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Abstract  Preprocessing techniques are extensively used by the linear and inte-
ger programming communities as a means to improve model formula-
tion by reducing size and complexity. Adaptations and extensions of
these methods for use within the complementarity framework are de-
tailed. The preprocessor developed is comprised of two phases. The
first recasts a complementarity problem as a variational inequality over
a polyhedral set and exploits the uncovered structure to fix variables and
remove constraints. The second discovers information about the func-
tion and utilizes complementarity theory to eliminate variables. The
methodology is successfully employed to preprocess several models.
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1. INTRODUCTION

General purpose codes for solving complementarity problems have
previously lacked one significant feature: a powerful preprocessor. The
benefits of preprocessing have long been known to the linear [1, 2] and
integer [19] programming communities, yet have not been studied from
a complementarity perspective. The purpose of a preprocessor is to
reduce the size and complexity of a model to achieve improved perfor-
mance by the main algorithm. Another benefit of the analysis performed
is the detection of some provably unsolvable problems. In this paper,
a comprehensive preprocessor is developed for the mixed complemen-
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tarity problem and computational experience with an implementation is
reported.

Complementarity problems arise in a variety of disciplines; a multi-
tude of applications from engineering and economics are described in
[10]. The AMPL and GAMS modeling languages aid practitioners in
developing and solving these applications by providing a mixed com-
plementarity problem (MCP) format, enabling their models to be com-
municated directly to available solvers [6, 9]. The problem generated
by the modeling languages and accepted by most solvers is the (box-
constrained) variational inequality:

0e F(x) + N[L,U}(x)a (1.1)

where F' : R" — R™ is continuously differentiable and [L, U] represents a
Cartesian product of closed, not necessarily compact, intervals. In this
definition, Nx () is the normal cone [18] of X defined by

N (z) {{y\@—w,y)@so, Vie X} ifzeX

T otherwise,

under the assumption that X is a closed convex set. Note that (1.1) is
just the standard variational inequality

z€ X and (F(z),z—2z) >0Vz € X,

with X representing the set [L, U].

The preprocessor for complementarity problems works upon two equiv-
alent manifestations of the same model. To understand the basic method-
ology developed, consider a standard quadratic programming problem:

min %:cTQm +clz
s.t. Az > b (1.2)
z >0,

where Q € R™*" is a symmetric matrix, A € R™*", b € ™, and c € R".
(1.2) can be posed as a variational inequality in one of two ways. First,
when dual variables, A\, are introduced, the complementary slackness
conditions for quadratic programs form the box constrained variational
inequality:

Q -—-AT T c
0¢€ [ A 0 \ + b +
Alternatively, the first order conditions can be succinctly written as
a polyhedrally constrained variational inequality:

0 € Qz + c+ Ne(z), (1.4)

(1.3)

Ny ()
Nym(A) |
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where C = {z | Az > b,z > 0}. Since C is a geometric object, a
computationally attractive algebraic representation can be chosen for
C. Exploiting this fact is a key concept in the preprocessor developed.

As will become evident, the mixed complementarity problem can be
written in forms analogous to (1.3) and (1.4). Each formulation is used
by a distinct phase of the preprocessor. The majority of the preprocessor
reductions documented involve exploiting the polyhedral set C in (1.4).
As mentioned above, the MCP is communicated to a solver as a box-
constrained variational inequality (more similar to (1.3)) that is not
conducive to this analysis. From the problem description, the polyhedral
structure in C' will need to be recovered before it can be used. Once this
is achieved, the general inequalities in the set C can be used to modify
the bounds L; and U; on a variable z;. Note in particular

n
N[L,U]('T) = H NLiin(‘Ti)
=1
and that if z; = L; = U; then N, 1,(z;) = R. Hence, fixing a variable
x; means that the corresponding constraint

0e E(.’L‘) + N[L,-,Ui](xi) =0¢ FZ(SC) +R

is trivially satisfiable. Thus, preprocessing in the complementarity case
attempts to fix variables and thus remove constraints.

Section 2. begins by detailing the process used to uncover and exploit
polyhedral structure in an MCP. The general idea is to reformulate (1.1)
in a form similar to (1.4), with a general polyhedral set C replacing
[L,U]. The representation of the set C' can then be modified by either
removing constraints or bounding variables. When converted back to a
mixed complementarity problem a reduction in the number of variables
is realized. Note that the process developed in this section recovers most
checks done by traditional linear programming codes [1] when given the
complementary slackness necessary and sufficient conditions for linear
programs, but is applicable to a larger class of problem.

Further reductions to the MCP can be made by utilizing information
about F' and its Jacobian, VF', as developed in Section 3.. In particular,
the range of F' is used to eliminate variables from the model. Row
and column duplicates are also removed. By detecting special block
structure, a sequence of smaller problems can be solved to find an answer
to the original problem.

Finally, both phases are incorporated into a complete preprocessor
for mixed complementarity problems in Section 4.. Computational re-
sults for some test problems are presented indicating the success of the
procedure outlined.
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More information about the problem must be provided to the prepro-
cessor than is necessary to solve it. The basic requirement is a listing of
the linear and nonlinear elements in the Jacobian of F'. This knowledge
is sufficient to find and utilize special structures. The AMPL [11] and
GAMS [3] environments already provide this information. Users of other
interfaces, such as MATLAB and NEOS [8], will need to develop the ap-
propriate routines. Some checks in Section 3. based on the nonlinear
functions need to know the range of F' over X. Routines to calculate
these intervals are not currently provided by any of the interfaces.

2. POLYHEDRAL CONSTRAINTS

The first stage of the preprocessor detects polyhedral structure in a
mixed complementarity problem. The structure is exploited by trans-
forming the source problem into a model of lower dimension where C
is the intersection of a closed product of intervals and a polyhedral set.
The representation of C' is then modified by removing constraints and
changing bounds. The resultant MCP has fewer variables. After the
preprocessed model has been solved, a solution to the original MCP is
recovered with a postsolve step.

2.1 PRESOLVE

Polyhedral structure can be exploited when given a special type of
complementarity problem. Suppose the variables can be split into (z,y)
and (1.1) has the form:

e[ e

where F' : R” — R" is continuously differentiable, A € R™*" b € R™,
X C R" is a Cartesian product of closed intervals, and ¥ C R™ is a
Cartesian product of R, R, or R_. Note that if ¥; = {0} then y; can be
fixed at zero and the corresponding A; .z — b; removed. Further, if Y; =
[L;,00) or Y; = (—o0,U;] for some finite L; or U; then an appropriate
change of variables, possibly adding constant vectors to F(z) and b,
replaces Y; with 8, and R_ respectively.
A related problem to (1.5) is to find an Z solving:

0 € F(z) + Nxn{z|p—Azeye}(T), (1.6)
where Y denotes the polar cone of Y which is defined as

Yo:={y|(y,9) <0, VgeY}
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Associated with such an Z is a multiplier g, constructed as a solution to
the following linear optimization problem:

mingcy (AZ — b,y) (1.7)
st. 0€F(z)— ATy + Nx(z). ‘

(1.5), (1.6), and (1.7) are formally related by the following theorem.

Theorem 1 (Propositions 1 and 2 of [17]) Under the assumptions placed
on X,Y, and the structure of the problem given above the following hold:

1. If (z,y) solves (1.5) then T is a solution to (1.6).

2. If z solves (1.6) then the optimization problem (1.7) has a nonempty
solution set. Further, for any y solving (1.7), (Z,7) solves (1.5).

Theorem 1 provides the machinery used by the first stage of the pre-
processor. The Jacobian matrix, VF' is stored in both row- and column-
oriented data structures. Utilizing the information provided about the
types of the elements in the Jacobian, a row and column possessing the
necessary skew symmetric structure of (1.5) can be quickly identified.
Theorem 1 is then applied to this single row and column to create a
problem of the form (1.6). The polyhedral set, X N {z | b — Az € Y°},
is then checked for possible reductions, that is whether the general con-
straint, b — Az € Y°, can be moved into the bound constraint, X. The
new set X N{z | b— Az € Y°} is identical to X N{z | b— Az € Y°} but
the MCP recovered using Theorem 1 on the reduced model is typically
simpler. The identification and modification continues until no further
simplifications are made. Note that Theorem 1 is only applied to a small
number of constraints at a time during preprocessing while [17] uses the
machinery to ready a problem for solution by a polyhedrally constrained
variational inequality solver [20]. Finding a set of polyhedral constraints
with maximum size from (1.1) is a harder problem and is not considered.

Information about any modifications performed are pushed onto a
stack. The stack is a convenient data structure with two basic opera-
tions: pushing an element onto the top and popping an element from
the top. Changes are pushed onto the stack in the order performed and
are popped off the stack in the reverse order during the postsolve.

The complete algorithm for the first phase of the preprocessor is as
follows:

A.1 Mark all rows and columns with the skew symmetric structure as
eligible candidates, excluding any rows complementary to a vari-
able with finite lower and upper bounds.
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A.2 Using some ordering, pick one of the candidates and transform the
problem into a polyhedral-constrained equation using Theorem 1.

A.3 Analyze the polyhedral set and modify the representation as de-
tailed below. Push any changes on top of the stack.

A.4 Transform the modified problem back to box-constrained form.
A.5 Repeat steps A.2-A.4 until there are no reductions possible.

The implementation performs all simple reductions (Section 2.1.1) first.
Once all of these are completed, forcing constraints (Section 2.1.2) and
redundant rows (Section 2.1.3) are checked. In a nonlinear model, ad-
ditional rows and columns can become linear when variables are fixed.
Therefore, after all tests are completed on the current list of eligible
candidates, another pass is made through the Jacobian to mark new
eligible rows and columns which are checked using A.2—-A.5. When no
new eligible rows and columns are created the process stops.

2.1.1 Simple Reductions. The simplest reduction that can be
made is when an eligible row contains zero elements. This corresponds
to the case where the polyhedral set in the transformed problem is:

Xn{z|beY°. (1.8)

If (1.8) is empty, then the original problem has no solution. Otherwise,
the polyhedral component is irrelevant and (1.8) can be replaced with:

X n{z|be {0}°)

Note that {0}° = R, rendering the constraint meaningless. When trans-
formed back to the original space, the multiplier is fixed at 0 and re-
moved from the problem, resulting in a reduction of one variable and
the corresponding constraint.

Another simple reduction occurs when the eligible row contains a
single element. The polyhedral set in this case is:

Xn{z|b—az; € Y°} (1.9)

Since Y is Ry, R_, or R, the constraint will be either b — az; < 0,
b—ax; > 0, or b— azx; = 0 respectively. Each of these imply simple
bounds on z;, which can be explicitly placed in X. Therefore, (1.9) is
replaced by the set:

X n{z | b—az; € {0}°},
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where X includes the tightened bounds on ;. This modification results
in a reduction of at least one variable.

The final case considered is when an eligible equality row, 7, contains
elements in exactly two columns, j and k, one of which is a column
singleton. Assume variable k£ is the column singleton. If row k is also
eligible, then X is modified by changing the bounds on z; to make xy
free. Immediately following this change, the k constraint is preprocessed
out of the model using the singleton check described above.

2.1.2 Forcing Constraints. Forcing constraints are constraints
for which, given the bounds on the variables, there is exactly one feasible
point. Once it is known that only one solution is possible, all variables
appearing in the constraint can be fixed, potentially leading to a large
reduction in problem size.

Let the polyhedral constraint be written in the form:

XNn{z|b—alz eV} (1.10)

Without loss of generality, assume that Y = R which means that Y° =
R_. (1.10) can then be explicitly stated as:

Xn{z|b<alz}.

Using X, bounds, a and @, can be implied such that a < o’z < @ for all
z € X. The ranges are determined as follows:

a = Z aiLi+ Z aiUi

{ila;>0} {ila; <0}
a= Z a;U; + Z a; L,
{ila;>0} {ila; <0}

where L; and U; are the lower and upper bounds on variable ¢ respec-
tively. If @ < b the problem is infeasible. Otherwise, if a = b, there is
only one feasible point and the values of the variables are fixed at U; for
all ¢ with a; > 0 and L; for all 7 with a; < 0. Set (1.10) is then replaced
with:

Xn{z|b—a"z e {0}°}, (1.11)

where X contains the fixed variables. The net result is that the forc-
ing constraint and a number of variables are removed from the original
problem.
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Case Action

YI=Rand Y, =R If b = ¢ remove one of the constraints, otherwise
the problem is infeasible.

Yy=Rand Yo =R,  Ifb > cremove the inequality constraint, otherwise
the problem is infeasible.

Yiy=R;and Yo =R, If b > c remove the constraint associated with Y5
otherwise remove the Y] constraint.

YiI=R_and Yo =R, If b < ¢, the problem is infeasible. Otherwise if
b = ¢ make one of the constraints an equation and
remove the other. Otherwise, it is a range con-
straint; nothing is done by the preprocessor.

Table 1.1 Redundant Rows Cases

2.1.3 Redundant Rows. Redundancy in the Jacobian matrix
can cause difficulty for many algorithms. Therefore, it is advantageous
to remove as much redundancy as possible. The algorithm given in [21]
is used to identify duplicate rows. All eligible constraints are checked
simultaneously with the algorithm. After finding two duplicate rows, any
inconsistencies are uncovered (meaning that the model in unsolvable)
and one of the constraints is removed wherever possible. Without loss
of generality, let the constraint set be written as

XN {:1: (1.12)

b—az cY?
c—az €Yy |-

Several cases are presented in Table 1.1 along with the associated action
taken. The other cases are symmetric to those given in the table.

2.14 Extensions. Therequirementsin Theorem 1 can be slightly
weakened. Let D € R"*™ be a positive diagonal matrix. Then the fol-
lowing form will suffice instead of (1.5):

0€ F(‘T)_DATy]Jr[NX(‘”)]. (1.13)

Ax —b

(1.13) can be reduced to (1.5) by applying a diagonal row scaling of

D 0
0
multiplication by a positive diagonal matrix.

-1
] and recalling that the normal cone does not change under
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2.2 POSTSOLVE

Once the algorithm has solved the preprocessed model, all of the pre-
solve steps must be undone in the reverse order to recover a solution to
the original model. The stack of presolve records is used for this purpose.
The following steps are performed:

B.1 Remove a presolve record from the top of the stack.
B.2 Transform the problem into the polyhedral-constrained setting.
B.3 Undo the changes made to the model.

B.4 Solve the optimization problem (1.7) using Z to obtain g. The
generated (Z,7) solves the model before the presolve step was per-
formed.

B.5 Repeat until the presolve stack is empty.

The optimization problem (1.7) is typically only in one dimension and
is trivial to solve. Care must be taken when calculating Nx (Z) because
the algorithm may only find a solution to within a prespecified tolerance.
Therefore, variables within some tolerance of their bounds should be
treated as if they are exactly on their bounds when constructing the
normal cone.

The only case where two variables are involved in the optimization
problem is when two inequalities are replaced by one equation. The
optimization problem in this case has an objective function equal to
zero because at the solution Az —b = (0. Therefore, a feasible point need
only be generated. In the presolved model, 0 € F(z) — ay + Nx(z) for
the solution (Z,9) given. Without loss of generality, assume Y7 = R
and Yo = R_. Select y1 € Y1 = R4 and y2 € Yo = R_ such that
y1 + y2 = 9. These conditions can always be trivially met. Because the
inclusion holds at 4, it also holds for the y; and yo selected, which is
then a feasible point as required.

In the unfortunate case that the algorithm fails to solve the prepro-
cessed model, the optimization problem may have no solution either
because it is infeasible or unbounded. In this case, a value for the multi-
plier is chosen in Y such that the norm of the error in the box constrained
representation is minimized given z. This greedy heuristic will lead to
the best possible value in terms of the residual at each stage in the un-
rolling of the preprocessing steps, but not necessarily the least residual
solution overall.
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3. STRUCTURAL IMPLICATIONS

The second phase of the preprocessor utilizes complementarity theory
to eliminate variables from the MCP. The reductions documented are
based on the rows and columns of the Jacobian, VF. The main ingredi-
ent for the row-based rules is uniqueness. If the value for a variable can
be uniquely determined prior to solving the remainder of the problem,
it is fixed and removed. The column-based rules rely upon an existence
argument. Once a solution to the reduced model is known, a solution
to the original problem always exists. Mechanisms developed include
using interval evaluations, uncovering duplicate rows and columns, and
exploiting special structure. Note that when a row with zero elements
and corresponding zero column are present in a model, the variable can
always be fixed at an appropriate value and removed.

3.1 INTERVALS

An interval evaluator determines the tightest possible F and F such
that forallz € X, F < F(z) < F. For example, with a linear constraint,
F(z) = a”z — b, the bounds

Fo= ) aiLj+ ) aUj—b

{jla;>0} {jla;<0}
E: Z ajUj+ Z aij—b
{jla; >0} {jla;<0}

can be used where L; and U; are the lower and upper bounds on variable
7 respectively. The range of a nonlinear function is dependent upon the
model and the bounds must be computed by a user supplied routine.

Using the ranges, variables in the model can be fixed. If F, > 0, then
x; must be fixed at its finite lower bound or the problem is infeasible.
Furthermore, if F; < 0, then z; must be fixed at its finite upper bound
or the problem is infeasible. Some of the constraints in the model will
imply tighter bounds on the variables; i.e. a linear constraint. These
can then be used by the interval evaluator to strengthen the range of
other constraints, leading to more variables being fixed.

3.2 DUPLICATES

Duplicate rows and columns can be very problematic for a solver. By
applying the same algorithm used in the polyhedrally constrained case
(Section 2.1.3), two such linear rows or columns can be identified. First
consider the case of two duplicate rows in the problem. Without loss of
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Case Action
Y=Rand Z =% If b # ¢ the problem is infeasible. Otherwise, noth-
ing is done.

Y=Rand Z =R, Ifb > cfix z at its lower bound. Otherwise, if b < c,
the problem is infeasible.

Y=%R,and Z=R; Ifb> cfix z at its lower bound. If b < ¢ fix y at
its lower bound.

Y=R_and Z =R, Ifb<c, the problem is infeasible. Otherwise, noth-
ing is done.

Table 1.2 Duplicate Rows Cases

generality, the model can be written as:

F(z,y,z) Nx(z)
0€ | a'(z,y,2) +b | + | Ny(y) ] :
aT(mayaz) +c NZ(Z)

Table 1.2 discusses the reductions that can be made.
To remove column duplicates, one of the variables needs to be free
and the other must have two finite bounds. The problem in this case is:

0€ F(.’L‘) +ay +az +NX><§R><[L,U](:L'ayaz)1

where L and U are the finite lower and upper bounds on z. The reduction
removes the z variable from the problem and solves the reduced system
to obtain (z,y). If F,(z) + a,y > 0, then Z = L. Otherwise, 2 = U. Set
9 = y — 2. Then (Z,9,2) solves the original problem as can be easily
verified.

3.3 SPECIAL STRUCTURE

For a system of nonlinear equations, if the problem has the form:

Fiz) 1 _Jo0
ot ]~ 0]
with F : R — R* then F(z) = 0 can be solved giving Z and then a 7
solving G(Z,y) = 0 can be found. If F'(z) = 0 has multiple solutions, this
procedure may fail by finding an Z for which G(Z,y) = 0 has no solution.
For example, consider F(z) = 22 —1 and G(z,y) = z+%?. F(z) =0 has
two solutions £ = 1 and £ = —1. Choosing Z = 1 leads to the case where
G(z,y) has no solution. If F(z) = 0 has at most one solution, this case
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is precluded provided the original problem has a solution. Similarly, the

difficulty is alleviated if G(Z,y) has a solution 7 for all Z, since whatever

z is found, the system G(Z,y) = 0 is solvable. This section applies

similar block reduction schemes to the mixed complementarity problem.
Consider a problem of the form:

¢ Lo ]+ [ 50 |

where, as usual, X and Y are Cartesian products of intervals. There
are two sets of reductions that can be made. If 0 € F(z) + Nx(z) has
a unique solution, Z, then z can be fixed and the algorithm will only
work on the reduced problem 0 € G(Z,y) + Ny(y). If F(z) is an affine
function, i.e. F(x) = Az —b, then it is known that 0 € F(z)+ Nx (x) has
a unique solution if Ax, the normal map associated with this variational
inequality, is coherently oriented [16]. For example, when X = RE,
this condition is equivalent to A being a P-matrix. For simple cases,
coherent orientation can be checked; e.g. when k£ =1 or 2. In particular,
when F(z) = az — b is a row singleton with a linear element on the
diagonal, then coherent orientation is @ # 0 when X = R and ¢ > 0
in all other cases. Satisfaction of this condition guarantees uniqueness
of the solution. When k£ = 2, the condition is again that A is a P-
matrix, unless one or more of the intervals defining X is . In these later
cases, the conditions are weaker. Table 1.3 summarizes all of the checks
for coherent orientation. The preprocessor identifies double blocks by
finding a linear row with two elements, one of which is on the diagonal.
A check of the row corresponding to the other variable is performed to
see if there is a doubleton block.

The other reduction to consider is where 0 € G(z,y) + Ny (y) has a
solution for all z € X. In this case, 0 € F(z) + Nx(z) is solved to find
Z and then a ¥ satisfying 0 € G(Z,y) + Ny (y) is found. Assume that
G(z,y) is linear in y, i.e. G(z,y) = H(z)+ By. The coherent orientation
conditions outlined above applied to B suffice in this case as well, since
they guarantee existence as well as uniqueness. However, to guarantee
only existence, weaker conditions are sufficient. For £ = 1 it is necessary
and sufficient to have coherent orientation or Y compact. When k = 2,
the conditions are outlined in Table 1.4 and are derived from Theorem
2 in [14] and [13]. The conditions given for the cases where there is at
least one free variable are necessary and sufficient to guarantee existence
for all z € X.

In the nonlinear setting, intervals on the Jacobian elements can be
used to verify conditions related to uniqueness and existence of a solu-
tion. For example in the single element case, if the value of the Jacobian
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Case Coherent Orientation Condition
X=% A1 #0

X = [L OO) A1’1 >0

X = ( o0 U] A1,1 >0

X = [L U] Al,l >0

X=RxR det(A) #0

X =R x[L,0) det(A) # 0 and sign(det(A)) = sign(Ai1)
X =R x (—o0,U] det(A) # 0 and sign(det(A)) = sign(Ai 1)
X =R x|[L,U] det(A) # 0 and sign(det(A)) = szgn(Al,l)
All other cases det(A) > 0 and sign(Ai,1) = sign(Asp) =

Table 1.8 Coherent Orientation Conditions. X is assumed to be a Cartesian product
of intervals with L and U being two finite numbers.

Case Condition

Y=R B #0

Y = [L, ) Bi1>0

Y = (—OO, U] Bl,l >0

Y =[L,U] nothing

Y=RxR det(B) # 0

Y =R x [L, 0) det(B) # 0 and sign(det(B)) = sign(B,1)
Y =R x (—o0,U] det(B) # 0 and sign(det(B)) = sign(B1,)
Y:%X[L,U] Bl,l;«éO

Y = [L,0) x [L, 00) B >0or

(det(B) > 0 and sign(B,1) = sign(Baz) = 1)
Y = [L,00) x (—o0, U] B >0or
(det(B) > 0 and sign(B1,1) = sign(Bap) = 1)
Y U] Bii#0
Y = (—o0,U] x (—o0,U] B >0 or
(det(B) > 0 and sign(B1,1) = sign(Bag) = 1)
Y = (—o0,U] x [L, U] B11#0
Y L,U] nothing

Table 1. 4 Existence Conditions. Y is assumed to be a Cartesian product of intervals
with L, L, U, and U being finite numbers.
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element is always positive, i.e. it is a P-function, then the existence
and uniqueness is always guaranteed and the same substitutions can be
performed. Finding the solution becomes more difficult, as it involves
solving a nonlinear problem.

4. RESULTS

The preprocessing algorithm that was implemented alternates be-
tween exploiting the polyhedral structure and the functions. Initially all
possible reductions based on the polyhedral constraints are made. Then
all reductions based on the functional implications are made. These two
steps are repeated until no changes are made to the model.

The potential for preprocessing is mainly limited to finding and ex-
ploiting linear parts of the problem. Interval evaluators are not available
at present in the modeling language environments. The majority of the
reductions made come from exploiting polyhedral structure. However,
the reductions from the second stage can also be significant to the success
of the algorithm.

The preprocessor was tested on three different sets of problems. The
first test compares the performance of the MCP preprocessor to the
one used by the commercial CPLEX code [15]. Using the linear pro-
grams contained in NETLIB [12], the first order conditions from lin-
ear programming were constructed and given to the MCP preprocessor.
CPLEX was given the original linear program. Reported in Tables 1.5
and 1.6 are the sizes of the preprocessed models. CPLEX is capable
of performing aggregations, while the MCP preprocessor currently does
not. Therefore, in the tables, the size of the model produced by CPLEX
both with aggregations (With) and without aggregations (Without) are
stated. As evidenced by the table, the MCP preprocessor is competi-
tive with CPLEX on linear programs when aggregations are not allowed.
One interesting point to note is that the problems fit*p and fit*d are
primal-dual pairs - the MCP preprocessor generates an identical sys-
tem in both cases. Exploiting dual information in the fit*p problems
significantly reduces the size of the preprocessed models.

A second test was performed using quadratic programming problems
reformulated using the complementary slackness conditions (1.3). Some
artificial quadratic programs were created for testing purposes from the
NETLIB collection. A term of %xTx was added to the objective func-
tion and the resulting complementary slackness conditions were given
to the preprocessor and the PATH algorithm [5]. Table 1.7 reports the
size reductions and compares the solution times on the original and
preprocessed models. On the problems successfully preprocessed, the
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CPLEX
Model Size  With Without MOCP Preprocessor
adlittle 153 147 147 146
afiro 59 48 52 56
agg 651 271 275 433
agg2 818 530 538 743
agg3 818 531 541 743
bandm 7 398 483 467
beaconfd 435 59 220 205
blend 157 108 140 149
bnll 1807 1443 1668 1670
bnl2 5769 3031 4226 4341
boeingl 909 711 713 720
boeing2 320 281 281 292
bore3d 547 105 182 191
brandy 431 265 311 311
capri 608 383 547 547
cycle 4743 2700 3416 3884
czprob 4221 2904 3349 3430
d2q06¢ 7338 6450 6871 6286
d6cube 6588 5844 5867 6423
degen2 978 855 977 974
degen3 3321 3125 3321 3310
dflool 18301 13062 17091 16915
€226 505 397 411 414
etamacro 1006 754 850 821
800 1378 933 983 1284
finnis 1066 739 786 808
fitld 1050 1048 1048 1050
fitlp 2304 2054 2054 1050
fit2d 10525 10388 10388 10525
fit2p 16525 16525 16525 10525
forplan 554 466 476 483
ganges 2990 1202 2177 2466
gfrd-pnc 1708 1116 1656 1656
greenbea 7691 4055 5900 5763
greenbeb 7679 4044 5892 5738
growlh 945 945 945 945
grow22 1386 1386 1386 1386
grow’ 441 441 441 441
israel 316 304 304 304
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Table 1.5 Comparison of CPLEX Preprocessor to the one developed on NETLIB

problems
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CPLEX
Model Size With  Without MCP Preprocessor
kb2 84 67 79 82
lotfi 461 399 399 408
nesm 3585 3325 3373 3440
perold 1937 1571 1769 1757
pilot4 1380 1111 1200 1210
sc105 207 117 207 207
sc205 407 231 405 405
scb0a 97 57 97 97
sc50b 96 56 96 96
scagr2h 971 591 841 734
scagr’ 269 159 229 194
scfxm1 787 612 694 698
scfxm?2 1574 1228 1388 1396
scfxm3 2361 1844 2082 2094
scorpion 746 172 590 453
scrs8 1659 913 1429 1438
scsdl 837 837 837 817
scsd6 1497 1497 1497 1481
scsd8 3147 3147 3147 3135
sctapl 780 608 608 660
sctap2 2970 2303 2303 2500
sctap3 3960 3111 3111 3340
sharelb 342 297 315 310
share2b 175 168 172 172
shell 2061 1427 1935 1935
ship041 2478 2174 2182 2208
ship04s 1818 1426 1482 1500
ship081 4995 3569 3569 3611
ship08s 3099 1760 1858 1890
ship121 6469 4756 4756 4790
ship12s 3805 2114 2258 2288
stair 741 512 740 740
stocforl 228 113 190 188
stocfor2 4188 2474 3822 3825
tuff 878 514 738 788
woodlp 2838 1898 1898 1971
Total 181745 137202 155734 150753

Table 1.6 Comparison of CPLEX Preprocessor to the one developed on NETLIB
problems (cont.)
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Original Preprocessed
Model Size  Solution Time (sec.) Size Solution Time (sec.)
agg 651 6.6 454 1.0
beaconfd 435 1.1 283 0.7
finnis 1066 9.1 918 1.5
lotfi 461 5.9 434 0.9
nesm 3585 57.6 3481 53.0
scorpion 746 1.1 617 0.8
ship08s 3099 6.3 1966 3.3
tuff 878 4.3 849 3.9

Table 1.7 Comparison of PATH solution times on QP models with and without
preprocessing.

Original Preprocessed
Model Size  Solution Time (sec.) Size Solution Time (sec.)
electric 158 1.3 140 0.5
explcp 16 0.0 0 0.0
forcebsm 184 0.1 72 0.2
forcedsa 186 0.1 70 0.1
golanmcp 4321 80.9 4304 25.0
merge 9536 2254.6 8417 1954.2

Table 1.8 Comparison of PATH solution times on MCP models with and without
preprocessing.

reductions in time are significant. Some other quadratic programs from
other sources were also tested. On one of the models, hwayoung, over
70% of the variables were removed by the preprocessor reducing the size
from 46123 variables to 13655.

Finally, the models in MCPLIB [4] were given to the preprocessor.
The results on these models are less encouraging than the other two tests.
This stems from a lack of linear problems in the test set and the inability
to obtain interval evaluations for the nonlinear functions. Many of the
models did not benefit from preprocessing. However, some successes are
reported in Table 1.8. Note that the explcp model that is supposed
to display exponential behaviour for Lemke’s algorithm is completely
solved in the preprocessor. Some of the preprocessing performed was
detrimental. For example, the force* models became harder to solve
after preprocessing even though they were significantly reduced in size.
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Overall the results of the preprocessor are very encouraging. Unfor-
tunately, many of the models that are currently in MCPLIB do not have
large amounts of exploitable linear structure, so the benefits of prepro-
cessing them are limited. Further work in exploiting range constraints
and aggregations is warranted. An interval evaluator is planned for the
GAMS modeling language which will enable the nonlinear models to be
more effectively preprocessed.
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