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By means of elementary arguments we first show that the gradient of the objective function of a convex program is constant 
on the solution set of the problem, Furthermore the solution set lies in an affine subspace orthogonal to this constant gradient, 
and is in fact in the intersection of this affine subspace with the feasible region. As a consequence we give a simple polyhedral 
characterization of the solution set of a convex quadratic program and that of a monotone linear complementarity problem. 
For these two problems we can also characterize a priori the boundedness of their solution sets without knowing any solution 
point. Finally we give an extension to non-smooth convex optimization by showing that the intersection of the subdifferentials 
of the objective function on the solution set is non-empty and equals the constant subdifferential of the objective function on 
the relative interior of the optimal solution set. In addition, the r ~ l ~ n  set lies in the intersection with the feasible region of 
an affine subspace orthogonal to some subgradient of the objective function'at a relative interior point of the optimal solution 
set. 

convex programs • solution sc,ts • non..smooth optimization 

The purpose of this work is to give some useful and simple properties of solution sets of convex 
programs. Surprisingly, these results have not bern given before, to the best knowledge of the author. For 
example, given a differentiable convex function f on the n-dimensional real space R" and given a convex 
set X in R", the solution set of the minimization problem of f on X is characterized by a constant 
gradient of the objective as well as a constant scalar product of the gradient with the point at which the 
gradient is evaluated. This result can be employed, for example, to show the polyhedrality of certain 
solution sets as well as to characterize-their boundedness. For non-smooth convex objective functions we 
show that the Subd~fferential of the objective function is constant on the relative interior of the solution set 
and give a number of useful characterizations of this set. 

We begin with a lemma which shows that the gradient of the objective function of a convex 
programming problem is constant on the solution set of the problem. 

Lenuna 1. Let X be a convex set in the real n-space R n and let f be a twice continuously differentiable convex 
function on some open convex set containing X. Let X be the non-empty solution set of nfinxG x f ( x ). Then 
the gradient v f ( x )  is constant on X. 

Proof. Let x , y  ~ X. Then by the minimum principle [5, Theorem 9.3.3, 2, p. 121, Proposition 1.3], 

V f ( y ) ( y -  x)  > v f ( x ) ( y  - x) ~0 ,  

W(y) tx-y)  o. 
Hence, 

V f ( y ) ( y -  x)  -- v f ( x ) ( y -  x)  --0. (x) 
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NOW, 
v f ( y )  V f ( x )  [ W ( x  + t ( y  . . ,  ,=.z _ / t = , l  - --- -- x D I " °  *t=o V V ( x  + t ( y  m X) ) ( y - -  X) dt 

= C ( y - x ) ,  (2) 
where C is the n x n symmetric matrix defined by 

" - i  ' ' I  2f(x  + t ( y  x))  dr. C . -  , .o  V 

Since zCz > 0 for all z in R" it follows that C is positive semiclefinite. We have then from (1) and (2) that 

o -  ( y -  x ) (v l (y )  - v / (x))  = ( y -  x ) C ( y -  x). (3) 
Since C is symmetric positive semidefiaite, it follows from (3) ~md (2) that 

0 . .  C ( y -  x) -- v f ( y )  - v f ( x ) .  13 

The above lemma is extended in Lemma la  in the sequel to a non-differentiable convex f .  In fact, by 
using Lemma la we can state Lemma 1 under the weaker assumption that f is convex and differentiable. 

We now characterize the solution set of a convex pregram in terms of any of its solution points. 

Theerem 1 (Characterization of the solution set of a convex progrmn). Let X be a convex set in R", let f be a 
twice continuously differentiable convex function on some open convex set containing X and let ~ be any point 
in the solution set X of n d n x e x f ( x  ). Then 2 -  3 -  ~, where 

~-= { xlxE x, W'(~)(x- ~) =o, v / (x)  = vf(~)) ,  
~,= {xlxE x, v / ( ~ ) ( x - ~ ) a  o, v / (x )  = vf(~)) .  

(4) 

Proof (~c: ,Y). Let x e ~. It follows then from the convexity of f that 

f(~) -f(x) ~ vf (x ) (~ -  ~) = v / ( ~ ) ( ~ -  x) ~ o. 
Hen_~ f(..x) s f ( ~ )  and x e 2. Thus $ c 2. 

( X c S )  Let x E X .  By Lemma 1 it follows that vf(x)ff i  v f ( i ) .  By the minimum principle we have 
that 

v/(~)(~ - ~) ~ o, 
W(~)(~-  x) ~o. 

Thus V f ( ~ ( x  - ~) - 0 and x G S. Hence 2 C S. 
Since S c S i t  fo~ows that S = g -  X. rn 

(5) 
(6) 

It immediately follows from Theorem 1 that when f is quadratic, and X is polyhedral, then 2 is also 
polyhedral. Thus we have the following consequences which can also be derived by other simple direct 
arguments. 

Corollary 1 (Polyhedral eharaete~ation of the solution set of a convex quadratic program). Let X be a 
convex set in R". Consider the quadratic program 

~ f ( x )  ,- n~m ½~c~ + ,~, (7) 
x E X  

where C is an n X n symmetric positive semidefinite matrix, d ~ R n and let ~ be any point in the solution set 2 
of minx G xf (x ) .  Then 2 can be characterized as follows: 

x= ' , =  { x l x e X ,  d ( x - ~ )  =0, C ( x - ~ ) - O } ,  
2= f ,= {xlx~X, d(x-~)~O, C(x-~ )  =0}. (S) 

Consequently 2 is a polyhedral set when X is polyhedral. 
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Proof. Follows from Theorem I by noting that for x in S, S, T or 
v f ( 2 ) ( x - 2 ) f f i ( 2 C + d ) ( x - ~ ) f d ( x - 2 ) .  D 

We now give a polyhedral characterization of the solution set of the monotone linear complementarity 
problem [3] which is s'Lmpler than the Adler-Gale characterization [1] and which is very useful in deriving 
error bounds for monotone linear complementarity problems [7]. Consider the linear complementarity 
problem 

M x + q > O ,  x>O, x ( M x + q ) - O ,  (9) 

where M is an n x n positive semidefinite matrix, not necessarily symmetric, and q ¢ R n. We consider the 
equivalent formulation 

n f m { x ( M x + q ) l M x + q ~ O ,  x ~ 0 } - 0 ,  (10) 

and apply Corollary I to obtain the following characterization of the solution set of (10) or equivalently of 

Corollary 2 (Polyhedral characterization of the solution set of  a monotone linear eomplementarity problem). 
Let M be positive semidefinite and let • be any point in the solution set X of the linear complementarity 
problem (9). Then, 

X-- U ' -  ( x l M x + q > O ,  x>O, q ( x - ~ ) - 0 ,  ( M +  M r ) ( x - ~ ) - O } ,  (11) 

X= O,ffi {xlMx+q>O, x>O, q(x-£) <0, (M+ M'r)(x-~)ffiO}. 

We conclude with a boundedness characterization of the solution set of the monotone linear com- 
plementarity problem (9) and the convex quadratic program 

ndn½xCx+dx subjectto A x ~ b ,  x > 0 ,  (12) 

where C and d are as in (7), A is an m x n matrix and b is in R m. 

Theorem 2 03mmdedness of the solution set of a, eonvex quadratic program). Let C be positive semidefinite 
and let the quadratic program (12) have a non-empty solution set X. X is bounded if and only if either 

Y ' -  { y I A y > O , O ~ y ~ O ,  dy--O, CyffiO} --~, 
o r  

~",ffi { y.lAy > O, O~ y >O,'dy < O, Cy--O} =fJ. (13) 
• , 

Proof (Sulfleieney). By Corollary 1 the solutioa set X is given by X -  T. Thus if X unbounded, there 
exists a sequence { x ~ }, such that x i # 0 and II xi II "* co. Any accumulation point y of x~/ll x ~ li is in 
Y c I~, thus contradicting Y ffi ~ or ~ ffi ~. 

(Necessity). Suppose that y G Y ~ ~ and ~ e X. Then for any positive._7`, x(h),ffi ~ + hy  E T ffi X and 
IIx(7`) II--' co as 7,--,co, This, however, contradicts the boundedness of X. [] 

Theorem 2 can be also derived by invoking a result of convex analysis [9, Theorem 8.4]. We just note 
that YU(0) and l~u {0} are the recession cones of T and T, respectively, and by Theorem 8.4 [9], the 
latter are bounded if and only if the former consist of {0} alone. It is interesting to note that the recession 
cone does not depend on either the solution point or the right hand side b of the constraint Ax > b. We 
can thus say that the solution set of  a convex quadratic program (12) is bounded (or empty) for each right 
hand side b if and only if it is non-empty and bounded for some b, in which case the recession cone of the 
solution set contains the null element only. This latter characterization which is equivalent to (13) can be 
verified by solving a single linear program as follows: 

max{eylAy~O,  y > 0 ,  d~ =OI ' Coy =0  ) = 0 ' ( 1 4 )  

where e is a vector of ones in R n. Thus (13) and (14) are equivalent to each other. 
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For the monotone linear complementarity_problem (9) a slightly stronger boundedness result than 
Theorem 2 is possible if the characterization X -  U is used. This is because of the special structure of the 
quadratic program (10). The boundedness characterization here implies non-emptiness of the solution set 
of the complementarity problem as well. We thus have the following. 

3 0Men-emptiness ~ bouadedaess of the solution set of a monotone linear complementarity 
problem), Let M be positive semidefinite. The solution set X of the linear complementarity problem (9) is 
non.empty and bounded if  and only if 

~ , -  {zl#t~ > o, 0 . ~ 0 ,  q~<O, ( u +  #x~)~ = o} =~ .  (15) 

~ .  The proof of the necessity and sufficiency of (15) under the assumption that X ¢ ~ is similar to the 
proofof Theorem 2 or because_ 2 + {0} is the recession cone of ~7. We only need to show that (15) implies 
that X ¢ ~. The solution set X is empty if and only if [3] there is no x > 0 such that Mx + q > 0. This, by 
Motzkin's theorem of the alternative [5], is equivalent to the existence of a u in R" such that 

M T u £ O ,  q u < 0 ,  u > 0 .  

But by the positive semidefiniteness of M this is equivalent tO the existence of a u satisfying (M + MT)u 
-- 0, Mu -- - MXu > O, qu < O, u > 0 which contradicts (15). [] 

Theorem 3 is essentially contained in [6, Theorem 2] which was derived in a different manner for the 
broader class of copositive-plus matrices [3]. 

In the last part of the paper we extend Lemma 1 and Theorem 1 to non-smooth convex functions. 
Professor A. Ben-Tal pointed out to the author that the constant gradient condition of Lemma 1 can be 
replaced by the non-emptiness of the intersection of the subdifferentials of each pair of points in the 
optimal solution set. (See (18) below.) This fact as well as our more general extension (Lemma la below) 
follow from a slightly extended lemma of Demyanov and Vasilev [4, Lemma 5.8, p. 63]. 

Lemma 2 141. Let f be a convex function on R n, let a f (x )  denote its subdifferential at x, let x ! ~ x 2, let 
~. ~(0,  1) and lel xx ~ (1 -- ~,)x 1 + ~,x 2. Then, 

~f(.~l) N a/(X 2) O ~ :~ [ f(x~')  ---- (1 -- • ) f (x  1) + X/(X2), 
'~ ~1(,~') n 01(~') c 0/(x x) (:6) 

o/(x ~) - al(x ~) r~ of(x ~) , ~ f(x ~) = (z - x)l'(~ ~) + x/(x~).  07)  

The slight extension consists of 8f (x  1) n i)f(x 2) c af(x x) in (16), and a/(x  x) - a f ( x  1) n i)f(x 2) in 
(17), both of which follow directly from the proof of [4, pp. 63-65]. 

Now if we let X be the solution set of n f i n x e x f ( x )  where X is a convex set in R" and f is a convex 
function on R" then 

°l(x~)n°f(x2)*~ Vx~, x 2 ~  (18) 
follows immediately from (17) because (1 - ~,)x 1 + 7,x 2 E ~ for ~, e(O, 1). In fact we state and prove an 
extension of Lemma I which subsumes (18). 

Lemma la. Let X be the non-empty solution set of nfin, Exf(X) where X is a convex set in R" and f is a 
convex function on R'. Let ~ be in the relative interior of a convex subset ~ of X. Then, 

o / (~ )=  f l  of(x) 

and consequent~ ~f(x) ~ constant on ri( 2). 
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Proof. Of(YOCAxe:~Of(x): if this inclusion fails then Of(~) ¢ Of(x ~) for some x ~ ¢ g and x ~ @ ,~. Since 
~ ~ ri(.~), let ~ = ( 1  - ~ ) x  ~ + ~x 2 for some x 2 ~ g  and k ~(0,  1). Hence f ( ~ ) - -  (1 - -  ~ ) f ( x l )  ,-I - ~ t f ( x 2 ) ,  

and by (17) of Lemma 2 we have that Of(~) - Of(x ~) ~ 0f(x 2) contradicting Of(~) ¢ Of(xl). 
13x ~ ~?0f(x) c 8f(~): if this inclusion fails then for some v ¢ 13x ~ .~0f(x), v ~ 8f(~). Since • ¢ ri()f), 

take x:, x 2 ¢ X  such that ~ - ~ ( 1 - - ~ ) x ~ + ~ x  2 and ~ ( 0 ,  1). It follows by (16) of Lemma 2 that 
v ¢  Of(x~)AOf(x2)c  ~f(~) contradict~g v ~  0f(J). [] 

We conclude by extending Theorem I to non-smooth convex functions by means of Lemma la. 

Theorem la (Characterization of the solution set of a non-smooth convex program). Let X be the non-empty 
solution set__of minxcx f (x ) ,  where X is a convex set in R ~ and f is a convex function on R ~. Let ~ ~ X and 
let ~ ~ ri(X). Then, 

where 

= 

S'~d{xIxEX, v ( x - ~ ) - - O  forsomev~Of(~)AOf(x)} ,  

~'-- ( x lx  ~ X, v(x - ~) < 0 for some v~ Of(.~) t3 Of(x)}, 

~ , =  { x l x a  X, v ( x -  ~) =0/or some vE Of(~) c Of(x)}, 

.¢o'= { x l x a  X, v ( x -  ~) <_ 0 for some v~ OI(~) c Of(x)}, 

Sl "= { x lx  ~ X, v ( x -  ~) --0 for some v ¢  Of(x)}, 

.¢~ "= { x l x a  X, v ( x -  ~) <0  for some v~ Of(x)}. 

Proof. Since ,~ c ~ c ~1, ,~ c $1 c $1 and S0 c S0 c $1, we need only show that ,91 c X, X c ,~ and X c S0. 
($1 c X) Since for x ~ 52, • 

f ( ~ )  - f ( x )  ~ v ( ~ -  x) ~ o, 
r 

it follows that f (~)  ~_f(x), and hence x ~ X. 
( ~ c , ~ )  For x c X  and y ' - - ( ~ +  x ) / 2  we have by (17) of Lemma 2 that O f ( y ) - O f ( x ) A a f ( ~ ) ,  and 

by the minimum principle [8, Theoren~ 3, p. 203] since y e X, .... 

v ( x - y ) > O  and v ( ~ - y ) > 0  forsome v E a l ( y ) .  

Hence v ¢ af(x)  n 0[(_~), v(x - ~) - 0 and x ~ S. 
( ~ c : ~ )  For x ~ X  we have Of(~)cOf (x )  by Lemma la. Since ~E  ri(.~), there exist y ~ ;  and 

¢ (0, 1) such that 

~= (1-~)x+~y. 

Therefore, by the minimum principle, 

v ( x - . ~ ) > O  and v ( y - ~ ) > _ O  forsome v¢Of( .~) .  

This, however, is equivalent for v(x - ~) - 0 for some v ~ Of(~). Hence, x ~ So and X c S0. [] 
9 
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