
A Scalable Failure Recovery Model for
Tree-based Overlay Networks

Dorian C. Arnold
Department of Computer Science

University of New Mexico
darnold@cs.unm.edu

Barton P. Miller
Computer Sciences Department

University of Wisconsin
bart@cs.wisc.edu

ABSTRACT
Tree-based overlay networks (TBŌNs) exploit the logarith-
mic scaling property of trees to provide scalable data mul-
ticast, gather, and aggregation services. We leverage the
characteristics of many TBŌN computations to develop a
new failure recovery model, state compensation. State com-
pensation uses: (1) inherently redundant information from
surviving processes to compensate for information lost due
to failures, (2) weak data consistency to simplify recovery
mechanisms, and (3) localized protocols for autonomous pro-
cess failure recovery. State compensation incurs no overhead
in the absence of failures, and when failures occur, only a
small number of processes participate in recovery.

We use a formal specification of our data aggregation model
to validate state compensation and identify its requirements
and limitations. Generally, state compensation requires that
data aggregation operations be commutative and associative.
We describe an implementation of one state compensation
mechanisms and evaluate its recovery performance: for a
TBŌN that can support millions of application processes,
state compensation can yield millisecond failure recovery
latencies and inconsequential application perturbation.

1. INTRODUCTION
Reliable computing models have become critical as the sizes
and complexities of HPC systems continue to increase. Cur-
rently, there exists at least four systems with more than
100,000 processors and imminent million-processor systems.
Expected failure rates at these scales have raised serious
concerns over current fault tolerance solutions [9, 10].

Meanwhile, tree-based overlay networks (TBŌNs), hierarchi-
cal networks of processes that leverage the logarithmic scaling
property of the tree organization, have become a common so-
lution for data aggregation in such large scale environments.
As early as 1980, Ladner and Fischer used hierarchical de-
composition for efficient, parallel prefix computations [14].
Today, TBŌNs are used in many software systems for a

variety of data aggregation operations. For example, Gan-
glia [24] uses monitoring trees to compute summary statistics
(sums, averages, minimums, maximums) of node information.
Ygdrasil [6] uses aggregator trees to condense (nearly) iden-
tical text from tools like debuggers. TAG [15] uses an SQL
interface to query and aggregate sensor network data, and
MRNet has been used for clock synchronization, equivalence
classification, time-aligned data aggregation, performance
analysis, and debugging [3, 18, 22, 23].

In this paper, we describe state compensation, a novel failure
recovery model for large TBŌNs with high throughput, low
latency aggregation requirements. The key features are:

1. no resource overhead during normal execution;
2. failure recovery using a small number of independently

acting processes, and
3. broad applicability to many TBŌN computations.

State compensation uses inherently redundant state from
processes that survive failures to compensate for lost informa-
tion, thereby avoiding explicit state replication. This inherent
redundancy is found in many stateful TBŌN computations in
which processes use state to carry side effects from one aggre-
gation instantiation to another. As information is propagated
from the TBŌN leaves to its root, aggregation state, which
generally encapsulates the history of processed information,
is replicated at successive levels in the tree. We use weak data
consistency models to simplify recovery protocols, like tree
reconfiguration and information dissemination. We also use
localized protocols that allow TBŌN processes to recover in-
dependently. Our results show that a TBŌN with millions of
application processes can yield millisecond recovery latencies
and inconsequential application perturbation.

After discussing related research in Section 2, we specify
our computational model and its fundamental properties in
Sections 3 and 4. In Section 5, we use our TBŌN specification
to describe and validate theoretically the correctness of the
state compensation model. We present an MRNet-based
implementation of state compensation in Section 6 and our
performance evaluation in Section 7. We conclude with a
discussion of open issues and future work.

2. RELATED WORK
Related fault tolerance mechanisms can be categorized as
hot backup, rollback-recovery, or reliable data aggregation. In
fail-over based schemes [1, 25], hosts or processes periodically
synchronize their states with backup replicas used to replace
failed primary components. Hot backup is general and yields

low recovery latencies since backups are kept in (near) ready
states. However, synchronization and resource utilization
during normal operation limit scalability. For example, with
one backup per primary, hot backups incur a 100% overhead.

In rollback recovery, processes periodically checkpoint their
state to persistent storage. Upon failures, the system recovers
to the state of the most recent checkpoint [8]. In coordinated
checkpointing, the common variant of distributed rollback
recovery, processes coordinate to record a globally consistent
checkpoint. Rollback recovery is a well studied, general fault
tolerance mechanism. However, recent studies [9, 10] predict
poor utilization for applications running on imminent systems
and the need for resources dedicated to reliability.

Reliable data aggregation has been explored in stream pro-
cessing engines (SPEs), distributed information management
systems (DIMS) and mobile ad hoc networks (MANETs). For
reliable SPEs [5, 12], hot backups have been used to replicate
query processing nodes; these systems bear the advantages
and disadvantages of hot backups discussed above.

Like TBŌNs, DIMS often use hierarchical structures for
scalable aggregation. In Astrolabe [20] and the aggregation
approach proposed by Gupta et al. [11], nodes are organized
into disjoint clusters, and a hierarchy is imposed by form-
ing larger clusters of clusters. Data are propagated within
and across the clusters using periodic, random gossiping [21].
Gossip-based protocols are scalable with a configurable trade-
off between overhead and robustness. However, they are best
suited for applications with small data sets (hundreds to
thousands of bytes) that do not require low latency commu-
nication and can tolerate partial, non-deterministic output.

SDIMS [26] organizes nodes into a tree and uses an explicit
replication protocol in which nodes scatter attribute infor-
mation (in raw and summary form) to their ascendants and
descendants. This approach incurs potentially high replica-
tion overhead as data are replicated in multiple places.

Generally, for robust MANET data aggregation [13, 16, 17,
19], nodes use unreliable transport protocols to disseminate
locally known attribute data periodically. Nodes merge re-
ceived attribute data with their local data such that as more
partial data is received, local aggregate estimates converge
to their actual values. These protocols generally exhibit good
scalability characteristics and convergence rates. However,
proposed protocols have been specific to relatively simple
aggregation operations like sum, max, and average.

We provide a scalable solution for TBŌN computations with
deterministic, high throughput delivery without message
sizes constraints. We exploit the inherent redundancies of
certain classes of TBŌN computations, avoiding any explicit
data replication or overhead during normal operation. We
are unaware of any other fault tolerance approach that does
not rely on explicit replication. Also, recovery is fast, involves
a small subset of the TBŌN and yields little perturbation.

3. THE TBŌN MODEL
The TBŌN aggregation model is based on the functional de-
composition technique, divide and conquer. The aggregation
is decomposed by iteratively sub-dividing its inputs. The

Figure 1: The TBŌN Model: back-ends stream data
into the TBŌN; communication processes filter this
data and propagate results to the front-end.

TBŌN then maps the sub-problems to different computa-
tional resources to compute their solutions efficiently.

3.1 Computational Specification
Figure 1 shows TBŌN processes aggregating and propagating
a continuous dataflow from application1 back-end processes
at the leaves to the application front-end at the root. For
simplicity, we illustrate balanced, binary trees; the model only
requires fully connected trees. Collectively, the front-end and
back-end processes are called end-points, and the TBŌN’s
root, leaf, and internal processes are called communication
processes. Communication processes, denoted by CPi, where
i is a unique identifier, transmit data packets to each other
via a reliable, order-preserving transport mechanism, like
TCP. Front-ends use streams to multicast data to and gather
data from groups of back-ends. A stream specifies the end-
points participating in a logical dataflow and distinguishes
packets from different dataflows. A stream also specifies the
aggregation to be applied to the stream’s packets.

Parent processes have a set of input channels, one per child,
upon which they receive input packets: inn(CPi, j) specifies
CPi’s nth input from its jth channel. Child processes have
output channels used to propagate output packets to their
parents: outn(CPi) is CPi’s nth output packet. A child’s
outputs eventually become its parent’s inputs:

outn(CPj) = inn(CPi, l) (1)

where CPj is the source for CPi’s lth channel.

A channel’s state is its incident vector of in-transit packets:
csm,n(CPi, j) is the vector of in-transit packets to CPi on

1We use “application” to mean the system directly using the
TBŌN, beit a software tool or an actual application.

its jth channel when CPi has received m packets from this
channel, and the channel’s source has sent n packets, m ≤ n:

csm,n(CPi, j) = [inm+1(CPi, j), . . . , inn(CPi, j)] (2)

cs(CPi) is the state incident on all CPi’s input channels:

cs(CPi) =

fanout(CPi)−1G
j=0

cs(CPi, j) (3)

where fanout(CPi) is the number of CPi’s input channels.

3.2 Data Aggregation
TBŌN processes use filters to aggregate input data packets
from their children. A filter executes when an input from ev-
ery channel is available and produces a single output. We call
this complete vector of inputs a wave; inn(CPi) designates
CPi’s nth input wave.

Our computational model is based on stateful filters with
time variant state size. Such filters use filter state to carry
side effects from one invocation to the next, and the size
of this state can become large. However, we can leverage
filter state, which encapsulates or summarizes previously
filtered inputs, to propagate incremental updates efficiently.
For example, consider the sub-graph folding filter [23], which
continuously merges input sub-graphs into a single graph.
Each communication process stores as its state the current
merged graph, which encapsulates that process’ history of
filtered sub-graphs. As new sub-graphs arrive, the filter only
needs to output incremental changes to its current merged
graph. Using fsn(CPi) to represent CPi’s filter state after
it has filtered n input waves, we define a filter function, f :

f(inn(CPi), fsn(CPi)) → {outn(CPi), fsn+1(CPi)} (4)

That is, a filter function inputs a wave of packets and its
current filter state and outputs a single (potentially null-
valued) packet while updating its local state. There can be
multiple active streams each with its own filter instance.
Generally, the filter function can be abstracted into two
operations: a join operation, t, which merges new inputs and
filter states, and a difference operation, −, which computes
the incremental difference between two states.

State join. The join operator, t, merges inputs to comprise
a wave:

inn(CPi) =

fanout(CPi)−1G
j:0

inn(CPi, j),

where fanout(CPi) is CPi’s fan-out. A filter also uses the
join operator to update its state with these input waves:

inn(CPi) t fsn(CPi) → fsn+1(CPi) (5)

Deductively, a process’ filter state is the join of its filtered
inputs: after CPi has filtered n waves of input,

fsn(CPi) = in0(CPi) t . . . t inn−1(CPi). (6)

We assume that the join operator has these properties:

Associativity : (a t b) t c = a t (b t c)

Commutativity : a t b = b t a

For the recovery mechanism we present in this paper, we also
assume that the join operator is idempotent, ∀x, x t x = x.
Many stateful aggregation operations, including the majority
of the existing MRNet-based data aggregation operations [3,
4, 22, 23], are idempotent. Specific algorithms classes (all
complicit with our recovery model) include set union, graph
folding, equivalence class computations, and upper and lower
bounds computations. Variations of these idempotent oper-
ations that include membership statistics, for example set
union with membership counts, are non-idempotent. The
relevance of commutativity and associativity has been noted
previously in parallel prefix computations [14]. These prop-
erties simplify our recovery mechanisms; for example, since
correctness does not depend on the grouping and ordering
of input data, disconnected sub-trees may reconnect to any
branch of the main tree.

State difference. Filter functions based on idempotent joins
may output either incremental or complete updates. For
efficiency, we favor outputting incremental updates:

outn(CPi) = fsn+1(CPi)− fsn(CPi) (7)

However, as we see in Section 5.3, the option to send complete
updates simplify our recovery protocol. For idempotent joins,
we describe “−” as the contextual inverse of t. A function f
is contextually invertible if f(x1, x2) → y, and there exists
f−1 such that:

f−1(y, x1) → x3 : f(x1, x2) = f(x1, x3), and

f−1(y, x2) → x4 : f(x1, x2) = f(x4, x2),

where x2 is not necessarily equal to x3, but for f , x2 ≡
x3 in the context of x1; likewise for x1 and x4. Consider
the example where t is set union, and − is set difference:
{1, 2, 3} t {2, 3, 4} = {1, 2, 3, 4}, but {1, 2, 3, 4} − {1, 2, 3} =
{4} 6= {2, 3, 4}; however {1, 2, 3} t {2, 3, 4} = {1, 2, 3} t {4}.

3.3 A TBŌN Example
As an example of the TBŌN data aggregation model at work,
consider an integer union computation. Integer data are prop-
agated through the TBŌN from the leaves to the root. Each
process filters its input stream to suppress duplicates and
send the unique values to its parent. The persistent state at
each process is that process’ set of filtered integers; the state
of each channel is its incident vector of pending incremental
updates from the child of the channel to its parent. The
final output at the application front-end is the overall set of
unique integers sent by the back-ends. In this example, ’t’ is
set union, ’−’ is set difference. While this example is simple,
it is representative of many more complex aggregations. For
example, graph merging, used in the sub-graph folding algo-
rithm [23] of the Paradyn tool and the stack trace analysis
of the STAT tool [3], is essentially the same computation on
graph data. That is, the TBŌN performs union and difference
operations on node and edge data instead of integers.

4. FUNDAMENTAL TBŌN PROPERTIES
Our goal is to develop scalable TBŌN recovery mechanisms
by avoiding the explicit data replication that leads to non-
scalable resource consumption. Our solution, state compen-
sation, is based on the TBŌN characteristics described in
Section 3 and motivated primarily by three properties:

1. The Inherent Redundancy Lemma: inherent informa-
tion redundancies exist in stateful TBŌN-based data
aggregations. Intuitively, as data is propagated from
the leaves toward the root, aggregation state, which
generally encapsulates the history of processed inputs,
is replicated at successive levels in the tree.

2. The TBŌN Output Dependence Lemma: the output of
a TBŌN subtree depends upon solely the filter state
at the subtree’s root and the subtree’s channel states.
Intuitively, in-flight data triggers the execution of data
aggregations, the output of which depends upon the
inputs and the current state of the filtering process.

3. The All-encompassing Leaf States Lemma: the states at
a TBŌN’s leaves contain all the information in the rest
of the TBŌN’s filter and channel states. Intuitively,
since the state of a TBŌN process encapsulates its
history of filtered inputs and since leaf processes filter
data before any other TBŌN process, the leaves’ input
histories are the most complete.

When a TBŌN process fails, the filter and channel states
associated with that process are lost. Based on these lemmas,
we will demonstrate that proper failure recovery only requires
the recovery of the channel state. Furthermore, this state can
be recovered from the redundant information maintained by
processes nearer to the leaves of the TBŌN.

4.1 Inherent Redundancy
The Inherent Redundancy Lemma builds upon the equiva-
lence of the input of a data aggregation operation and its
output. Intuitively, the output of a data aggregation is a
summarized or compressed form of its input, but the input
and the output should contain equivalent information.

Lemma 4.1 (Input/Output Equivalence). TBŌN
data aggregation output is equivalent to its given input.

Proof

(Eqn. 5: in t fs = fs′):
inn(CPp) t fsn(CPp) = fsn+1(CPp)

(’−’ is the contextual inverse of ’t’):
inn(CPp) ≡ fsn+1(CPp)− fsn(CPp)

(Eqn. 7: fs’ - fs = output):
≡ outn(CPp)

Now we can demonstrate the inherent TBŌN redundancies:

Lemma 4.2 (Inherent Redundancy). For any parent
process, the join of its filter and pending channel states equals
the join of its children’s states:

∀CPi, fsm(CPi) t csm,n(CPi, 0) t csm,p(CPi, 1) =

fsn(CPj) t fsp(CPk),

where, as in Figure 2, CPi has two children2, CPj and CPk

on input channels 0 and 1, respectively, and CPi, CPj, and
2Our proofs have trivial extensions for arbitrary fan-outs.

fsn(CPj) fsp(CPk)

fsm(CPi)

csm,n(CPi, 0) csm,p(CPi,1)

f sm(CPi) � csm,n(CPi, 0) � csm,p(CPi, 1) =fsn(CPj) � fsp(CPk)

Figure 2: Inherent TBŌN Information Redundancy:
the join of a parent’s filter and pending channel
states equals the join of its children’s states.

CPk have filtered m, n, and p waves of input, respectively;
m ≤ n, m ≤ p.

Proof

fsm(CPi) t csm,n(CPi, 0) t csm,p(CPi, 1)

(Eqn. 6: filter state = join of input history):
= in0(CPi) t . . . t inm−1(CPi) t

csm,n(CPi, 0) t csm,p(CPi, 1)

(Eqn. 1: input = join of children’s output):
= (out0(CPj) t out0(CPk)) t . . .t

(outm−1(CPj) t outm−1(CPk)) t
csm,n(CPi, 0) t csm,p(CPi, 1)

(Eqns. 2 & 1: channel state = channel source output):
= (out0(CPj) t out0(CPk)) t . . .t

(outm−1(CPj) t outm−1(CPk)) t
outm(CPj) t . . . t (outn(CPj) t
outm(CPk) t . . . t (outp(CPk)

(Commuting the operands):
= out0(CPj) t . . . t outn(CPj) t

out0(CPk) t . . . t outp(CPk)

(Lem. 4.1: output ≡ input):
= in0(CPj) t . . . t inn(CPj) t
= in0(CPk) t . . . t inp(CPk)

(Eqn. 6: input history = filter state):
= fsn(CPj) t fsp(CPk)

4.2 All-encompassing Leaf States
We now show that the states at a subtree’s leaf processes
contain all the information available in the rest of that sub-
tree. That is, should any non-leaf channel or filter state be
lost, the information needed to regenerate that state exists
at the leaves of any subtree that totally contains the lost
components. To aid our discussion, we introduce a new oper-
ator, desck, which describes a process’ descendants k levels
away. For example, desc1(CPi) is the set of CPi’s children,
and desc2(CPi) is the set of CPi’s grandchildren.

The fs and cs operators without subscripts are shorthand
for the specified process’ or channel’s current state. Similarly,
without subscripts, in and out designate the specified process’

input and output history, respectively. Lastly, when these
operators are applied to a set of processes or channels, they
return the join of that operator applied to the set’s members.

Lemma 4.3 (The All-encompassing Leaf States).
The join of a subtree’s leaf states equals the join of the state
at the subtree’s root process and the TBŌN in-flight data.

Proof

From Lemma 4.2, we deduce:
fs(desc1(CP0)) = fs(desc0(CP0)) t cs(desc0(CP0))
fs(desc2(CP0)) = fs(desc1(CP0)) t cs(desc1(CP0))

. . .
fs(desck(CP0)) = fs(desck−1(CP0))t cs(desck−1(CP0))

Substituting the former identities into the latter, we get:
fs(desck(CP0)) =

fs(CP0) t cs(desc0(CP0)) t . . . t cs(desck−1(CP0))

4.3 TBŌN Output Dependence
Finally, we show that the TBŌN computation’s output
stream is solely a function of the root’s filter state and the
TBŌN’s channel states. The TBŌN input is the stream of
inputs filtered by the TBŌN leaves, in(desck(CP0)), where k
is the TBŌN depth. The effective TBŌN output, out(CP0),
is the stream of outputs produced by the root process if mes-
sages channels are flushed and all communication processes
become synchronized; that is, the root and the leaf processes
have filtered the same number of input waves.

Lemma 4.1 shows the equivalence between the inputs and
output of an aggregation operation: in(CPi) ≡ out(CPi).
We can generalize this to show that the join of the inputs
of any level of TBŌN processes are equivalent to the join of
the outputs produced by those processes: in(desck(CP0)) ≡
out(desck(CP0)). Since output from level k becomes input
to level k − 1, a simple induction yields:

Corollary 4.4 (TBŌN Input/Output Equivalence).
The input to a TBŌN’s leaves is equivalent to the effective
output of its root: in(desck(CP0)) ≡ out(CP0).

We now demonstrate our last fundamental TBŌN properties:

Lemma 4.5 (TBŌN Output Dependence). The out-
put of a TBŌN computation is solely a function of the root’s
state and the TBŌN channel states.

Proof.

(By Cor. 4.4: Input/Output Equivalence)
out(CP0) ≡ in(desck(CP0))

(Eqn. 6: input history = filter state)
≡ fs(desck(CP0))

(By Lem. 4.3: All-encompassing Leaf State)
≡ fs(CP0) t cs(desc0(CP0)) t . . .

t cs(desck−1(CP0))

No Failures: 7 11 27 35 35
Failures: 7 8 15 35 35

t0 t1 t2 t3 Overall Maximum

Figure 3: Convergent Recovery for integer maximum.
A failure at t0 causes a divergence in the output at
t1 and t2; at t3, the output re-converges.

5. STATE COMPENSATION
In state compensation, we merge states from non-failed
TBŌN processes to compensate for lost state. After dis-
cussing our failure and data consistency models, we describe
state composition, our primary compensation mechanism,
and use our previous results to prove its correctness.

5.1 Failure Model
We assume fail-stop process failures, detectable failures that
cause processes to cease to produce new output. Any TBŌN
process (root, leaf or internal) may fail at any time, even
simultaneously. Should all TBŌN processes fail, the TBŌN
degenerates to a one level tree with the front-end directly
connected to the back-ends. Failed processes need not be
replaced before the system can resume normal operation:
the TBŌN is reconfigured to omit failed processes, but new
processes (on repaired hosts) may be integrated dynamically
into the TBŌN. Network device failures that cause a perma-
nent network partition are treated as failures of the processes
partitioned from the TBŌN’s root process.

State compensation does not address the failures of appli-
cation processes (outside the TBŌN). These processes may
be viewed as sequential data sources and sinks amenable
to sequential checkpointing, which avoids the coordination
complexities of distributed checkpointing. This solution does
not work if the application uses communication channels
external to the TBŌN – we have not yet seen this case.

5.2 Data Consistency Model
State compensation guarantees weak data consistency, called
convergent output recovery [12], in which failures may cause
intermediate TBŌN output data to diverge from the out-
put produced by an equivalent computation with no failures.
Relying on associativity, commutativity and idempotence,
our recovery mechanisms may cause the associations and
commutations of input data that have been re-routed due to
failure(s) to differ from that of the non-failed execution, or
there may be some duplicate input processing. These phe-
nomena cause the output divergence. Eventually, the output
stream converges back to that of the non-failed computation
after all input affected by the failures are propagated to
the root and it starts to process input not impacted by the
failures. Consider Figure 3, which shows the output streams
of two originally identical TBŌNs executing an integer max-
imum aggregation: the front-end continuously outputs new
maximums as they are filtered. A failure at t0 causes a
divergence in the output at t1 and t2. At t3, the output
re-converges to that of the non-failed execution. Convergent
recovery preserves all output information and produces no
extraneous output.

cs(CPj , 0) cs(CPj , 1)

fs(CPj)

cs(CPi, 0)

fs(CPi)

cs(CPi, 1)

fs(CPk)

fs(CPm) fs(CPn)

Lost TBŌN State

Figure 4: State Composition: When CPj fails,
fs(CPj), cs(CPj), and cs(CPi, 0) are lost. fs(CPm) and
fs(CPn), can be used to compensate for the loss.

5.3 State Composition
State composition uses TBŌN state from processes below
failure zones to compensate for lost state. This strategy
is motivated primarily by the All-encompassing Leaf State
Lemma, 4.3, which states that for any subtree, the state at
the leaves of the subtree subsume the rest of the TBŌN state.
As shown in Figure 4, when a TBŌN process fails, the filter
and channel’s states associated with that process are lost.
State composition compensates for this lost state using state
from orphaned processes. Specifically, after the orphans are
re-adopted into the tree, they propagate their filter state as
output to their new parent. We call this state composition
because the compensating states form a composite equivalent
to the state that has been lost.

Theorem 5.1 (State Composition). A TBŌN can tol-
erate failures without changing the computation’s semantics
by re-introducing filter state from the descendants of failed
processes as channel state.

Proof. Consider the TBŌN in Figure 4. If CPj fails,
the TBŌN loses the following states: fs(CPj), cs(CPi, 0),
cs(CPj , 0), and cs(CPj , 1). By Theorem 4.5, the TBŌN’s
output only depends upon the system’s root and channel
states. Therefore, we only need to show that propagating
as output the states of CPj ’s children compensates for the
lost states, cs(CPi, 0), cs(CPj , 0) and cs(CPj , 1). In other
words, we show that the composition of the states of the
failed CPj ’s children subsume the lost channel states. The-
orem 4.3 says that for any subtree, the filter states at the
leaves subsume the states throughout the rest of this sub-
tree. In this case, CPm and CPn’s states subsume cs(CPi, 0),
cs(CPj , 0) and cs(CPj , 1) and, therefore, can replace those
states without changing the computation’s semantics. The
composition of CPm and CPn’s states may contain input
data already processed by CPi, so the aggregation operation
must be idempotent, that is, resilient to processing the same
input data multiple times.

The result of the State Composition Theorem is that for
TBŌNs executing idempotent data aggregation operations,
we can recover all information lost due to process failures
simply by having orphaned processes transmit their filter
state to their new parents. Generally, the time to filter the
aggregated states used for compensation is less than the time
to filter the original data that constituted the aggregate.

If the TBŌN root fails, we do not know what output has
already been received by the application front-end and must
act conservatively. We regenerate the entire TBŌN output
stream. When the root process fails, one of its children is
promoted to the root position, and the remaining orphans
become the new root’s descendants. In this case, the orphaned
processes transmit their filter state directly to the new root,
not (necessarily) their new parent. The new root merges
these filter states with its own resulting in a composite of the
input history of the original root’s children. In other words,
the composition output subsumes all output (missing or
otherwise) that the failed root process could have propagated
to the front-end. This output is propagated to the front-end
process.

In many situations, application back-ends, which connect to
the TBŌN leaf processes, also aggregate data from multiple
sources. For example, in the stack trace analysis tool [3],
each tool back-end collects and aggregates stack traces from
all collocated application processes. Therefore, filters are
executed in the application back-ends to aggregate local data.
As a result, the back-ends also maintain persistent filter state,
which encapsulates the history of inputs propagated by that
back-end. Should a TBŌN leaf process fail, we compose the
filter states from the orphaned back-end processes once they
reconnect to the TBŌN.

State composition can handle multiple failures that overlap
in time. When multiple unrelated failures occur, the orphans
from these failures simply propagate their compensating filter
state to their new parent upon reintegration into the TBŌN.
If the adopting parent fails as the orphan attempts reintegra-
tion, the orphan finds a new adopter for reintegration. If the
orphan fails before it is reintegrated, the orphan’s children
now become orphaned and initiate their own failure recovery.

5.4 State Decomposition
State composition may over-compensate for lost state by
retransmitting some non-lost state and relies on idempotence
to compute the aggregation correctly when input data is
processed more than once. We also have developed a state
decomposition mechanism to address non-idempotent com-
putations. State decomposition precisely calculates lost infor-
mation and compensates for only that information thereby
removing any potential for re-processing the same input data
multiple times. Intuitively, the failed process’ parent (eventu-
ally) should filter the same input information as the surviving
processes directly below it, namely, the children and siblings
of the failed process. Using the filter states (input histories)
of the failed process’ parent and the failed process’ siblings’
and children, decomposition precisely computes what input
information from the latter has been filtered by the former.
A more detailed discussion of decomposition is beyond the
scope of this paper.

6. IMPLEMENTATION
The components of our TBŌN failure recovery model are
failure detection, tree reconfiguration and lost state compen-
sation. Accordingly, we have implemented a reliable TBŌN
by adding an event detection service for failures and other
events, a protocol for dynamic topology (re-)configuration
and an implementation of state composition to the MR-
Net [22] TBŌN prototype, as we now describe.

6.1 MRNet Event Detection
Each MRNet process must detect certain asynchronous sys-
tem events like process failures or adoption requests for
reconfigurations. We use a passive, connection-based mecha-
nism (TCP-based in this case) to notify processes of relevant
events. The new MRNet event detection service (EDS) runs
as a thread within each process and primarily monitors a
watch list of designated event sockets. These sockets include
a listening socket to which other processes can connect to
establish process peer relationships. The EDS uses the select
system call to wait until a specified event occurs on at least
one monitored socket.

Failure Detection. Failure detection in a distributed sys-
tem comprises component failure detection and failure in-
formation dissemination. For component failure detection,
we leverage the TBŌN structure to establish small groups
of processes that monitor each other. Currently, an MR-
Net process monitors its parent and children using special
failure-detection event sockets. An error detected on a failure-
detection event socket indicates that the process peer has
failed. The timeliness of this failure detection mechanism
depends on the cause of failure. When a process terminates,
its host’s kernel will abort the process’ open connections;
this is detected immediately by the process’ peers. However,
node and link failures prevent a kernel from explicitly abort-
ing its connections. TCP keep-alive probes can be used to
detect such failures, but in general keep-alive probes have
a two hour default period that can be lowered only on a
system-wide basis by privileged users. User-level heartbeat
protocols [2] could provide responsive, user controlled node
and link failure detection.

Process failure events must be disseminated to all TBŌN pro-
cesses so that they may update their topologies. Once again,
we leverage the TBŌN structure for efficient information
dissemination. Multiple peer EDSes will detect each process
failure. An EDS that detects its parent’s failure reports that
failure to its children, and an EDS that detects that one
of its children have failed reports that failure to its parent
and surviving children. A failure report contains the rank of
the failed process. Upon receiving a failure report, a process
propagates the report to all the process’ peers other than
the peer from which the report was received.

Reconfigurations and propagation delays can lead to dupli-
cate, late, missing or out-of-order failure reports. For example,
a process can receive a duplicate failure report if the process
has been adopted multiple times to different TBŌN branches
and receives the same report from multiple branches. Acting
on a failure report is an idempotent operation: a duplicate
failure report reiterates that a process has failed. Late or
missing failure reports lead to stale topology information.
Our reconfiguration algorithm, summarized below, tolerates
stale topology information by iteratively connecting to po-
tential adopters, which may have failed, until an adoption
succeeds. Different failure reports cannot contain conflicting
information, so out-of-order failure reports do not pose any
issue beyond that of stale topology information.

Dynamic Topologies. Dynamic topology reconfigurations
are necessary to accommodate process failures. After failures,
orphans initiate a reconfiguration algorithm to determine a
new parent that re-establishes a path to the front-end. Each
orphan generates a sorted list of potential adopters, so that
should a selected adopter fail by the time an orphan tries
to connect to it, the orphan can attempt to connect to a
different adopter. While the complete details are beyond the
scope of this paper, we analyzed several reconfiguration algo-
rithms that are executed by orphans without coordination.
We focused on: (1) the costs of disseminating and managing
the TBŌN process information needed by the algorithms, (2)
the algorithms’ execution times, and (3) the data aggrega-
tion latency of the resulting configurations. We observed that
tree height increases can have a significant negative impact
on data aggregation performance and chose an algorithm
that restricts tree height increases and moderately increases
fan-out as failures occur.

An orphan contacts its chosen adopter’s EDS, and the adopter
and adoptee establish a socket for application data transmis-
sion. After the adoption, a reconfiguration report, containing
the adopter’s and adoptee’s ranks, must be reported to all
processes. Reconfiguration reports are disseminated just as
failure reports are: an adoptee sends the reconfiguration re-
port to its children, and the adopter sends the report to its
parent and other children. A process that receives a report
sends the report to all peers other than the one from which
the report was received.

As with failure reports, acting on a reconfiguration report is
an idempotent operation: a replicated report reiterates the
adoption of a child by its new parent. However, reconfigura-
tion reports of different adoptions regarding the same orphan
are conflicting. If processed in the wrong order, topology
information will become incorrect. We adopt the concept
of incarnation versions [7] to address this problem. Each
process maintains an incarnation number. After each adop-
tion, an orphan’s incarnation number is incremented and
propagated with the recovery report. Processes disregard
reconfiguration reports regarding orphans for whom they
have received a report with a higher incarnation number.
Late reconfiguration reports may lead to erroneous cycles
in the topology. For example, if two orphans from different,
simultaneous failures each select a descendant of the other
as its adopter, a cycle is produced. Our current prototype
performs a simple topology validation that avoids most in-
stances of cycle formation. Late reconfiguration updates also
may lead to correct but sub-optimal topologies, for example,
if a process with a stale topology wrongly computes that an
adoption would not lead to a height increase.

6.2 State Composition Implementation
We derived a straightforward implementation of state com-
position from the theory from Section 5.3. As shown in
Algorithm 6.1, when a child detects its parent’s failure, the
orphaned child pauses input processing3, computes a sorted
list of potential adopters and establishes a connection with
the first surviving process from the list. After reconfiguration,

3An orphan could filter new input and buffer output until it
has been adopted. In fact, since data aggregation is commuta-
tive and associative, upon adoption it would be sufficient for
an orphan to propagate the aggregate of its pending output.

Algorithm 6.1: Failure Recovery Algorithm

if parent fails then
Pause input data processing;
begin TBŌN reconfiguration

Compute sorted potential adopters list;
while failed to connect to head of list do

Remove list head;

end
Update network topology data structure;
begin TBŌN state recovery

foreach stream do
Propagate filter state to new parent;

end

if child fails then
Update network topology data structure;

Propagate failure and reconfiguration reports;
Resume normal operation;

the adoptee and adopter update their topologies to reflect
the changes. The adoptee then compensates for any lost state
by propagating its filter states to its adopter.

A parent process that detects the failure of one of its chil-
dren simply deletes the failed process from its topology data
structure. After the failure recovery process completes, the
parent of the failed process, the adopted processes and their
adopters disseminate failure and reconfiguration reports.

7. EVALUATION
In the absence of failures, state compensation consumes no
computational resources beyond those necessary for normal
TBŌN operation. We evaluated the performance of failure re-
covery and the impact of failures on application performance.
Our experiments were run on the Lawrence Livermore Na-
tional Laboratory’s Atlas Cluster of 1,024 2.4 GHz AMD
Opteron nodes, each with 8 CPUs and 16 GB of memory
and linked by a double data rate InfiniBand network.

7.1 The Experimental Framework
The main component of our experimental framework was
a failure injection and management service (FIMS) that in-
jected process failures and collected recovery performance
data. After failure recovery, each formerly orphaned process
notified the FIMS that its failure recovery was complete. The
FIMS conservatively estimated the overall TBŌN recovery
latency using the time of failure injection and the time of
receipt of the last recovery completion message. The esti-
mate was conservative since it includes transmission and
serialization delays.

7.2 The Application
We used the integer union computation introduced in Sec-
tion 3.3, which computes the set of unique integers in the
TBŌN’s input stream by filtering out duplicates, to test
our failure recovery mechanisms. The application back-ends
propagate randomly generated integers at a rate of ten pack-
ets per second, the default stack trace sampling rate of our
MRNet-based STAT tool [3]. After each experiment, we com-
pare the input from the back-ends with the output at the
front-end. Even when failures are injected, the output set at

the front-end must be equal to the union of the input sets.
We use the integer union computation because its output is
easily verifiable, and, as we discussed, is representative of
many useful, more complex aggregations.

7.3 Recovery Latency
When failures occur, the duration of the temporary TBŌN
output divergences output can be estimated by:

MAXnorphans
i=0 (t(recovery(oi)) − t(failure))+

(l(oparent(oi), root) − l(nparent(oi), root))

where t(e) is the time that event e occurs, recovery(oi) is
the recovery completion of orphan i, l(src, dst) is the prop-
agation latency (possibly over multiple hops) from src to
dst, oparent(oi) is orphan i’s old parent, and nparent(oi) is
orphan i’s new parent. This formula computes the maximum
across all orphans of an orphan’s recovery latency and dif-
ference in propagation latencies between the orphan’s old
path to the root and the new path after reconfiguration.
Our evaluation is focused on the orphans’ recovery latencies,
compensation is completed once each orphan has introduced
its compensating state as channel state to its new parent.
Under our eventual consistency model, diverged output is
correct, just not up-to-date. Further, propagation latencies
may be shorter after failure, for example, if a failure occurs
deep in the tree, and orphans are adopted by the root.

Each orphan’s individual failure recovery latency is the sum:

l(new parent) + l(connect) + l(compensate) + l(cleanup)

where l(new parent) is the time to compute the new par-
ent, l(connect) is the time to connect to the new parent,
l(compensate) is the time to send the filter state4, and
l(cleanup) is the time to update local data structures and
propagate failure and reconfiguration reports.

For state composition, only orphaned processes (and adopting
parents) participate in failure recovery. Therefore, the failure
recovery performance is a function of the tree’s fan-out, not
total size. Our first experiments evaluated the impact that the
number of orphans caused by a failure has on failure recovery
latencies. Our MRNet experiences suggested that typical
fan-outs range from 16 to 32; however, we tested extreme
fan-outs up to 128 since hardware constraints can force such
situations. For instance, LLNL’s BlueGene/L enforces a 1:128
fan-out from its I/O nodes to its compute nodes. To test such
large fan-outs, we organized the micro-benchmark topologies
such that only the designated victim processes had the large
test fan-out, as shown in Figure 5. We added 16 additional
processes to distribute the orphan adoptions; this reflects
practical TBŌN topologies in which orphans have multiple
potential adopters from which to choose.

For each experiment, we report the FIMS’ conservative esti-
mate of the overall TBŌN recovery latency, the maximum
individual orphan recovery latency and the average recovery
latencies for all orphans. The results are shown in Figure 6.
l(new parent) and l(connect) dominate the orphans’ indi-
vidual failure recovery latencies. As the number of orphans

4Technically, l(compensate) is the latency of the local TCP
send operation after which it is guaranteed only that the
kernel has accepted the compensation data for transmission.

…

…

Extra Internal

Communication Processes

Application

Front-end

Application

Back-ends

Victim process

Figure 5: Micro-benchmark Topology: The victim
has the fan-out being evaluated, and 16 internal pro-
cesses are added to distribute orphan adoptions.

increases, an increase in the connection time causes the in-
dividual orphan recovery latencies to increase. The increase
in connection time can be attributed to serialization at the
adopters, since more orphans are being adopted by the same
number of adopters. In practical scenarios with more balanced
topologies, better adopter/adoptee ratios would mitigate this
contention. l(new parent) remains relatively constant – the
peak in l(new parent) for the slowest orphan in the “64 or-
phans” experiment is an outlier, since the average across
the 64 orphans matches those of the other experiments. For
larger trees with more processes, l(new parent) will increase,
but based on additional tree reconfiguration experiments, we
have determined that even for a tree of over 106 processes,
the time to compute a new parent should remain in the
hundreds of milliseconds. The major observation of these
results is that even considering the FIMS’ estimate of overall
recovery latency, the latency for our largest fan-out of 128
is less than 80 milliseconds – an insignificant interruption,
considering that a 1283 tree has over 2 million leaves.

7.4 Application Perturbation
We evaluated the impact of failures on application perfor-
mance by dynamically monitoring the throughput of the
integer union computation as we injected TBŌN failures.
The experiment started with a 2-level topology and a uni-
form fan-out of 32. We injected a random failure every 30
seconds killing four of the 32 internal processes. At the ap-
plication front-end, we tracked the application’s throughput
reported as the average throughput over the ten most recent
output packets. The results in Figure 7 show some occasional
dips (and proceeding bursts) in packet arrival rates. There
are several dips that do not coincide with the 30, 60, 90 and
120 second marks (indicated by the arrows) at which failure
were injected, and some even occur before the first failure was
injected. We conclude that these are due to other artifacts,
like operating system thread scheduling, and that there is no

4 8 16 32

0

10

20

30

40

50

60

70

80

90

F
IM

S

M
A

X

A
V

G

F
IM

S

M
A

X

A
V

G

F
IM

S

M
A

X

A
V

G

F
IM

S

M
A

X

A
V

G

F
IM

S

M
A

X

A
V

G

F
IM

S

M
A

X

A
V

G

Fan-out at Failed Process

R
e
c
o

v
e
ry

 L
a
te

n
c
y
 (

m
il
li
s
e
c
o

n
d

s
) l(overall) l(new_parent)

l(connect) l(compensate)

l(cleanup)

64 128

Figure 6: Recovery Latencies: l(overall) is overall
TBŌN recovery estimate, l(new parent), l(connect),
l(compensate) and l(cleanup) are the latencies to
choose new parent, connect to parent, transmit filter
state, and update local data structures.

perceivable change in application’s performance due to the
injected failures. We are running additional experiments to
determine how increases in application data rate will impact
these results; however, with our millisecond recovery latencies
we still expect little performance perturbation.

8. CONCLUSION
We developed a scalable recovery model for high performance
data aggregation that exploits the inherent information re-
dundancies found in many TBŌN computations. To the best
of our knowledge, this is the first fault-tolerance research to
leverage implicit state replication and avoid the overhead of
explicit replication. Furthermore, our recovery protocol is
completely distributed. Our state composition mechanism
requires only that data aggregations are commutative, as-
sociative and idempotent and is suitable for many useful
algorithms. Our evaluation shows that we can recover from
failures in TBŌNs that can support millions of processes in
milliseconds with inconsequential application perturbation.

As HPC system sizes and failure rates continue to increase, no
(and low) overhead recovery models like state compensation
become essential. We are considering several strategies for
extending this work, for example, to accommodate composi-
tions of heterogeneous filter functions, application back-end
failures, and even directed acyclic graph topologies. Also,
many of our current aggregations are motivated by the anal-
ysis requirements of parallel and distributed system tools.
Open research questions are how will the characteristics of
new TBŌN applications map to the requirements of our
failure recovery model and how can we extend the failure
recovery model to accommodate applications that do not
comply with the model’s current requirements.

9. REFERENCES
[1] P. A. Alsberg and J. D. Day. A principle for resilient sharing

of distributed resources. In 2nd International Conference on
Software Engineering (ICSE ’76), pages 562–570, San
Francisco, CA, 1976. IEEE Computer Society Press.

[2] G. R. Andrews. Paradigms for process interaction in
distributed programs. ACM Computing Surveys, 23:49–90,

7

8

9

10

11

12

13

14

15

0 30 60 90 120 150 180

Time (seconds)

T
h

ro
u

g
h

p
u

t
(p

a
c

k
e

ts
/s

e
c

o
n

d
)

Figure 7: Application Perturbation: Failures (indi-
cated by arrows) are injected every 30 seconds into
a TBŌN with an initial 323 topology.

1991.
[3] D. C. Arnold, D. H. Ahn, B. R. de Supinski, G. Lee, B. P.

Miller, and M. Schulz. Stack trace analysis for large scale
applications. In 21st IEEE International Parallel &
Distributed Processing Symposium (IPDPS ’07), Long
Beach, CA, March 2007.

[4] D. C. Arnold, G. D. Pack, and B. P. Miller. Tree-based
computing for scalable applications. In 11th International
Workshop on High-Level Parallel Programming Models and
Supportive Environments, Rhodes, Greece, April 2006.

[5] M. Balazinska, H. Balakrishnan, S. Madden, and
M. Stonebraker. Fault-tolerance in the borealis distributed
stream processing system. In SIGMOD International
Conference on Management of Data, pages 13–24,
Baltimore, MD, June 2005.

[6] S. M. Balle, J. Bishop, D. LaFrance-Linden, and H. Rifkin.
Applied Parallel Computing, volume 3732/2006 of Lecture
Notes in Computer Science, chapter 2, pages 207–216.
Springer, February 2006.

[7] A. D. Birrell, R. Levin, M. D. Schroeder, and R. M.
Needham. Grapevine: An exercise in distributed computing.
Communications of the ACM, 25(4):260–274, 1982.

[8] E. N. Elnozahy, L. Alvisi, Y.-M. Wang, and D. B. Johnson.
A survey of rollback-recovery protocols in message-passing
systems. ACM Computing Surveys, 34(3):375–408, 2002.

[9] E. N. Elnozahy and J. S. Plank. Checkpointing for
peta-scale systems: A look into the future of practical
rollback-recovery. IEEE Transactions on Dependable and
Secure Computing, 1(2):97–108, April-June 2004.

[10] G. Gibson, B. Schroeder, and J. Digney. Failure tolerance in
petascale computers. CTWatch Quarterly, 3(4), November
2007.

[11] I. Gupta. Building Scalable Solutions to Distributed
Computing Problems Using Probalistic Components. PhD
thesis, Cornell University, August 2003.

[12] J.-H. Hwang, M. Balazinska, A. Rasin, U. Cetintemel,
M. Stonebraker, and S. Zdonik. High-availability algorithms
for distributed stream processing. In 21st International
Conference on Data Engineering (ICDE’05), pages 779–790,
Tokyo, Japan, April 2005.

[13] H. Jiang and S. Jin. Scalable and robust aggregation
techniques for extracting statistical information in sensor
networks. In 26th IEEE International Conference on
Distributed Computing Systems (ICDCS ’06), page 69,
Lisboa, Portugal, July 2006. IEEE Computer Society.

[14] R. E. Ladner and M. J. Fischer. Parallel prefix computation.
Journal of the ACM, 27(4):831–838, 1980.

[15] S. Madden, M. J. Franklin, J. M. Hellerstein, and W. Hong.

Tag: a tiny aggregation service for ad-hoc sensor networks.
In 5th Symposium on Operating Systems Design and
Implementation (OSDI), Boston, MA, December 2002.

[16] A. Manjhi, S. Nath, and P. B. Gibbons. Tributaries and
deltas: Efficient and robust aggregation in sensor network
streams. In ACM SIGMOD International Conference on
Management of Data (SIGMOD 2005), pages 287–298,
Baltimore, MD, June 2005. ACM Press New York, NY, USA.

[17] A. Montresor, M. Jelasity, and O. Babaoglu. Robust
aggregation protocols for large-scale overlay networks. In
2004 International Conference on Dependable Systems and
Networks (DSN 2004), page 19, Palazzo dei Congressi,
Florence, Italy, June/July 2004. IEEE Computer Society.

[18] A. Nataraj, A. D. Malony, A. Morris, D. Arnold, and
B. Miller. A framework for scalable, parallel performance
monitoring using tau and mrnet. In International Workshop
on Scalable Tools for High-End Computing (STHEC 2008),
Island of Kos, Greece, June 2008.

[19] S. Nath, P. B. Gibbons, S. Seshan, and Z. R. Anderson.
Synopsis diffusion for robust aggregation in sensor networks.
In 2nd International Conference on Embedded Networked
Sensor Systems(SenSys ’04), pages 250–262, Baltimore, MD,
November 2004.

[20] R. V. Renesse, K. P. Birman, and W. Vogels. Astrolabe: A
robust and scalable technology for distributed system
monitoring, management, and data mining. ACM
Transactions on Computer Systems, 21(2):164–206, 2003.

[21] R. V. Renesse, Y. Minsky, and M. Hayden. A gossip-style
failure detection service. In IFIP International Conference
Distributed Systems and Platforms and Open Distributed
Processing (Middleware 98), pages 55–70, The Lake District,
England, September 1998.

[22] P. C. Roth, D. C. Arnold, and B. P. Miller. MRNet: A
software-based multicast/reduction network for scalable
tools. In 2003 ACM/IEEE conference on Supercomputing
(SC ’03), page 21, Phoenix, AZ, November 2003. IEEE
Computer Society.

[23] P. C. Roth and B. P. Miller. On-line automated performance
diagnosis on thousands of processes. In ACM SIGPLAN
Symposium on Principles and Practice of Parallel
Programming (PPoPP ’06), New York, NY, March 2006.

[24] F. D. Sacerdoti, M. J. Katz, M. L. Massie, and D. E. Culler.
Wide area cluster monitoring with ganglia. In IEEE
International Conference on Cluster Computing (CLUSTER
2003), pages 289–298, Hong Kong, September 2003.

[25] F. B. Schneider. Byzantine generals in action: Implementing
fail-stop processors. ACM Transactions Computer Systems,
2(2):145–154, May 1984.

[26] P. Yalagandula and M. Dahlin. A scalable distributed
information management system. In 2004 Conference on
Applications, Technologies, Architectures, and Protocols for
Computer Communications (SIGCOMM ’04), pages
379–390, Portland, OR, August/September 2004.

