the “host add” request was
satisfied. This feature allows our greedy host request scheme to work well in practice.

Documentation and examples about these differences can be found at

http://www.cs.wisc.edu/condor/.

FATCOP was first developed as a PVM application, and modified to exploit Condor-PVM.

3.4 Parallel Implementation of FATCOP

FATCOP consists of two separate programs: the master program and the worker program.
The master program runs on the machine from which the job was submitted to Condor. This
machine is supposed to be stable for the life of the run, so it is generally the machine owned
by the user. The design of FATCOP makes the program tolerant to any type of failures
for workers, but if the machine running the master program crashes due to either system
reboot or power outage, the program will be terminated. To make FATCOP tolerant even
of these failures, the master program writes information about subproblems in the work pool
periodically to a log file on the disk. Each time a FATCOP job is started by Condor, it reads
in the MIP problem as well as the log file that stores subproblem information. If the log file
does not exist, the job starts from the root of the search tree. Otherwise, it is warm started
from some point in the search process. The work pool maintained by the master program
has copies for all the subproblems that were sent to the workers, so the master program is
able to write complete information about the branch-and-bound process to the log file.

The worker program runs on the machines selected by Condor. The number of running
worker programs changes over time during the execution of a FATCOP job.

8



3.4.1 The Master Program

FATCOP can take both MPS and GAMS models as input. The interactions among Condor,
FATCOP and GAMS are as follows. A user starts to solve a GAMS model in the usual way
from the command line. After GAMS reads in the model, it generates an input file containing
a description of the MIP model to be solved. Control is then passed to a PERL script. The
script generates a Condor job description file and submits the job to Condor. After submitting
the job, the script reads a log file periodically until the submitted job is finished. The log
file is generated by Condor and records the status of the finished and executing jobs. After
completion, control is returned to GAMS, which then reports the solution to the user. This
process is depicted in Figure 2. The process is similar for MPS file input.

The MIP model is stored globally as an LP and integrality constraints. The master
program first solves the LP relaxation. If it is infeasible or the solution satisfies the integrality
constraints, the master program stops. Otherwise, it starts a sequential MIP solve process
until there are N solved LP subproblems in the work pool. N is a pre-defined number, that
has a default value and can be modified by users. This process is based on the observation
that using parallelism as soon as few subproblems become available may not be a good policy,
since doing so may expand more nodes compared to a sequential algorithm. Associated with
each subproblem in the work pool is the LP relaxation solution and value, modified bound
information for the integer variables, pseudocosts used for searching and an optimal basis,
that is used for warm starting the simplex method. The subproblems in the work pool are
multi-indexed by bound, best-estimation and the order in which they entered the pool. The
indices correspond to different searching rules: best-first, best-estimation and depth-first.

Following the initial subproblem generation stage, the master program sends out a number
of requests for new hosts. It then sits in a loop that repeatedly does message receiving.
The master accepts several types of messages from workers. The messages passing within
FATCOP are depicted in Figure 3 and are explained further below. After all workers have
sent solutions back and the work pool becomes empty, the master program kills all workers
and exits itself.

Host Add Message. After the master is notified of getting a new host, it spawns a child
process on that host and sends an LP copy as well as a subproblem to the new child process.
The subproblem is marked in the work pool, but not actually removed from it. Thus the
master is capable of recovering from several types of failures. For example, the spawn may
fail. Recall that Condor takes the responsibility to find an idle machine and starts a PVM
daemon on it. During the time between when the PVM daemon was started and the message
received by master program, the owner of the selected machine can possibly reclaim it. If a
“host add” message was queued waiting for the master program to process other messages,
a failure for spawn becomes more likely.

The master program then sends out another request for a new host if the number of
remaining subproblems is at least twice as many as the number of workers. The reason for
not always asking for new host is that the overhead associated with spawning processes and
initializing new workers is significant. Spawning a new process is not handled asynchronously
by Condor-PVM. While a spawn request is processed, the master is blocked. The time to
spawn a new process usually takes several seconds. Therefore if the number of subproblems
in the work pool drops to a point close to the number of workers, the master will not ask for
more hosts. This implementation guarantees that only the top 50% “promising” subproblems

9



Figure 3: Message passing inside FATCOP

considered by the program can be selected for evaluation. Furthermore, when the branch-
and-bound algorithm eventually converges, this implementation prevents the program from
asking for excess hosts. However, the program must be careful to ensure that when the ratio
of number of remaining subproblems to number of hosts becomes bigger than 2, the master
restarts requesting hosts.

Solution Message. If a received message contains a solution returned by a worker, the
master will permanently remove the corresponding subproblem from the work pool that was
marked before. It then updates the work pool using the received LP solutions. After that, the
master selects one subproblem from the work pool and sends it to the worker that sent the
solution message. The subproblem is marked and stays in the work pool for failure recovery.
Some worker idle time is generated here, but the above policy typically sends subproblems
to workers that exploit the previously generated solution.

Host Suspend Message. This type of messages informs the master that a particular ma-
chine has been reclaimed by its owner. If the owner leaves within 10 minutes, the Condor
processes running on this machine will resume. We have two choices to deal with this situ-
ation. The master program can choose to wait for the solutions from this host or send the
subproblem currently being computed in this host to another worker. Choosing to wait may
save the overhead involved in solving the subproblem. However the waiting time can be as
long as 10 minutes. If the execution time of a FATCOP job is not significantly longer than
10 minutes, waiting for a suspended worker may cause a serious delay for the program. Fur-
thermore, the subproblems selected from the work pool are usually considered “promising”.
They should be exploited as soon as possible. Therefore, if a “host suspend” message is
received, we choose to recover the corresponding subproblems in the work pool right away.

10



This problem then has a chance to be quickly sent to another worker. If the suspended worker
resumes later, the master program has to reject the solutions sent by it in order that each
subproblem is considered exactly once.

Host Resume Message. After a host resumes, the master sends a new subproblem to
it. Note that the master should reject the first solution message from that worker. The
resumed worker picks up in the middle of the LP solve process that was frozen when the host
was suspended. After the worker finishes solving the LPs, it sends the solutions back to the
master. Since the associated subproblem had been recovered when the host was suspended,
these solutions are redundant, hence should be ignored by the master.

Host Delete/ Task Exit Message. If the master is informed that a host is removed
from the parallel virtual machine or a process running on a host is killed, it recovers the
corresponding subproblem from the work pool and makes it available to other workers.

3.4.2 Worker Program

The worker program first receives an LP model from the master, then sits in an infinite loop
to receive messages from the master. The messages from the master consist of the modified
bound information about the subproblem P , the optimal basis to speed up the bounding
operation, and the branching variable that is used to define the “up” and “down” children
P+ and P−. The worker performs two bounding operations on P+ and P− and sends
the results back to the master. The worker program is not responsible for exiting its PVM
daemon. It will be killed by the master after the stopping criteria is met.

4 Computational Experience

A major design goal of FATCOP is fault tolerance, that is, solving MIP problems correctly
using opportunistic resources. Another design goal is to make FATCOP adaptive to changes
in available resources provided by Condor in order to achieve maximum possible parallelism.
Therefore the principal measures we use when evaluating FATCOP are correctness of solu-
tions, and adaptability to changes in resources. Execution time is another important per-
formance measure, but it is affected by many random factors and heavily dependent on the
availability of Condor’s resources. For example a FATCOP job, that can be finished in one
hour at night, may take 2 hours to finish during the day because of the high competition for
the resources. We first show how FATCOP uses as many resources as it is able to capture,
then show how reliable it is to failures in its environment and conclude this section with
numerical results on a variety of test problems from the literature.

4.1 Resource Utilization

In Wisconsin’s Condor pool there are more than 100 machines in our desired architecture
class. Such large amounts of resources make it possible to solve MIP problems with fairly
large search trees. However the available resources provided by Condor change as the status
of participating machines change. Figure 4 demonstrates how FATCOP is able to adapt to
Condor’s dynamic environment. We submitted a FATCOP job in the early morning. Each
time a machine was added or suspended, the program asked Condor for the number of idle

11



Figure 4: Resource utilization for one run of FATCOP

machines in our desired machine class. We plot the number of machines used by the FATCOP
job and the number of machines available to the job in Figure 4. In the figure, time goes
along the horizontal axis, and the number of machines is on the vertical axis. The solid line
is the number of working machines and dotted line is the number of available machines that
includes idle machines and working machines used by our FATCOP job. At the start, there
were some idle machines in Condor pool. The job quickly harnessed about 20 machines and
eventually collected more than 40 machines with a speed of roughly one new resource every
minute. At 8 a.m. it became difficult to acquire new machines and machines were steadily lost
during the next four hours. There were some newly available resources at 8:30 and 10:00 (see
the peaks of the dotted lines), but they became unavailable again quickly, either reclaimed
by owners or scheduled to other Condor users with higher priority. At noon, another group
of machines became available and stayed idle for a relatively long time. The FATCOP job
acquired some of these additional machines during that time. In general, the number of idle
machines in Condor pool had been kept at a very low level during life cycle of the FATCOP
job except during the start-up phase. When the number of idle machines stayed high for
some time, FATCOP was able to quickly increase the size of its virtual machine. We believe
these observations exhibit that FATCOP can utilize opportunistic resources very well.

We show a FATCOP daily log in Figure 5. The darkly shaded area in the foreground
is the number of machines used and the lightly shaded area is the number of outstanding
resource requests to Condor from this FATCOP job. During the entire day, the number of
outstanding requests was always about 10, so Condor would consider assigning machines to
the job whenever there were idle machines in Condor’s pool. At night, this job was able to

12



Figure 5: Daily log for a FATCOP job

Run Starting time Duration Eavg Number of suspensions

1 07:50 13.5 hrs 32 145
2 12:01 14.9 hrs 29 181
3 16:55 11.1 hrs 40 140
4 21:00 10.1 hrs 49 118

Table 1: Average number of machine and suspensions for 4 FATCOP runs

use up to 85 machines. Note that the Computer Sciences Department at the University of
Wisconsin reboots all instructional machines at 3 a.m. every day. This job lost almost all its
machines at that time, but it quickly got back the machines after the reboot.

To get more insight about utilization of opportunistic resources by FATCOP, we define
the average number of machines used by a FATCOP job Eavg as:

Eavg =

Emax∑

k=1

kτk

T
,

where τk is the total time when the FATCOP job has k workers, T is the total execution
time for the job, Emax is the number of available machines in the desired class. We ran 4
replications of a MIP problem. The starting time of these runs is distributed over a day. In
Table 1 we record the average number of machines the FATCOP job was able to use and

13



Name #rows #columns #nonzeros #integers

10TEAMS 230 2025 12150 1800
AIR04 823 8904 72965 8904
AIR05 426 7195 52121 7195
DANOINT 664 521 3232 56
FIBER 363 1298 2944 1254
L1521AV 97 1989 9922 1989
MODGLOB 291 422 968 98
PK1 45 86 915 55
PP08ACUTS 246 240 839 64
QIU 1192 840 3432 48
ROUT 291 556 2431 315
VPM2 234 378 917 168

Table 2: Summary of test problems from MIPLIB3.0

number of machines suspended during each run. The first value shows how much parallelism
the FATCOP job can achieve and the second value indicates how much additional work had
to be done. In general the number of machines used by FATCOP is quite satisfactory. At run
4, this value is as high as 49 implying that on average FATCOP used close to 50% of the total
machines in our desired class. However, the values vary greatly due to the different status
of the Condor pool during different runs. In working hours it is hard to acquire machines
because many of them are used by owners. After working hours and during the weekend,
only other Condor users are our major competitors. As expected FATCOP lost machines
frequently during the daytime. However during the runs at night FATCOP also lost many
machines. It is not surprising to see this, because the more machines FATCOP was using,
the more likely it would lose some of them to other Condor users.

4.2 Fault tolerance

FATCOP has been tested on the problems from MIPLIB3.0. There are 59 problems in the
test set with different size and difficulty. The FATCOP sequential and parallel solver solved
41 and 44 problems respectively with default options, accounting for 70% and 75% of the
total test problems. Our computational results show that for problems that can be solved
in minutes by the FATCOP sequential solver, the parallel solver may take longer to solve
them. In solving these problems, FATCOP spent a large portion of the total solution time
on spawning and initializing workers. It suggests that it is only beneficial to use FATCOP to
solve MIPs with large search trees and/or complex LP bounding operations. We report the
computational results in this section for the problems that can not be solved by the FATCOP
sequential solver in an hour, but solvable by the parallel solver. The size of these problems
are shown in Table 2.

FATCOP was configured to use default branching and node selection strategies, i.e. pseu-
docost branching and best-estimation based mixed searching strategy (mixed strategy 2).
We let FATCOP switch to best-bound search after the best integer solution had remained
unchanged for 10,000 node evaluations. MIPLIB files do not provide branching priorities, so
priority branching is irrelevant to problems from MIPLIB. CPLEX was used as the primary

14



Name Solution Proven Execution Tree
gap(%) optimal? time size

10TEAMS 0 yes 23.2 hrs 163,130
AIR04 0 yes 9.6 hrs 4,606
AIR05 0 yes 29.3 hrs 23,512
DANOINT 0 no 48.0 hrs 640,300
FIBER 0 yes 4.7 hrs 172,788
L1521AV 0 yes 1.9 hrs 17,846
MODGLOB 0 no 48.0 hrs 12,459,812
PK1 0 yes 1.6 hrs 475,976
PP08ACUTS 0 yes 6.4 hrs 3,469,870
QIU 0 yes 1.2 hrs 16,448
ROUT 3 no 48.0 hrs 2,582,441
VPM2 0 yes 2.4 hrs 926,740

Table 3: Results obtained by the FATCOP sequential solver

Name Average Average Eavg Average Number Speedup
Execution time Tree size of suspensions

10TEAMS 1.9 hrs 201,553 20 256 12.2
AIR04 56.8 mins 5,464 11 94 10.1
AIR05 2.0 hrs 16,842 41 55 14.7
DANOINT 24.2 hrs 3,451,676 22 239 -
FIBER 1.1 hrs 174,489 42 25 4.3
L1521AV 24.6 mins 12,266 35 32 4.6
MODGLOB 44.8 hrs 704,056,478 18 512 -
PK1 14.5 mins 8554.886 28 12 6.6
PP08ACUTS 2.8 hrs 5,001,600 19 122 2.3
QIU 22.2 mins 16,376 27 9 3.2
ROUT 12.3 hrs 22,851,706 29 295 -
VPM2 46.7 mins 1,014,943 15 59 3.1

Table 4: Average results obtained by the FATCOP parallel Condor-PVM solver for 3 repli-
cations (all instances were solved to optimality)

15



LP solver. Due to licensing limitations, when the maximum number of CPLEX copies was
reached, SOPLEX was called to perform bounding operations in the workers.

We first tried to solve the problems in Table 2 using the FATCOP sequential solver on
a SUN Sparc SOLARIS2.6 machine. Each run was limited by 48 hours. We present the
results in Table 3. The first column in the table shows the relative difference between the
best solution found by the FATCOP sequential solver and the known optimal solution. If the
optimal solution is found, column 2 shows whether the solution is a proven optimal solution
or not. Execution time in column 3 is clock elapsed time. Tree size at the time when the
program was terminated is given in column 4.

The test problems were then solved by the FATCOP parallel Condor-PVM solver. The
number of problems N generated in the initial stage was set to 20. At the beginning the
master sends 10 requests for new hosts to Condor. FATCOP implements an asynchronous
algorithm, hence communication may occur at any time and is unpredictable. Furthermore,
the number of workers in the life cycle of a FATCOP job keeps changing so that the branch-
and-bound process may not follow the same path for different executions. Our experiments
show that the search trees were almost never expanded in the same order for a given problem.
This feature often leads FATCOP to different execution times. We ran 3 replications for each
problem. For all runs, FATCOP found provable optimal solutions for the test problems. We
report the average execution time, search tree size, resource utilization and resource losses
in Table 4. During all runs, FATCOP lost some workers, but the program returned correct
solutions. Therefore FATCOP was tolerant to the resource retreats in our experiments.

The FATCOP parallel solver found provable optimal solutions for all the test problems.
However, the sequential solver failed to prove optimality on danoint, modglob and rout. For
the problems solved by both, the parallel solver achieved reasonable speedup over the sequen-
tial solver. Run times for these problems were reduced by factors between 2.3− 14.7.

We observed from Table 4 that many test problems exhibit strong search anomalies.
pp08aCUTS and pk1 have much larger search trees when solved by the parallel solver. On
the other hand 10teams, air05 and l1521av have smaller search trees. While such search
anomalies are well-known for parallel brand-and-bound, the highly non-deterministic nature
of the Condor opportunistic environment can also lead to even more varying search patterns.

A remarkable example in this test set is modglob. The FATCOP sequential solver could not
find a provable optimal solution for this problem in 48 hours, while it was solved to optimality
by the parallel solver in 44.8 hours. It ran over two Computer Sciences Department daily
reboot periods, used 18 machines on average and had 512 machines suspended during the
run. To test fault tolerance of the master, we let FATCOP write the work pool information
to disk every 100,000 node evaluations. We interrupted the job once (to simulate a master
failure) and re-submitted the problem to Condor. FATCOP then started from where the
work pool information was last recorded. This indicates that FATCOP is tolerant to both
worker and master failures.

4.3 Application test problems

FATCOP was used to solve two classes of problems arising from marketing and electronic
data delivery. One class of problems, VOD, are applications to video-on-demand system
design [7, 10]. The other class of problems PROD are applications to product design [23].
Two problems from each application were formulated as GAMS models. The size of the
problem instances and results found by FATCOP are reported in Table 5. Execution time

16



Name #rows #columns #nonzeros #integers time Eavg

VOD1 107 306 1207 303 7.5 mins 11
VOD2 715 1513 7316 1510 5.2 mins 18
PROD1 208 251 5350 149 1.2 hrs 25
PROD2 211 301 10501 200 10.8 hrs 35

Table 5: Results for VOD and PROD problems

Relative Gap % Nodes with GA Nodes without GA

20 1,178 864,448
15 2,230 > 1, 000, 000
10 6,506 > 1, 000, 000
5 37,224 > 1, 000, 000
0 137,866 > 1, 000, 000

Table 6: Comparison of with GA and without GA for PROD1

is clock elapsed time, and does not include GAMS compilation and solution report time.
User defined priorities are provided in VOD2. It turns out that this information is critical to
solve this problem in a reasonable amount of time [10]. For PROD problems, good integer
feasible solutions were found using a Genetic Algorithm (GA) [2] first, and these solutions
were delivered to FATCOP as incumbent values. Provable optimal solutions were found for
all the problem instances in Table 5.

In practice many problem specific heuristics are effective for finding near-optimal solu-
tions quickly. Marrying the branch-and-bound algorithm with such heuristics can help both
heuristic procedures and a branch-and-bound algorithm. For example, heuristics may identify
good integer feasible solutions for the early stage of the branch-and-bound process, decreasing
overall solution time. On the other hand, the quality of solutions found by heuristic proce-
dures may be measured by the (lower-bounding) branch-and-bound algorithm. FATCOP can
use problem specific knowledge to increase its performance. Based on interfaces defined by
FATCOP, users can write their own programs to round an integer infeasible solution, im-
prove an integer feasible solution and perform operations such as identifying good solutions
or adding problem specific cutting planes at the root node. These user defined programs
are dynamically linked to the solver at run time and can be invoked by turning on appro-
priate solver options. For product design problems, good solutions found by the GA made
the problems solvable. We performed a set of experiments on PROD1 by turning on and off
the GA program at the root node. We limited the number of node evaluations to 1,000,000.
The computational results are given in Table 6. Without the GA, FATCOP cannot reduce
the optimality gap below 15% in the given number of node evaluations. However, with good
solution found by the GA at the root node, FATCOP is able to prove optimality for this
problem in around 1.2 hours.

17



5 Summary and Future Work

In this paper, we provide a parallel branch-and-bound implementation for MIP using dis-
tributed privately owned workstations. The solver, FATCOP, is designed in the master-
worker paradigm to deal with different types of failures in a opportunistic environment with
the help of Condor, a resource management system. To harness the available computing
power as much as possible, FATCOP uses a greedy strategy to acquire machines. FATCOP
is built upon Condor-PVM and SOPLEX, both of which are freely available.

FATCOP has successfully solved real life MIP problems such as the applications to video-
on-demand system design and product design. It was also tested on a set of standard test
problems from MIPLIB. Our computational results show that the solver works correctly in
the opportunistic environment, and is able to utilize opportunistic resources efficiently. A
reasonable speedup was achieved on long running MIPS over its sequential counterpart.

Our future work include strengthening parallel branch-and-bound procedures with more
cutting planes such as flow cover cuts and disjunctive cuts.

6 Acknowledgement

The authors are grateful to both Miron Livny and Michael Yoder for advice and assistance
in using Condor and the Condor-PVM environment. We also wish to thank Jeff Linderoth
for his very insightful comments.

References

[1] M. Avriel and B. Golany. Mathematical Programming for Industrial Engineers. Marcel
Dekker, 1996.

[2] P. V. Balakrishnan and V. S. Jacob. Genetic Algorithms for Product Design. Manage-
ment Science, 42:1105-1117, 1996.

[3] M. Benichou and J. M. Gauthier. Experiments in Mixed-Integer Linear Programming.
Management Science, 20(5):736–773, 1974.

[4] R. E. Bixby, W. Cook, A. Cox and E. K. Lee. Parallel Mixed Integer Programming.
Center for Research on Parallel Computing Research Monograph CRPC-TR95554, 1995.

[5] A. Brooke, D. Kendrick and A. Meeraus. GAMS: A User’s Guide. The Scientific Press,
South San Francisco, CA, 1988.

[6] CPLEX Optimizer. http://www.cplex.com/

[7] D. L. Eager, M. C. Ferris and M. K. Vernon. “Optimized Regional Caching for On-
Demand Data Delivery,” Multimedia Computing and Networking, Proceedings of SPIE,
3654:301–316, Bellingham, Washington 1999.

[8] J. Eckstein. Parallel Branch-and-Bound Algorithms for General Mixed Integer Program-
ming on the CM-5. SIAM J. Optimization, 4(4):794–814, 1994.

[9] D. H. Epema and M. Livny. A Worldwide Flock of Condors: Load Sharing among Work-
station Clusters. Journal on Future Generations of Computer System, 12, 1996.

18



[10] M. C. Ferris and R. R. Meyer. Models and Solution for On-Demand Data Delivery Prob-
lems. To appear in Approximation and Complexity in Numerical Optimization: Contin-
uous and Discrete Problems, Kluwer Academic Publishers, 1999.

[11] A. Geist, A. Beguelin, J. J. Dongarra, W. Jiang, R. Manchek and V. S. Sunderam.
PVM: Parallel Virtual Machine - A User’s Guide and Tutorial for Networked Parallel
Computing. The MIT Press, Cambridge, Massachusetts, 1994.

[12] B. Gendron and T. G. Crainic. Parallel Branch-and-Bound Algorithms: Survey and
Synthesis. Operations Research, 42(6):1042–1060, 1994.

[13] W. Gropp, E. Lusk and A. Skjellum. Using MPI : Portable Parallel Programming with
the Message-Passing Interface. The MIT Press, Cambridge, Massachusetts, 1994.

[14] Z. Gu, G. L. Nemhauser and M. W. P. Savelsbergh. Lifted Cover Inequalities for 0-1
Integer Programs: Computation. INFORMS Journal on Computing, 10:427–437, 1995.

[15] J. Linderoth and M. W. P. Savelsbergh. A Computational Study of Search Strategies for
Mixed Integer Programming. Report LEC-97-12, Georgia Institute of Technology, 1997.

[16] M. J. Litzkow and M. Livny. Condor - A Hunter of Idle Workstations. in Proceedings
of the 8th International Conference on Distributed Computing Systems, Washington,
District of Columbia, IEEE Computer Society Press, 108-111, 1988.

[17] R. E. Bixby, S. Ceria, C. M. McZeal and M.W.P. Savelsbergh. MIPLIB 3.0.
http://www.caam.rice.edu/b̃ixby/miplib/miplib.html.

[18] J. L. Nazareth. Computer Solution of Linear Programs. Oxford University Press, 1987.

[19] G. L. Nemhauser and L. Wolsey. Integer and Combinatorial Optimization. Wiley Inter-
science, 1989.

[20] J. Pruyne and M. Livny. Providing Resource Management Services to Parallel Appli-
cations. Proceedings of the Second Workshop on Environments and Tools for Parallel
Scientific Computing, May, 1994.

[21] E. A. Pruul and G. L. Nemhauser. Branch-and-Bound and Parallel Computation: a
Historical Note. Oper. Res. Letters, 7:65-69, 1988.

[22] M. W. P. Savelsbergh. Preprocessing and Probing for Mixed Integer Programming Prob-
lems. ORSA J. on Computing, 6: 445–454, 1994.

[23] L. Shi, S. Ólafsson and Q. Chen. An Optimization Framework for Product Design.
submitted to Management Science, 1998.

[24] R. Wunderling. Documentation of the SOPLEX Library.
http://www.zib.de/Optimization/Software/Soplex/.

19


