
IEEE TRANSACTIONS ON COMPUTERS, VOL. 37, NO. 2, FEBRUARY 1988

sequential while that was highly parallelized (it can be shown that the
number of time units used by the previous algorithm is O(N log d)
while that for this algorithm is O(Nd)). Several variants of these
algorithms can be easily constructed by noting that we have given
algorithms at two extremes of the spectrum.

Fault tolerance is an aspect we have not addressed here. Observe
that it is not trivial to define the sorting problem when some sites
could fail at any time. In fact, since the topology considered is a
straight line, the network can get partitioned due to a single edge/site
failure making it impossible to communicate a message from a site to
all other sites. Our algorithms do not work in such cases. In fact, we
know of no work on fault-tolerant sorting on any topology.

REFERENCES
F. Chin and H. F. Ting, “A near-optimal algorithm for finding the
median distributively,” in Proc. 5th Int. Conf. Distributed Comput.
Syst., May 1985, pp. 459-465.
G. N. Frederickson, “Tradeoffs for selection in distributed networks,”
in Proc. 2nd ACM PODC, Aug. 1983, pp. 154-160.
M. C. Loui, “The complexity of sorting on distributed systems,”
Inform. Contr., vol. 60, no. 1-3, pp. 70-85.
M. Rodeh, “Finding the median distributively,” JCSS, pp. 162-166,
1982.
R. Rom, “Ordering subscribers on cable networks,” ACM TOCS,

D. Rotem, N. Santoro, and J. B. Sydney, “Distributed sorting,” IEEE
Trans. Comput., vol. C-34, pp. 372-376, Apr. 1985.
-, “A shout-echo selection in distributed files,” Networks, to be
published.
S. Zaks, “Optimal distributed algorithms for sorting and ranking,”
IEEE Trans. Comput., vol. C-34, pp. 376-379, Apr. 1985.

vol. 2, pp. 322-334, NOV. 1984.

DPM: A Meaqurernent System for Distributed Programs

BARTON P. MILLER

Abstract-DPM is a system for monitoring the execution and perform-
ance of distributed programs. An important characteristic of its design is
the simplicity of each part of the design. This simplicity has resulted in a
system of tools that has a wide range of applications and that was
relatively easy to construct. We start with a simple framework for
distributed computation based on message interactions. We use this
framework to develop a structure for a measurement tool for distributed
programs, implemented for both the DEMOWMP and Berkeley UNIX
operating systems.

DPM can measure communication statistics, dynamic program struc-
ture, and parallelism. It can be used for post mortem analysis of a
program’s performance, real-time performance monitoring, and geoerat-
ing data to be used by the operating system for such things as a scheduler
for load balancing.

Index Terns-DEMOS, distributed program, monitor, performance
evaluation.

Manuscript received October 15, 1985. This work was supported by
National Science Foundation, Grant MCS-8010686, the State of California
MICRO program, and the Defense Advance Research Projects Agency (DoD)
Arpa Order 4031 monitored by Naval Electronic System Command under
Contract N00039-82-C-0235.

The author is with the Department of Computer Sciences, University of
Wisconsin-Madison, Madison, WI 53706.

IEEE Log Number 8715440.

243

I. INTRODUCTION
This paper presents a framework for measuring the performance of

distributed programs. This framework includes a model of distributed
programs, a description of the measurement principles and methods,
and a guideline for implementing these ideas. We have constructed a
measurement system (called the Distributed Programs Monitor, or
DPM) based on these concepts. DPM has been implemented and used
for measurement studies on two different operatings systems
(DEMOS/MP [I], [2] and Berkeley UNIX [3]).

Collecting data about a program’s performance is not enough; we
must supply some form of interpretation or analysis of the data. We
include, as part of DPM, several analysis techniques that can provide
information about the structure, the amount of parallelism, and the
communications patterns of a distributed program. DPM is more than
a particular implementation of a measurement facility. It provides a
framework for other activities that are based on the monitoring of a
distributed program. Some of these activities include real-time
monitoring and display of the activities of a program, and use of the
measurement data for feedback scheduling activities such as load
balancing.

A . Overview
The driving principle in the design of DPM is simplicity. The

model of distributed computation is simple in the sense that it is
general enough to make it applicable to a wide range of systems. Our
methods of measurement are simple to ensure easy implementation.
The implementation of our tools is simply structured to provide
confidence in their correctness.

The goal of simplicity has produced a subordinate goal, transpar-
ency. The goal of transparency enforces simplicity of use for the
programmer. To measure a program we should not have to
recompile, relink, or write in a special style or language. We should
not have to supply special information to the measurement system to
have it function correctly.’ Transparency also means that the
performance of the program being monitored is not significantly
disturbed. A monitor built in software will always have some affect
on a program’s performance, but our design goal is to minimize this
effect. This goal will influence both the design and the implementa-
tion of the measurement system.

Our measurements are done passively, as opposed to systems that
interact with the computations-such as happens with interactive
debuggers. By this, we mean that actions such as redirection of
messages, breakpoints, and modifications of the message streams are
not allowed. DPM is an observer of the computation, and not a
participant.

B. What is a Distributed Program? And Other Definitions

O u r model of distributed programs provides the guidelines for the
design of DPM. It is not a formal model in that we do not use it as the
basis for mathematical analysis; rather, the model can be considered
as a reference point for the design and implementation of thp
measurement system.

We define a distributed program to be a collection of processes
cooperating to perform some computation. The component processes
are not constrained to run on the same machine. No assumptions are
made about the locations of the processes. A distributed program
(more simply called a computation) is made up of processes that are
the basic building blocks of a computation. A process consists of an
address space containing code and data, and an execution stream.
Each process has access only to its own address space. Processes do
two things: compute and communicate. Computing is the normal
execution of instructions and does not affect the state of other
processes. These instructions are referred to as internal events.
Communication is the means by which a process will interact with

Note that we say “have to.” The option is still available to augment the
measurement system with, e.g., compiler supplied information.

OO18-9340/88/02OO-0243$01 .OO 0 1988 IEEE

244 IEEE TRANSACTIONS ON COMPUTERS, VOL. 37, NO. 2, FEBRUARY 1988

other processes and the operating system. Interactions are referred to
as external events. The complexities of the distributed environment
become apparent when a process in a computation interacts with
another part of the computation.

Communication is based on messages. A message allows the
copying of part of one process’s address space into that of another
process. A message is an interaction involving exactly two processes:
the process originating the data (the sender) and the process
consuming the data (the receiver). We make no restrictions on the
structure of the message delivery. The communications path may be
unidirectional or bidirectional. The message passing operations may
be synchronous or asynchronous. Message delivery may or may not
be guaranteed or required to preserve message order. Message paths
may be dynamically or statically created and destroyed, and the
processes in the computation may be dynamically created and
destroyed. We make no assumptions about the network or facility
underlying the communications mechanism. Our model of computa-
tion applies to a wide range of systems because of its simplicity.

Our model of computation does not include systems that have
processes with shared address spaces. Conceptually, a shared
memory system can be modeled as a message-based system (and vice
versa) [4]. In practice, the interactions in a message-based system are
generally easier to detect than in a shared memory system, and
therefore easier to monitor.

Processes execute on machines that do not have direct access to
each other’s memories. Each machine has a portion of the operating
system running on it to support process execution, communications,
memory management, and device management. The communication
functions supplied by the operating system provide for interprocess
communications both within and between machines.

II. THE MEASUREMENT DESIGN
Our measurement design follows the basic philosophy of ‘‘look,

but don’t touch” with respect to the program being studied. The goal
is minimal disturbance of the execution of the program. This means
that the computation being measured should not execute more slowly
or achieve different results because it is being measured. If the cost of
measurement is high, then the act of measuring a computation could
substantially change its execution behavior. These guidelines have
determined the design of our measurement system. This section
provides an overview of our design.

Fig. 1 gives an overview of event detection and our measurement
system. Internal events are not visible from outside a process and are
therefore not detected. The detection of external events is referred to
as metering. A trace is produced for each event that is detected. After
the trace is produced, a decision is made whether or not to keep the
trace. The selection decision is called filtering. If the trace is kept, it
is stored until it is processed to provide results that may be used to
understand the behavior of the process (and the overall computation).
We call the processing of the traces analysis.

The metering stage of measurement lies within the kernel of the
operating system because of the desire not to change the program
itself. The facility should be simple, to make the necessary
modifications as simple as possible. Changes to an operating system
kemal are typically much more difficult than those to parts of the
system outside the kernel.* Alternatively, the event detection could
be placed in the language run time library, compiler-generated code,
or could be inserted directly by the programmer. While these
methods may be simpler to implement, they provide for less
generality and less transparency. For example, these alternatives
might require the programmer to use a particular language or might
allocate an available file descriptor.

The filtering stage provides for a flexible set of rules to perform

* In our experience, the effort necessary (including design, coding, and
testing) to put a given function in the operating system kernel is about 10 times
greater than implementing the same function outside the kernel (in a process).
A similar statement can be made when moving kernel functions into
microcode.

Process A Process B

n Filter

discard Hep s f i
Anslysls

Fig. 1. Events and the measurement model.

data reduction. This facility allows easy change to the selection
criteria and easy adaptation to new or changed trace types.

The analysis of the data provides a summary of execution of the
computation. It is at the analysis stage that useful information is
provided about the computation. The goal of the measurements
dictate the type of analysis being performed and the overall structure
of the measurement system (see Section IV).

III. THE MEASUREMENT FACILITY
The measurement facility is described by the events that we

measure and the structure of the measurement tools. The measure-
ment tools consist of the previously mentioned components (meter,
filter, analysis) and user interface. We describe the events, meter,
filter, and user interface in this section. The analyses are described in
Section IV.
A. Events and Trace Records

There is a set of meter events that reflect the basic operations as
seen by the programmer of a distributed computation. The structure
of the metering stage is very simple due to the small set of meter
events (currently 10). These event types are, for the most part, the
same across the different operating systems supporting the measure-
ment facility. These events consist primarily of activities (such as the
sending and receiving of a message) that reflect interactions between
processes. Other events related to communications are also-recorded.
This group of events consists of actions that effect the creation,
modification, and destruction of communications paths. The last
group of recorded events pertains to the state of the processes in the
computation. The basic events are the creation of a process, the
starting and stopping of its execution, and the destruction (termina-
tion) of the process. Depending on the system from which the
measurements are being extracted, there may be slight variations in
the details of the data collected with each event type.

METRIC [5] allowed the users to specify their own event trace
types. It would be easy to add such a mechanism to DPM. Only the
meter would need to be changed and these changes would be minor.
We chose to not provide this facility for reasons of transparency.
Userdefined traces would require explicit use of the trace facility
within the processes being measured.

Included with each event trace is a standard header describing the
trace. The header of an event trace contains the following fields:
MACHINEID (machine from which the trace came), PROCTIME
(amount of CPU time used by this process up to the time this trace
was generated), TIME (wall clock time as known by this machine),

IEEE TRANSACTIONS ON COMPUTERS, VOL. 37, NO. 2, FEBRUARY 1988 245

TRACETYPE (type of event described by this trace), PC (program
counter indicating the location in the process causing the event), and
LOADAVERAGE (current number of runable processes on this
machine).

The event trace types are: SEND, RECEIVECALL, RECEIVE,
MESSAGEQUEUED, CREATEPATH, DESTROYPATH,
CREATEPROCESS, STARTPROCESS, STOPPROCESS, and
DESTROYPROCESS.

The meter traces do not include the contents of the messages sent
by the users. The meter traces record only the occurrence of an event
and information about which processes were involved. This results in
less trace data to communicate and store.

Even though we do not include the message contents in the traces,
we can still derive information about specific activities within the
processes that are being measured. By using the PC information in
the trace header we can identify the specific procedure within the
process that caused the event. These are the same techniques used by
high-level language debugger to allow symbolic reference to program
procedures and variables.

B. Metering
Metering is the activity that takes place within the operating system

kernel to extract the events of interest. This portion of the
measurement facility is the only change required to the supporting
operating system.

The point in the operating system kernel where the necessary
information is available must be located to meter the specified events.
At these points, we insert meter probes into the code of the kernel.
These probes are procedure calls to a software module (meter
module) that is responsible for passing the traces to the filter. The
parameters for the specific trace being generated are passed to the
meter module with the procedure call. These values, along with the
standard format header, are passed to the filter. A communications
path, called the meter path, is used by the metering routines for
sending traces to the filter stage.

We try to minimize the performance overhead of generating the
trace messages. Two mechanisms help in this effort. The first is the
buffering of the trace messages. The major cost in generating the
traces is that of sending the message over the meter connection. We
typically buffer up to 50 traces (for a given process) before sending a
trace message. The second mechanism that contributes to the
performance is that the meter module can access the communications
routines with substantially less overhead than could a process.

C. Filtering
Filtering is the data selection and reduction stage in the measure-

ment system. It reduces both the size and number of traces as they are
produced. Data are received from the metering stage, filtered, and
then passed on to the analysis stage or stored for later analysis. The
scheme currently used in the measurement system is based on a
general, one-level, pattern matching algorithm. More sophisticated
schemes (such as presented in [6]) may be used in subsequent
versions of DPM. This filter also allows for the specification of trace
record formats, so that the filter can process traces coming from
different systems. A complete description of the current filter design
is presented in [7].

Typically, the processes forming a computation send traces to a
single filter, which selects and stores the data for later analysis. We
would expect this structure to be useful to a programmer evaluating a
new program. Different configurations provide for the ability to
apply the measurement system to different problems. For example,
we could have a filter collect data on all communications acti+ities
within a single machine. This type of configuration allows the
measurement of message quantity and frequency, queue lengths, and
process scheduling. DPM can perform the tasks that would have
traditionally required specialized tools to be built. It takes no extra
work to extend this type of measurement to a collection of machines,
or to the entire system. If network (communication) load is critical,
then we can have a filter on each machine and merge the trace records

when the computation has terminated. If CPU load is critical, then the
filter process(es) can be placed on its (their) own machine@).

D. User Interface
The user interface to DPM is a command interpreter that allows the

programmer to specify the 1) program (processes) to run, 2) events to
monitor, 3) name of the filter (with descriptions and templates, if the
standard filter is used), and 4) the analyses to be run on the trace data
after they are collected. A complete description of the command
language and structure of the user interface is given in [8] and [7].

IV. ANALYSIS TECHNIQUES
A collection of data needs some form of interpretation to have

some meaning. A basic tenet of this paper is that the measurement
model and techniques, and the associated tools, can provide useful
data. To demonstrate this, we describe several approaches for the
analysis of the trace data generated by our measurement system.
These analyses are implemented and working in DPM.

A. Basic Communications Statistics
We have defined a computation to be a collection of cooperating

processes. The processes cooperate, and the cooperation is based on
some communications mechanism. It is reasonable then to want to
know the nature of the communications between processes. Several
basic questions come to mind. Who is talking to whom? (Which
processes are talking to which other processes?) What is the volume
(total message traffic) of the communications? How frequent (time
density) are the communications? How large are messages?

In addition to these basic questions, a few more interesting queries
come to mind. Given information about the arrival and consumption
of messages, we can derive information about the message queues. It
is possible to gather statistics such as the maximum and average
queue lengths for each process. With the same information we can
obtain the minimum, maximum, and average time that a message
waits in the incoming message queue before it is consumed by the
process. We can also record the distribution of the various measure-
ments.
B. Detecting Paths of Causality

When we write a computation consisting of several processes, we
specify the order and frequency of the communications in the
Computation. We specify this information for each interaction
between processes. We establish rules and protocols to provide for
the correct execution of the program. But when the entire computa-
tion is executing, the overall interactions are more complex than
suggested by this static picture of the computation. The increased
complexity comes from parallel execution within the computation and
from the fact that several partially completed activities maybe be
simultaneously active within the computation.

The model of computation in which we are interested for this
analysis is that of a server. A server is a computation that receives a
request from processes outside the computation, computes a result
(involving one or more of the processes within the computation), and
then returns the result to the requesting process. There are several
questions to be answered about the behavior of a server. One
question is: given a request message received by the server, what
message paths within the server are most commonly traveled? This
question can be translated to: what sequences of interprocess
communications occur most frequently? For sequences of length two,
we can derive this information from the basic message statistics (see
Section IV-A). The message statistics cannot provide information
about longer sequences of interactions. Related to the longer
sequences of interactions is a second question: given a process that
has just received a message, where will that process next send a
message? This question can also be viewed as determining a
branching probability, given a specific input to a process.

The basic strategy for causality analysis is to identify each request
to the server, and follow the sequence of interactions within the
server caused by that request. To do this, we first collect SEND and
RECEIVE traces and construct a program history graph of the events

246 IEEE TRANSACTIONS ON COMPUTERS, VOL. 37, NO. 2, FEBRUARY 1988

j External
: processes

Fig. 2

- - _ _

I A
I lrsld 1

Process c

/ -

Sample computation graph for causality analysis.

in the processes, with arcs in the graph between each corresponding
send and receive (see Fig. 2). A SEND trace is associated with its
corresponding RECEIVE trace by using two pieces of information.
First, we can identify the connection or link over which a message
was sent. Second, messages sent over a given connection contain
sequence numbers, and the SEND and RECEIVE traces record these
sequence numbers. The program history graph represents the
complete collection of interactions between processes during the life
of the computation.

To reduce the complexity of analyzing such a large quantity of
data, we convert the problem to one of manipulating character
strings. Each process in the computation is assigned a single letter
designator. The two events corresponding to a message being sent
and received are designated by the letter for the sending process,
followed by the letter for the receiving process. For example, the first
send and receive pair in Fig. 2 would be the string

AB.

We create a list of strings, where each string represents one request to
the server and the subsequent activity within the server. These strings
are called causality strings.

There are three types of processes that are visible during a
causality analysis. The first type of process is the server process. This
process is contained within the computation that is providing service.
The second type of process is the requestor process. Requestor
processes are the customers of the server. They make requests and
receive results. The last type of process is the system process. System
processes are those processes to which the server makes requests.
The system processes may be other servers, or perhaps a host kernel.
Messages received from a requestor indicate a request for service
from the server computation. Messages to system processes from the

server are ignored (as are the responses), as we are interested in
tracing the flow of control through the server, and not through
external processes.

The algorithm for building the causality strings traverses the entire
computation graph. The list of causality strings is built by

1) searching for each message receive event from a requestor
process;

2) for each such receive, the message sends immediately following
the receive are identified;

3) the message receives corresponding to sends in 2) are identified
(i.e., the message arcs are followed), and steps 2) and 3) are repeated
for each receive.

A causality string is initially a single character, which is the
process performing a message receive that was detected in step 1).
Each time a send is followed (i.e., a message arc is traversed) to its
corresponding receive [step 2)], an additional letter (identifying the
receiving process) is added to the causality string. Events associated
with system processes are ignored in this algorithm. For example, the
causality strings for Fig. 2 are

ABA

ABCBA.

Once we have the causality strings, there are several results that we
can obtain from them. The first result is identifying the most
commonly traveled paths through the server. We store these strings in
lexicographical order with a value indicating the number of times that
the string has occurred in the computation. This list of strings
identifies the most commonly occurring message sequences.

Given three processes, A, B, and C, we use the causality strings to
compute the probability that process A , having just received a
message from process B, will next send a message to process C. This
information is obtained by generating all of the substrings of length
three, and then tabulating them. The probabilities cannot be
calculated from the simple message statistics since these statistics do
not correlate message receives with the corresponding message
sends.

This analysis technique was used in a study of the DEMOS/MP file
system [9], [2]. The DEMOS/MP file system consists of four
processes (request interpreter, directory manager, buffer manager,
and disk interface) which function together to provide a file service to
user processes.

The file system was run under heavy loads (many user processes)
and its execution was monitored by DPM. User processes were
distributed among most of the machines. The trace data that were
collected were used to build the graphs and strings described
previously. Substrings of length three were used to compute the
probability of messages flowing between the file system processes
and these probabilities were used to construct the diagrwin Fig. 3.
This figure shows the flow of data and control within the file system.

The interesting result is that by using a general performance tool,
such as DPM, and knowing nothing about the internal structure of the
file system, we can obtain valuable information about its internal
operations.

For example, from Fig. 3, we can conclude the following.
1) Messages from users go to the directory manager only 4 percent

of the time (corresponding to file opens). This provides us with the
ratio of file opens to readdwrites.

2) The request interpreter asks the buffer manager for data, and 73
percent of the time a result is immediately returned. 27 percent of the
time the buffer manager must ask the disk interface for the data. This
represents the buffer hit rate (cache efficiency).

3) The buffer manager will ask the disk interface for additional
blocks of data 17 percent of the time, representing the frequency of
following indirect references on the disk.

The above results give important structural information when
provided to the programmer/analyst of the file system. These results
were provided without the need for specialized measurement tools.

IEEE TRANSACTIONS ON COMPUTERS, VOL. 37, NO. 2, FEBRUARY 1988 247

Fig. 3. File system skte diagram.

C. Measuring Parallelism in a Computation
One motivation for writing a distributing computation is to achieve

an increase in its speed of execution. This performance increase is
obtained by means of parallel execution of the processes within the
computation. Once we construct a distributed program, the problem
becomes: how do we measure the degree of parallelism in the
execution of our program? In addition, it is useful to be able to project
the amount of parallelism that can be achieved as we vary the location
of processes among machines.

The algorithm for the analysis of parallelism uses traces obtained
from the execution of a program and constructs a program history
graph similar to the one used in the causality analysis (see Fig. 2). An
arc between two event nodes in the same process is labeled with the
amount of CPU time consumed by that process between those two
events (calculated from the PROCTIME field of the event traces). An
arc between a SEND event and its corresponding RECEIVE event is
labeled with the delivery time (or an estimate of the delivery time) for
the message. Once the graph is labeled, we calculate the length of the
longest path through the graph, t-. We also calculate the total
amount of CPU time used by all processes in the program for this
execution, T. The parallelism (or speedup) is equal to T/ tm.

This method of measuring parallelism can be used even on systems
that are currently running other users (since it is based on process
time, and not on real time). The techniques used for this analysis are
described in detail in [101 and a study using this analysis is described
in [ll].

v. VARIATIONS ON A THEME
A. Real- Time Monitoring and Display

In Section IV we assumed that the data analyses were performed
after the program had completed. The structure of DPM provides the
flexibility to use analysis routines that process trace data as they are
generated. The trace log files can become large (we have had
examples of 10-50 Mbyte files). and real-time monitoring does not
require the traces to be stored. We can store the results of the analysis
or these results as the basis for graphic displays. The graphic displays
could also be driven from stored trace logs.

The analysis of communication statistics presented in Section IV-A
is easily adapted to execute in real time. The more complex causality
and parallelism analyses would be much more difficult to perform in
real time.

We are currently using several types of graphic displays for the
real-time communication statistics analysis. These are the “hot
spots,” matrix, and history displays. The hot spots display represents
a distributed program as a collection of nodes (processes) connected
by directed arcs (message channels). Communication traffic levels

are displayed by coloring the arcs between process nodes. As traffic
levels increased, the color of an arc progresses from violet to red,
thus identifying the active communications paths in the program. The
numeric values associated with the traffic level are used to label each
arc. The metrics that can be displayed on the message arcs are
messageshecond, bytes/second, (cumulative) message counts, (cu-
mulative) byte counts, average message sizes, and input message
queue lengths. The processes are also colored-representing the
mount (percentage). The hot spots display allows a programmer to
quickly identify the program’s execution patterns of time that the
processes execute.

In addition to the basic display of metrics, the hot spots display can
show the first derivative of the metrics. The derivative values provide
information about the changes (phase behavior) in a program’s
execution.

The hot spot display is useful for small to medium size pkograms.
When the number of processes increases to more thdn 10 or 15, the
display becomes difficult to comprehend. We use the matrix display
for larger programs. The matrix dit+lay represents a distributed
program as a square matrix with each process labeling the same row
and column. The values in the matrix element [i , j] represent the
message traffic from process P, to process P,. The matrix elements
are colored to indicate the traffic levels as was done in,the hot spots
display. The labels of the matrix (process names) are colored as were
the nodes in the hot spots display. The order of the processes in the
matrix can be changed to group together the most active processes or
communication paths.

The history graphs display a single value from either the hot spots
or matrix display. This value is displayed over a time peri6d
extending from the present time backwards. The history graph is used
to provide a reference for the hot spot or matrix displays (which only
present current data).

B. Feedback Scheduling (toad Balancing and Other Uses)
The analyses discussed thus far are intended to provide the

programmer or system manager with information. This information
may cause the programmer to restructure the program being studied
or cause the manager to change the environment in which the
program executes. In both cases, a human being is part of the
feedback loop.

It is possible to return the results of some of the data analyses
directly to the host system. After the meter traces have been analyzed
and reduced to some reasonable statistic, this information can be
passed directly to the host system to be used in scheduling decisions.
The trace data become direct feedback to the host operating system.

We can use this structure to collect communications load data for

248 IEEE TRANSACTIONS ON COMPUTERS, VOL. 31, NO. 2, FEBRUARY 1988

0
-*
/--_

/- \
\

/

Ii

process load balancing and file migration decisions. CPU load
information can be gathered in most operating systems, but communi-
cations load data are more difficult. The difficulty increases if we are
interested in data about a specific process, rather than the system as a
whole. DPM allows us to measure communication levels between any
two processes.

The data collection for feedback scheduling is similar to that
described in the previous section on system communications mea-
surements. The same type of organization for metering and filtering
could be used. The filters would not store the selected data. After
filtering, the selected data would be passed on to the host system to
provide data for scheduling. This is illustrated in Fig. 4.

The type of resource scheduling *at can make use of the meter
data is limited by the frequency with which the data need to be
collected. It is reasonable to measure activities that occur with about
the same frequency as interprwess communications, or with lower
frequencies, since the meter traces themselves are messages. At-
tempting to measure activities more frequent than these would overly
degrade system performance. The measurement system can provide
information that is gathered from other sources. These other
sources could be more traditional performance tools gathering data
on machine loading, memory usage, or paging activity. The meter
message would be the medium that would carry periodic summaries
of these other activities.

VI. CONCLUSION
DPM is a simple tool. Each piece was constructed to provide the

needed functions by the most straightforward means. This simplicity
provided for its ease of construction (in two operating systems) and
for the flexibility of its design. Transparency to the programmer
extended the range of applications. We can measure any program
(including existing system services) and programs written in any
language. We minimized the restrictions on the use of the tool.

Two design decisions were made in DPM that have inspired some
controversy. The first is the lack of user-defined event trace types.
While it would be easy to add this to DPM, we have resisted the
temptation so as to maintain transparency. The second decision was
the lack of message contents in the meter traces. An argument for the
inclusion of message contents comes from monitoring the synchroni-
zation protocols in a distributed database system. For example, the
last traces we obtained may have come during a commit/abort
decision followed immediately by a system crash or deadlock. We
would like to be able to know whether a commit or abort was
occurring and this might be difficult without knowing the contents of
the synchronization. However, the inclusion of the PC field in the
traces provides us with information on which procedure generated the
trace events and this could provide the additional information needed
to discriminate between the commit and abort in our example.

DPM is a running system. It was originally developed on the
DEMOS/MP operating system and is now running under the
Berkeley UNIX 4.3BSD operating system. Research on DPM
continues. The current analyses (communication statistics, paths of
causality, parallelism) have provided useful tools for program
development. Work is ongoing in the areas of real-time monitoring
facilities, feedback scheduling, and graphic display techniques.

REFERENCES
M. L. Powell and B. P. Miller, “Process migration in DEMOS/MP,”
in Proc. Ninth Symp. Oper. Syst. Principles, Bretton Woods, NH,

B. P. Miller, D. L. Presotto, and M. L. Powell, “DEMOSMP: A
distributed operating system,” Software-Practice & Experience, to
be published.
W. Joy, E. Cooper, R. Fabry, S. Leffler, K. McKusick, and D.
Mosher, “4.2BSD system manual,” Comput. Syst. Res. Group Tech.
Rep., Univ. California, Berkeley, July 1983.
H. C. Lauer and R. M. Needham, “On the duality of operating system
structures,” Oper. Syst. Rev., vol. 13, pp. 3-19, Apr. 1979.
G. McDaniel, “METRIC: A kernel instrumentation system for
distributed environments,” in Proc. Sixth Symp. Oper. Syst. Princi-
ples, Purdue Univ., Nov. 1975, pp. 93-99.
P. Bates and J. C. Wileden, “An approach to high-level debugging of
distributed systems,” in Proc. ACM SIGSOFT/SIGPLAN Symp.
High-Level Debugging, Asilomar, CA, Mar. 1983, pp. 23-32.
B. P. Miller, S. Sechrest, and C. Macrander, “A distributed program
monitor for Berkeley Unix,” Software-Practice & Experience, vol.
16, Feb. 1986, also appears in short form in Proc. 5th Int. Conf.
Distributed Comput. Syst., Denver, CO, May 1985.
C. M. Macrander, “Development of a control process for the Berkeley
UNIX distributed programs monitor,” M.S. thesis, Comput. Sci.
Tech. Rep. UCB/CSD 84/216, Univ. California, Berkeley, Dec. 1984.
M. L. Powell, “The DEMOS file system,” in Proc. Sixth Symp.
Oper. Syst. Principles, Purdue Univ., Nov. 1977, pp. 33-42.
B. P. Miller, “Parallelism in distributed programs: Measurement and
prediction,” Cornput. Sci. Tech. Rep. 574, Univ. of Wisconsin-
Madison, 1985, to be published.
N. Lai and B. P. Miller, “The traveling salesman problem: The
development of a distributed computation,” in Proc. 1986 Int. Conf.
Parallel Processing, St. Charles, IL, Aug. 1986.

Oct. 1983, pp. 110-119.

On Self-Fault Diagnosis of the Distributed Systems

S . H. HOSSEINI, J. G. KUHL, AND S. M. REDDY

Abstract-The problem of achieving fault-diagnosis in a network of
interconnected processing elements called nodes, in which there is no
central facility to control, coordinate, or mediate among the irocessing
elements, is considered. Every node can eventually determine the status of
nodes and communication paths between them. A diagnostic algorithm
for homogeneous systems (systems with only testing nodes) is given. The
self-fault-diagmosis of nonhomogeneous systems (systems with nodes of
varying degrees of testing capability) is studied and diagnostic algorithms
are proposed.

Index Terms-Distributed fault-diagnosis, homogeneous and nonho-
mogeneous systems

Manuscript received March 26, 1985; revised April 14, 1987.
S. H. Hosseini is with the Department of Electrical Engineering and

Computer Science, University of Wisconsin, Milwaukee, WI 53201.
J. G. Kuhl and S. M. Reddy are with the Department of Electrical and

Computer Engineering, University of Iowa, Iowa City, IA.
IEEE Log Number 8715444.

0018-9340/88/0200-0248$01 .00 0 1988 IEEE

