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Abstract. Security on Grid computing is often an afterthought. However assessing
security of middleware systems is of the utmost importance because they manage
critical resources owned by different organizations. To fulfill this objective we use
First Principles Vulnerability Assessment (FPVA), an innovative analystic-centric
(manual) methodology that goes beyond current automated vulnerability tools.
FPVA involves several stages for characterizing the analyzed system and its com-
ponents. Based on the evaluation of several middleware systems, we have found
that there is a gap between the initial and the last stages of FPVA, which is filled
with the security practitioner expertise. We claim that this expertise is likely to
be systematically codified in order to be able to automatically indicate which, and
why, components should be assessed. In this paper we introduce key elements of our
approach: Vulnerability graphs, Vulnerability Graph Analyzer, and a Knowledge
Base of security configurations.
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1 INTRODUCTION

Vulnerability assessment is a security task that is insufficiently addressed in most ex-
isting grid and cloud projects, even SCADA systems. Such projects use middleware
software that often manages lots of critical resources, making them an attractive
target for attackers and terrorism activities.

Usually supercomputing middleware bases its security on mechanisms such as
authentication, authorization, and delegation to protect passwords, credentials, user
files, databases, system access, storage, and so on. These mechanisms have been
studied in depth and effectively control key resources, but are not enough to assure
that all application’s resources are safe. However, middleware systems usually do
not undergo a thorough vulnerability assessment during their life cycle or after de-
ployment, whereby security flaws may be overlooked. One possible solution would be
to use existing automated tools such as Coverity Prevent [2] or Fortify Source Code
Analyzer (SCA) [5], but even the best of these tools find only a small percentage of
the serious vulnerabilities [13].

A thorough vulnerability assessment requires a systematic approach that focuses
on the key resources to be protected and allows for a detailed analysis of those parts
of the code related to those resources and their trust relationships. Consistently,
First Principles Vulnerability Assessment (FPVA) [14] answers these requirements.
FPVA had been successfully applied to several large and widely-used middleware
systems, such as Condor high-throughput scheduling system [1], Storage Resource
Broker (SRB) a data grid management system [9], Crossbroker a grid resource man-
agement for interactive and parallel applications [12], among others [6]. FPVA starts
with an architectural analysis, identifying the key components in a middleware sys-
tem. It then goes on identifying the resources associated with each component, and
how the privilege level of each component is delegated. The results of these steps are
documented in clear diagrams that provide a roadmap for the last stage of the anal-
ysis, the manual code inspection. This top-down, architecture-driven analysis, can
also help to identify more complex vulnerabilities that are based on the interaction
of multiple system components and are not amenable to local code analysis.

For all these systems analysts noticed that there is a gap between the three
initial steps and the manual code inspection. The analyst should provide certain
expertise about the kind of security problems that the systems may present. For ex-
ample, depending on the language used the analyst should look for different kind of
vulnerabilities. We have realized that this knowledge is similar to the one recorded
on several available vulnerability classifications, suchs as CWE [4], Plover [10], and
McGraw et al. [15], and that it can be codified in the form of rules to be applied
automatically. In particular, we used the vulnerability assessment carried out on
CrossBroker, which is based on gLite middleware, to sketch our initial ideas [16, 17].
We showed that FPVA clearly overcome the best current automatic tools available,
and proposed an approach for systematically determining how the analyst expertise
is used for deciding which middleware components are critical based on the FPVA
artifacts. In addition, we also proposed a suitable representation for the information
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gathered in the initial steps of FPVA. The major contributions of this paper are a
Vulnerability Graph definition, which is the first stage to the approach we are devel-
oping, a middleware and vulnerability taxonomy characterization, the Vulnerability
Graph Analyzer, as well as a study case.

The remainder of this paper is structured as follows. In Section 2 we briefly
describe the FPVA methodology. Section 3 introduce Vulnerability Graphs. Sec-
tion 4 describes the Vulnerability Graph Analyzer approach. Section 5 discusses an
example of VGA working on a vulnerability graph. The related work is introduced
in Section 6. Finally conclusions and the work ahead before VGA can be applied
are discussed in Section 7.

2 FIRST PRINCIPLES VULNERABILITY ASSESSMENT

FPVA proceeds in five stages: architectural, resource, privilege, and component
analysis, and result dissemination. We provide a brief description of the first four
FPVA methodology stages, because the vulnerability graph is derived from the in-
formation gathered in these stages.

Architectural Analysis: This step identifies the major structural components
of the system, including modules, threads, processes, and hosts. For each of these
components, FPVA identifies the way they interact, both with each other and with
users. Interactions are particularly important as they can provide a basis for under-
standing how trust is delegated through the system. The artifact produced at this
stage is a document that diagrams the structure of the system and the interactions
amongst the different components, and with the end users.

Resources Analysis: The second step identifies the key resources accessed
by each component, and the operations supported on those resources. Resources
include hosts, files, databases, logs, and devices. These resources are often the
target of an exploit. For each resource, FPVA describes its value as an end target
or as an intermediate target. The artifact produced at this stage is an annotation
of the architectural diagrams with resources.

Privilege Analysis: The third step identifies the trust assumptions about each
component, answering such questions as how are they protected and who can access
them? The privilege level controls the extent of access for each component and, in
the case of exploitation, the extent of damage that it can accomplish directly. A
complex but crucial part of trust and privilege analysis is evaluating trust delegation.
By combining the information from the first two steps, we determine what operations
a component will execute on behalf of another component. The artifact produced
at this stage is a further labeling of the basic diagrams with trust levels and labeling
of interactions with delegation information.

Component Analysis: The fourth step examines each component in depth.
For large systems, a line-by-line manual examination of the code is unworkable. In
this step, FPVA is guided by information obtained in the first three steps, helping
to prioritize the work so that the code relating to high value assets is evaluated first.
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The work in this step can be accelerated by automated scanning tools. While these
tools can provide valuable information, they are subject to false positives, and even
when they indicate real flaws, they often cannot tell whether the flaw is exploitable
and, even if it is exploitable, the tools can not tell if it will allow serious damage.
The artifacts produced by this step are vulnerability reports, which are provided to
the software developers.

It can be seen that FPVA is focused in analysing the data and control flows among
the system components looking for unsecure features. This orientation has led to
the definition of the following concepts:

Attack Surface as the set of coordinates from which an attack might start,
indeed it tells security practitioners where to start looking for the attacker’s
initial behaviour.

Impact Surface as the set of coordinates where exploits or vulnerabilities might
be possible.

Attack Vector as the sequence of transformations that allows controlflow to go
from a point in the attack surface to a point in the impact surface.

3 VULNERABILITY GRAPHS

With the objective of reducing the gap between the first stages of FPVA and the
Component Analysis one, we have defined a structure called Vulnerability Graph for
representing the results of these initial steps. Vulnerability graphs are aimed at find-

Fig. 1. First-approach vulnerability graph

ing possible malicious patterns between middleware components and/or resources,
following controlflow through their relationships. There are several elements in vul-
nerability graphs. Figure 1 shows a small vulnerability graph example. Here we can
assume intuitively that Component 1 is part of the attack surface, and the Resource
1 might be a point on the impact surface. Based on the information present in Fig-
ure 1, we can potentially derive two different attack vectors, the first one includes
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Component 1, Component i, and Resource 1, the second includes Component 1,
Component j, and Resource 1.

Formally, Vulnerability Graph is defined as:

Definition 1. A vulnerability graph G = (V,E) is a tuple where,

• V represents the vulnerability graph nodes, a nonempty set of mid-
dleware components and resources.

• E represents the vulnerability graph edges, a nonempty set of actions
that associate vulnerability graph nodes.

Definition 2. In security context,

• Vulnerability graph nodes representing components or resources that
do not satisfy safety attributes, properties, or characteristics during
vulnerability assessment might be considered vulnerable.

• Vulnerability graph edges can associate vulnerable nodes through
actions with non-vulnerable nodes, which in turn may become vul-
nerable or exploitable.

The characterization proposal for middleware components, resources, and criti-
cal actions is based on the information that FPVA artifacts, developer teams, and
documentation could provide. This characterization step is based on several FPVA
artifacts, from six different middleware systems: Condor, SRB, MyProxy, gLExec,
VOMS-admin, and CrossBroker. Table 1 shows the most relevant elements of the

Name Description

c id An identifier for the component

c host The component hostname, where the component is actually running

c suid Is the sticky bit set up on the component?

c priv The component privileges, Unix style

c cons The component constraints is related to data, time, users, privs, and other restrictions

c rel The components and/or resources which are straight related to the component

Name Description

r id An identifier for the resource

r host The resource hostname, where the resource is actually installed or shared

r suid Is the sticky bit set up on the resource?

r priv The resource privileges, Unix style

r cons The resource constraints is related to data, time, users, privs, and other restrictions

Name Description

i id An identifier for the interaction

i host The interaction host specifies if the interaction happens in an unique host or more

i stat The interaction state, describes if interaction is active or passive between components and/or resources

i type The interaction type indicates a critical action which could be read, write, open, execute, query, etc

i priv The interaction privileges, specifies if interaction type runs as a privilege user

i cons The interaction constraints is related to data, time, users, privs, and other restrictions

Table 1. Middleware characterization proposal.

first middleware characterization approach of the vulnerability graph. First column
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contains the characterization items, and the second one a description of each item.
The table is divided in three sections; the first is the components characterizac-
tion; the second is the resources characterization; and the last one the interactions
characterization. In our approach, we are going to use model checking techniques
to analyze the safety attributes, properties, or characteristics in the vulnerability
graph, along with the controlflow steps that allows to go from a point in the attack
surface to a point in the impact surface.

4 VULNERABILITY GRAPH ANALYZER

A manual vulnerability assessment following (FPVA) proceeds initially on architec-
tural, resources, and privileges analysis, and then on a component analysis based
on their results (i.e. the artifacts). However, which vulnerabilities are going to be
searched in the selected components depend on the implementation details of each
component and the analyst’s expertise. Consequently, there is a gap between the
artifacts generated on the first FPVA steps and the component analysis step that
must be currently filled with knowledge of an external source. We claim that this
knowledge can be found in several existing vulnerability classifications and that, in
consequence, it can be systematically codified in order to be able to automatically
indicate which components should be analyzed and why. To reach this objective we
have defined the Vulnerability Graph Analyzer (VGA).

VGA will traverse a vulnerability graph following the controlflow with the aim
of finding potential malicious patterns or attack vectors, that might lead analists to
determine where to search for a vulnerability. We know that most of the generated
FPVA artifacts describe a particular operation of the middleware, such as submitting
a job in CrossBroker, then starting and ending nodes belonging to the attack and
impact surfaces can be clearly identified. In addition, the order in which the graph
should be traversed is also quite clear because every edge is labeled with a number
indicating when the interaction represented by the edge takes place. Finally, a
characterization of a vulnerability taxonomy is required, to build a knowledge base
where security configurations about possible malicious patterns are stored.

Ultimately, VGA outcomes are presented as security alerts, because we are not
analysing the components code, nor the actual controlflow.

4.1 VGA sketch

A visual representation of the vulnerability graph analyzer is shown in Figure 2. It
contains the FPVA Artifacts, the Characterization Proposal, the Knowledge Base,
the Graph Analyzer Engine, and Security Alerts. The main component of VGA
is the graph analyzer engine, which receives two inputs, and then it calculates the
possible attack vectors to be analyzed. The first input is the Vulnerability Graph,
which includes the set of components, resources, and critical actions from FPVA
artifacts, translated accordingly to our characterization proposal. The second input
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Fig. 2. Vulnerability graph analyzer

is a knowledge base of potential and generic attack vectors. VGA basically consists
in a instantiation process between the specific vulnerability graph representation and
the generic attack vectors. This process generates a security alert each time that a
generic attack vector can be instantiated with the information in the vulnerability
graph.

4.2 Vulnerability Taxonomy Characterization

A vulnerability taxonomy characterization will provide the vulnerability graph ana-
lyzer with the knowledge about the different existing vulnerabilities that the security
practitioner applies when he does the component analysis, this knowledge is in turn
used by the graph analyzer engine in order to know how the vulnerabilities might be
related to middleware elements and attributes during the instantiation process. We
started classifying 51 vulnerabilities found using FPVA, publicly listed on [6], with
two different taxonomies. In addition we introduce the CWE taxonomy. The 51
vulnerabilities belong to six different middleware systems: Condor, SRB, MyProxy,
gLExec, CrossBroker, and VOMS-Admin.

4.2.1 The seven kingdoms taxonomy

is the vulnerability classification from McGraw et al. [15], which has been supported
by Fortify Software Security Research Group. The taxonomy includes seven general
categories: 1) Input Validation and Representation, 2) API abuse, 3) Security fea-
tures, 4) Time and State, 5) Error handling, 6) Code quality, 7) Encapsulation, in
addition to an extra category called Environment.

The whole taxonomy includes 86 different vulnerabilities. In this case, the clas-
sification has shown that using McGraw’s taxonomy is neither easy nor clear enough
to properly fit the 51 vulnerabilities because we have found that nine vulnerabili-
ties belong to two different categories, two vulnerabilities belong to more than two
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different categories, and 35 vulnerabilities are not thoroughly ambiguous. Also no
vulnerabilities fit the last two categories, Encapsulation and Environment, which
are related to specific language or framework programming (e.g. J2EE, ASP.net).

4.2.2 PLOVER

is the preliminary list of vulnerability examples for researchers, from Mitre Corpora-
tion [7]. Table 2 shows the plover taxonomy. PLOVER taxonomy includes around

Buffer overflows, format strings, etc. Structure and Validity Problems

Special Elements (Characters or Reserved Words) Common Special Element Manipulations

Technology-Specific Special Elements Path Traversal and Equivalence Errors

Channel and Path Errors Cleansing, Canonicalization, and Comparison Errors

Information Management Errors Race Conditions

Permissions, Privileges, and ACLs Handler Errors

User Interface Errors Interaction Errors

Initialization and Cleanup Errors Resource Management Errors

Numeric Errors Authentication Error

Cryptographic errors Randomness and Predictability

Code Evaluation and Injection Error Conditions, Return Values, Status Codes

Insufficient Verification of Data Modification of Assumed-Immutable Data

Product-Embedded Malicious Code Common Attack Mitigation Failures

Containment errors Miscellaneous WIFFs

Table 2. PLOVER taxonomy

300 vulnerabilities categorized in 28 classes, thus the likelihood of properly fitting
the 51 vulnerabilities increases considerably. The classification of our vulnerabili-
ties with PLOVER showed that 32 vulnerabilities belong to two different classes,
three vulnerabilities belong to more than two classes, and 14 vulnerabilities are not
thoroughly ambiguous. With PLOVER the 51 vulnerabilities fit into almost 50% of
the whole taxonomy, because it includes a detailed and large classification structure
from a diverse set of sources, including McGraw.

4.2.3 Commom Weaknesses Enumeration

is an enhanced and improved effort for organizing vulnerability data that contributes
with different perspectives (e.g. seven kingdoms, PLOVER, and other efforts), in a
hierarchical fashion. CWE support multiple stakeholders with multiple views which
serve to different purposes and audiences. We are going to move to the research
view of the Commom Weaknessess Enumeration (i.e. CWE-1000) because it is
organized according to abstractions of software behaviors and the resources that are
manipulated in those behaviors.

4.3 Knowledge Base

In our approach, we translate the combination of both the middleware and the vul-
nerability taxonomy characterization into a set of generic security configurations.
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Having previously defined key elements of VGA, we proceed to define a basic struc-
ture for the knowledge base (KB). A security configuration, can be built as follows:

Definition 4. Consider a set C of security configurations, then a configu-
ration c ∈ C, can be:

• c = mi(aj) → t(aj), simple.

• c = m1(a1) ∧m2(a2) . . . ∧mi(aj) → t(a1, a2, . . . , aj), compound.

Where ∀mi ∈ G : {mi ∈ V ∨ mi ∈ E}, and aj is some attribute, property,
or characteristic of mi; and t is a vulnerability class (belonging to some known
taxonomy T ), that can be present in the system if c can be set.

5 CASE STUDY: THROUGH AN INTEGER OVERFLOW TO A DE-
NIAL OF SERVICE

This case study demonstrates that VGA concept, and its associates definitions, can
be used to guide an analyst performing a source code inspection in finding vulner-
abilities. In this case study based on CrossBroker, we assume that the vulnera-
bility graph, and the knowledge base is already built. Let us proceed to analyze
an attack vector from the CrossBroker vulnerability graph (Figure 3). The set V

Fig. 3. CrossBroker vulnerability graph

of components and resources in the vulnerability graph are {SUBMIT, UAM, in-
put q, SA, RS, output q, sandbox dir, AL, CONDOR G, LB, mysql, BDII, LRMS,
CONDOR STARTD, JOB}, and the set E of actions in the vulnerability graph are
{connect, globus-url-copy, enqueue, dequeue, matchmaking, ldap query, enqueue, de-
queue, query, query, query, sql query, condor submit, claim worker node, allocating,
globus-url-copy, start job}, accordingly with the FPVA artifacts.
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First, specific coordinates should be choosen from the middleware attack and
impact surface, hence input and impact nodes are selected, in this case the ”SUB-
MIT” and ”MySQL” node. Second, having defined the input and impact nodes, the
attack vector composition must be clearly depicted and recognized by the nodes and
edges involved (Figure 4); In this case the SUBMIT, the LB, and the MySQL nodes,
the ”query” and ”sql query” edges compose the possible attack vector. Since nodes
and edges were previously characterized accordingly to our proposal, the third step
is to try instantiate the attributes, properties, and/or characteristics accordingly to
the security configurations (generic attack vectors) described in the knowledge base.

Fig. 4. CrossBroker attack vector

Instantiation process: for the CrossBroker attack vector,

• A) SUBMIT.[constraint] → [configuration]: Are big messages allowed?

• B) query.[state] → [configuration]: Is it a persistent connection?

• C) LB.[constraint] → [configuration]: Is the data in the correct format and
size?

• D) sql query.[state] → [configuration]: Is it a persistent connection?

• E) MySQL.[error handling] → [configuration]: Are the error codes returned
properly?

• A ∩ B = SUBMIT.[constraint] ∩ query.[state] → [configuration]: Has the
user requested a timeout period to try to finish and release the connection
even if the message has not been transmitted?

• B ∩ C = query.[state] ∩ LB.[constraint] → [configuration]: Were the data
transmitted correctly and completely within the right time?

• C ∩ D = LB.[constraint] ∩ sql query.[state] → [configuration]: Has the com-
ponent requested a timeout period to try to finish and release the connection
even if the message has not been transmitted?
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• D ∩ E = sql query.[state] ∩ MySQL.[error handling] → [configuration]: Are
the code and the query correctly returned and properly handled within the
right time?

Fourth, the graph analyzer engine then should return a the set of alerts concerned to
the security configurations which were instantiated by the different current values of
the attributes, properties, and/or characteristics. In this case, when a submit request
happens on CrossBroker, it is possible that submit.[constraint] allows either a big
message or attachment, then query.[state] becomes persistent and the data starts
transmitting to the LB component to save information about job status, but the
LB.[constraint] trust that data is being properly transmitted based on the message
header previously received. The LB component will try to register on MySQL
component the job status, but the database returns an unexpected error due to
an incorrect size of the data transmitted at the begin of all, hence sql query.[state]
remains established and the MySQL.[error handling] contains an unexpected code
because the LB component is still trying to write on the database, in addition to
blocking the next incoming requests by not releasing the link, therefore becomes
finally in a denial of service by an integer overflow in the size message difference and
the improper handling of the unexpected errors.

6 RELATED WORK

Vulnerability Assessment of middleware systems is a field that has attracted the
interest of both research and commercial communities, due to the increasingly rapid
growth of the use of distributed and high performance computing, as well as the
increasingly rapid growth of threats. Our VGA approach is related to the Open
Vulnerability and Assessment Language [8] project, and to the vulnerability cause
graphs [11].

6.1 The Open Vulnerabilities and Assessment Language (OVAL)

is an international, information security, community standard to promote open and
publicly available security content, and to standardize the transfer of this infor-
mation across the spectrum of security tools and services. OVAL includes a lan-
guage used to encode system details, and an assortment of content repositories held
throughout the community. The language standardizes the three main steps of an
assessment process: 1) representing configuration information of systems for testing;
2) analyzing the system for the presence of the specified machine state (vulnerabil-
ity, configuration, patch state, etc.); 3) and reporting the results of this assessment.
The repositories are collections of publicly available and open content that utilize the
language. OVAL is based primarily on known vulnerabilities identified in Common
Vulnerabilities and Exposures (CVE) [3], a dictionary of standardized names and
descriptions for publicly known information security vulnerabilities and exposures
developed by the MITRE Corporation.
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In contrast to OVAL, our effort is not based on the specific CVE vulnerabili-
ties, instead we claim that VGA approach works with CWE classification and with
nonspecific software vulnerabilities, also VGA approach is based on FPVA stages,
thereby gathering more meaningful information about the assessment process.

6.2 Vulnerability Cause Graphs

is based on a thorough analysis of vulnerabilities and their causes, similar to root
cause analysis. The results are represented as a graph, which Byers et al. [11] called
vulnerability cause graph. Vulnerability cause graphs provide the basis for improv-
ing software development best practices in a structured manner. The structure of
the vulnerability cause graph and the analysis of each individual cause are used to
determine which activities need to be present in the development process in order
to prevent specific vulnerabilities. In a vulnerability cause graph, vertices with no
successors are known as vulnerabilities, and represent classes of potential vulner-
abilities in software being developed (analysis may start with specific instances of
known vulnerabilities). Vertices with successors are known as causes, and represent
conditions or events that may lead to vulnerabilities being present in the software
being developed. In our case, the most noticeable difference is that we want to
know whether a vulnerability may exist and why, instead Byers’ work knows the
vulnerabilities and looks for their causes.

7 CONCLUSIONS AND FUTURE WORK

In this paper we have described the vulnerability graph structure and the vulnera-
bility graph analyzer to guide security practitioners during a source code assessment
to identify effectively where and why vulnerabilities might be possible. There is a
lot of tasks which have to be done before vulnerability graphs and VGA can be
applied as effectively as we claim to grid security. The most relevant tasks we have
noticed are the following:

Graph Representation: A vulnerability graph must be able to depict the mid-
dleware composition in a suitable and easy way. Vulnerabilities Characterization:
A complete characterization of a set of vulnerabilities is required in order to check
if the knowledge base is good enough to provide the vulnerability graph analyzer
with the proper security configurations. Attack Vectors: With the improvements
on the vulnerability graph and the middleware characterization, the vulnerability
graph analyzer engine has to be able to construct meaningful attack vectors with
a well-defined algorithm. Instantiation process: In the graph analyzer engine the
instantiation is the most important process, it has to be clear and easy to deploy,
indeed it must be based on a kind of weighted value for the middleware elements.
Because all the security configurations (the knowledge base) can not be applied to
all middleware elements in the same way. In addition to the vulnerability graph
and VGA definitions, we have proposed a middleware characterization along with
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a formal definition of a knowledge base of security configurations, having improved
our previous work with a meaningful approach. Finally, a case study has been in-
troduced, where all definitions and elements have been applied, showing that it is
possible to reduce the gap between the first stages of FPVA and the Component
Analysis one.
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