
Binary Code Multi-Author Identification in Multi-Toolchain Scenarios

Xiaozhu Meng and Barton P. Miller
Computer Sciences Department

University of Wisconsin - Madison
Madison, WI, 53706

{xmeng, bart}@cs.wisc.edu

Abstract
Knowing the authors of a binary program has signif-

icant application to forensic analysis of malicious soft-
ware (malware), software supply chain risk management,
and software plagiarism detection. Since modern soft-
ware is typically the result of team efforts and there are
multiple compilers and optimization levels available to
use, it is essential to be able to reliably identify multi-
ple authors across multiple toolchains. However, exist-
ing multi-author identification studies were only evalu-
ated with code compiled by a single toolchain, leaving
open the question whether existing techniques can work
in multi-toolchain scenarios.

In this paper, we explore how toolchains impact pro-
gramming style at real-world scale and present new tech-
niques for multi-author identification in multi-toolchain
scenarios. We show that existing techniques do not work
well on real world code in multi-toolchain scenarios.
Instead of manually designing code features, we apply
deep learning to automatically extract features from the
code. Our techniques can achieve 71% accuracy, and
82% top-5 accuracy for classifying 700 authors, which
can greatly help analysts prioritize their investigation.

In addition to the new authorship identification results,
we provide an in-depth analysis of our learning mod-
els and our results. This analysis is essential since au-
thorship identification is not a task easily accomplished
by a person. For example, our results show a counter-
intuitive phenomena: unoptimized code is more diffi-
cult to attribute than optimized code. Our investigation
shows strong evidence that compiler optimizations such
as function inlining can help learning authorship style.

1 Introduction

The capability to identify authors of binary programs can
significantly help analysts perform forensic analysis of
malicious software (malware), detect malicious software

implants in the software supply chain, and recognize
software plagiarism. Malware analysts discover valuable
information about malware development through inten-
sive manual authorship analysis: malware developers ac-
quire and share functional components such as command
and control, encryption and decryption, beaconing, ex-
filtration, and domain flux, through online black markets
[1, 6, 16] or by forming physically co-located teams [23].
In the software supply chain domain, code that exhibits
untrusted styles, such as the ones seen in malware, indi-
cates potential malicious implants. Software plagiarism
can be detected by matching programming styles against
known code. Because of these use cases, researchers
have been developing machine learning based techniques
to identify authors.

While machine learning, especially deep learning, has
been successful in many domains such as computer vi-
sion and natural language processing, applying machine
learning to binary code authorship identification presents
a significant challenge. Conceptually, a human can iden-
tify objects from images in split seconds with very high
accuracy. On the other hand, human experts need days
or months to analyze the code and infer authorship from
software. Due to the difficulty of binary code author-
ship identification, the realistic goal of applying machine
learning is to help human experts, rather than replacing
human experts, and to discover new insights on code au-
thorship.

Early authorship identification studies focused on
identifying the authors of single author programs [2, 7,
32]. These studies mainly had two steps: (1) design
binary code features to reflect low level code proper-
ties such as machine instruction details and high level
code properties such as program control flow and data
flow, and (2) use supervised machine learning tech-
niques, such as Support Vector Machine (SVM) [8] and
Random Forests [15], to discover correlations between
code features and authorship. When applied to real world
software, which typically is written by multiple authors,

1



these single author identification techniques can identify
at most one of the multiple authors, or report a merged
group identity, which makes single author identification
impractical for real world applications.

Recent multi-author identification studies [24, 26] at-
tempted to identify multiple authors by determining a
unit of code that can be well attributed to a single au-
thor. These multi-author studies showed that attribut-
ing at the function level caused too much imprecision,
as many functions are cooperated by multiple authors.
Therefore, current multi-author identification operates at
the basic block level. Attributing at the basic block level
requires designing fine-grained code features, as the fea-
tures used for single author identification may not be ap-
plicable at this finer granularity.

While multi-author identification is a significant step
towards practical authorship analysis, many research
challenges remain. The challenge we will focus on in
this paper is how compilation toolchains such as the com-
piler family, version, and optimization level, impact au-
thorship styles. Existing studies have two major limita-
tions for this challenge. First, existing studies have not
thoroughly investigated this issue. Hendrikse [13] inves-
tigated the impact of compilation toolchain on single au-
thor identification at a small scale; the experiments con-
tained only 20 authors, 280 binaries, and 9 toolchains.
However, single author identification is an intrinsically
simpler problem than multi-author identification, as it
unrealistically assumes that a binary consists of consis-
tent coding style from one author. Other single author
identification and multi-author identification techniques
were evaluated only in single toolchain scenarios, mean-
ing that they performed training and testing based on bi-
naries generated by the same toolchain [2, 7, 26, 32].
In particular, multi-author identification techniques were
evaluated only with code generated by GCC at optimiza-
tion level -O2 (GCC -O2) [24, 26].

Second, existing studies only reported their accuracy
results, without analyzing their machine learning mod-
els. Besides improving accuracy, it is important to un-
derstand how the models work and extract insights on
the impact of compilation toolchains. Is a program-
mer’s programming style reflected on binary code sim-
ilar across different toolchains? Do we need different
machine learning models or different code features for
different toolchains? Answering these questions is vital
for analysts to make better use of machine learning based
techniques.

In this paper, we present the first thorough multi-
toolchain, multi-author identification study. We explore
how compilation toolchains impact multi-author identi-
fication techniques at real-world scale and present new
techniques to identify multiple authors in multi-toolchain
scenarios. As a baseline, we first conduct a study to eval-

uate how well our previous multi-author identification
techniques [26] will function in a multi-toolchain sce-
nario. We created a multi-toolchain dataset by compil-
ing three large, long-lived open source projects (Apache
HTTPD Server [4], Dyninst binary analysis and instru-
mentation tool suite [29], and Git [11]), with three com-
pilers (GCC, ICC, and LLVM), and five optimization lev-
els (O0, O1, O2, O3, and Os). This yielded a data set
consisting of 1,965 binaries generated by 15 toolchains,
containing 50 million basic blocks and 700 authors.

We enumerate all toolchain pairs to generate train-
ing sets and testing sets, which yields 15× 15 = 225
total evaluation combinations. Among these 225 com-
binations, 15 represent single toolchain scenarios and
the other 210 represent multi-toolchain scenarios. Our
results reveal two limitations of existing multi-author
identification techniques. First, the accuracy for multi-
toolchain scenarios (min: 5%, median: 13%, max:
64%) is significantly lower than the accuracy for sin-
gle toolchain scenarios (min: 44%, median: 59%, max:
70%). In practice, as we typically do not know which
compilation toolchain generated the target binary for au-
thorship identification, applying a mismatched author-
ship model to perform prediction can lead to extremely
low accuracy. Second, there is a significant difference
between the accuracy for single toolchain scenarios; the
optimization levels influence the accuracy. For example,
GCC -O0 has the lowest accuracy (44%) and ICC -O3
has the highest accuracy (70%). This accuracy difference
suggests that programmers can have a higher chance of
evading current multi-author identification by carefully
choosing a toolchain such as GCC -O0 to generate the
binary programs. These two limitations confirm the need
of new techniques for identifying multiple authors in
multi-toolchain scenarios.

We then present two approaches for multi-toolchain,
multi-author identification. The first one is a two layer
approach. Since previous techniques work better in
single toolchain scenarios, it is reasonable to first use
toolchain identification techniques [30, 31] to determine
which toolchain generated the binary and then apply
the corresponding single-toolchain authorship model.
Note that while previous authorship identification stud-
ies [7, 26] have discussed this approach, none of them
have implemented or evaluated it. The second one is a
unified training approach, where we construct a training
set containing binaries from all known toolchains. With
a multi-toolchain training set, we may be able to train an
authorship model that can work in multi-toolchain sce-
narios, albeit at a higher training cost.

While previous studies focused on designing new code
features, we instead use deep learning to automatically
extract low level features from raw bytes. We apply feed-
forward neural networks to multi-author identification.

2



To the best our knowledge, we are the first project to ap-
ply deep learning to this problem and show that it can re-
liably identify low level code features. We focus on two
areas when applying deep learning. First, we investigate
what should be used as inputs to Deep Neural Networks
(DNNs) and find that while using only raw bytes as in-
puts can achieve reasonable accuracy, complementing
raw bytes with higher-level structural features can further
improve accuracy. Second, deep learning requires tuning
several important learning hyper-parameters to achieve
good results, such as the learning rate, the number of lay-
ers, and the number of hidden units per layer. We follow
the general practices recommended by deep learning re-
searchers [5, 12], and report our experiences of applying
these practices so that future research on applying deep
learning to authorship identification can benefit from our
experiences.

We evaluated our techniques with our multi-author,
multi-toolchain data set. We focused on three aspects
of our techniques: whether the two layer approach and
the unified training approach can address the issue of
mismatched models, whether DNN can improve accu-
racy over traditional machine learning techniques such
as SVM, and understanding and improving the accu-
racy differences between optimization levels. Our results
showed that with toolchain identification, we achieved
59% accuracy for identifying 700 authors. Replacing
SVM with DNN, we improved this accuracy to 71%. In
addition, DNN achieved 82% top-5 accuracy and 86%
top-10 accuracy, showing that our techniques can effec-
tively prioritize investigation. For the unified training ap-
proach, SVM training did not scale to this data set, while
DNN achieved 68% accuracy. Our results also showed
that DNN reduced the accuracy difference between op-
timization levels and improved accuracy for all 15 indi-
vidual toolchains (min: 62%, median 69%, max: 79%).

To gain more insights on how compilation toolchain
impacts multi-author identification and on how the ma-
chine learning models work, we investigated the struc-
ture of the learning models, including the feature weights
of SVM and the activations of neurons in DNN. We
learned three lessons: (1) different toolchains mainly
have disjoint sets of features that are indicative of au-
thorship; (2) DNNs can internally determine which
toolchain generated the binary without explicitly training
for toolchain identification; and (3) unoptimized code is
more difficult to attribute at the basic block level. Previ-
ous studies have reported accuracy results, but have not
analyzed their models.

2 Background

We discuss four areas of existing authorship identifica-
tion studies as background: the binary code features used

to capture programming styles, commonly used work-
flow, relationship between accuracy and the complexity
of the programs used in evaluation, and relationship be-
tween accuracy and the compilation toolchains.

2.1 Binary Code Features
Binary code features are extracted at block level or func-
tion level, and are then accumulated to the correspond-
ing operation level. For example, single author identi-
fication accumulates features to the program level and
multi-author identification accumulates features to the
basic blocks level. As multi-author identification re-
quires identifying authors at the basic block level, we
discuss only basic block level features.

Existing block level features describe a wide variety
of code properties, such as instruction details, control
flow, data flow, and external dependencies. Low level
code features include byte n-grams [18, 32], instruction
idioms [7, 18, 19, 31, 32, 33], and individual instruc-
tion components such as instruction prefixes, instruction
operands, and constant values [26].

Higher-level structural features describe program con-
trol flow, data flow, function and loop context of a basic
block, and external dependencies. Control flow features
[26] describe the types of incoming and outgoing CFG
edges (such as conditional taken, conditional not taken,
direct jump, and fall through), and exception handling
(such as whether a basic block throws exceptions and
whether a basic block catches exceptions). Data flow
features [26, 9] have three main types: (1) the number of
input variables, output variables, and internal variables,
(2) features that describe how a basic block uses a stack
frame, and (3) features that describe data flow dependen-
cies of variables. Context features [26] include the loop
nesting level of a basic block and loop size of the enclos-
ing loop. External dependency features included func-
tion names of external library call targets [32].

2.2 Workflow
A common workflow used in single author identification
studies has four major steps: (1) design a large number
of simple candidate features; (2) extract the defined fea-
tures using binary code analysis tools such as IDA Pro
[14] or Dyninst [29]; (3) select a small set of features
that are indicative of authorship by using feature selec-
tion techniques such as ranking features based on mutual
information between features and authors [32]; and (4)
apply a supervised machine learning technique, such as
Support Vector Machine (SVM) [8] or Random Forests
[15], to learn the correlations between code features and
authorship. Rosenblum et al. [32] used instruction, con-
trol flow, and library call target features, and used SVM

3



for classification. Caliskan et al. [7] added data flow fea-
tures, constant data strings, and function names derived
from symbol information, and used Random Forests for
classification.

Multi-author identification studies [26, 24] adapted
this workflow with three modifications. First, they per-
formed attribution at the basic block level. Second, they
found that library code such as Standard Template Li-
brary (STL) and Boost C++ Library (Boost) is often in-
lined and needs to be distinguished from users’s code.
Third, as a programmer typically writes more than one
basic block at a time, they used a Conditional Random
Field (CRF) model to capture potential author correla-
tions between adjacent basic blocks.

2.3 Complexities of Programs

Single author identification studies performed evalua-
tions of their techniques on single author programs such
as Google Code Jam (GCJ), and multi-author programs
that have a clear major author such as university course
projects and certain programs extracted from Github.
Rosenblum et al. reported 51% accuracy for classify-
ing 191 authors on -O0 binaries from GCJ and 38.4%
accuracy for classifying 20 authors on -O0 binaries from
university course projects. Caliskan et al. improved GCJ
accuracy to 92% for classifying 191 authors on -O0 bi-
naries, and 89% accuracy for classifying 100 authors on
-O2 binaries. They also extracted some programs from
Github that have a major author who contributed more
than 90% of the code, and got 65% accuracy for classi-
fying 50 authors.

These studies reported significantly lower accuracy on
multi-author programs than on GCJ. There are at least
two reasons for this accuracy difference. First, univer-
sity course projects and programs extracted from Github
contained code that was not written by the major author.
This code can confuse machine learning algorithms. For
example, course projects contained skeleton code from
the professor and the extracted Github programs still had
code from other authors and third party libraries. Second,
these multi-author programs are typically more complex
than the programs from GCJ. Programs from GCJ are
typically written quickly, and not written with common
software engineering practices, making them less appro-
priate for evaluation compared to real world software.

Multi-author identification studies instead used large,
long-lived, real world open source software that follows
common software engineering practices such as Apache
HTTP Server. They achieved 59% accuracy for identify-
ing 284 authors using SVM and 65% accuracy with CRF.
We will follow this practice and evaluate our techniques
with real world software.

2.4 Impacts of Compilation Toolchains

Caliskan et al. repeated single toolchain evaluations with
four toolchains (GCC -O0, -O1, -O2, -O3), with the pro-
grams from GCJ. In other words, they trained and tested
at the same optimization level. They reported that -
O0 code has the highest accuracy (96%), and -O3 code
has lowest accuracy (89%), but did not investigate why
there is such an accuracy difference between optimiza-
tion levels. They assumed that they could use previ-
ous toolchain identification techniques [30, 31] to iden-
tify the toolchain. Hendrikse [13] performed the only
multi-toolchain study, though still based on single au-
thor identification, using the programs from GCJ. He
repeated single toolchain evaluations with 9 toolchains
(GCC, MSVS, and ICC with -O0, -O2, and -Os) and re-
ported no significant accuracy difference between opti-
mization levels (-O0: 92%, -O2: 93%, and -Os: 94%).
He created a multi-toolchain data set by randomly sam-
pling a program from one of the 9 toolchains, and re-
ported 92% accuracy. However, this study was at a small
scale, as the experiments contained only 20 authors.

We are the first project to investigate the impact
of compilation toolchains on multi-author identifica-
tion, develop new techniques for multi-toolchain, multi-
author identification, and evaluate our techniques with
real world software. Our results do not align with the
results of these existing studies, as we achieved highest
accuracy with -O3 code and lowest accuracy with -O0
code. In Section 7.3, we will present our analysis as to
why we see such an accuracy difference.

3 Multi-toolchain Study

We evaluate the effectiveness of our previous techniques
for multi-author identification [26] in a multi-toolchain
scenario.

3.1 Data Set Generation

To evaluate their techniques, we created a multi-
toolchain dataset by compiling three large, long-lived
open source projects (Apache HTTPD Server [4],
Dyninst binary analysis and instrumentation tool suite
[29], and Git [11]), with three compilers (GCC 4.8.5,
ICC 15.0.1, and LLVM 3.5.0), and five optimization lev-
els (O0, O1, O2, O3, and Os) on a 64-bit Red Hat Linux 7
platform. For each of the 15 toolchains, we used the fol-
lowing steps to generate the author label as ground truth
for each basic block.

1. Use git-author [27] to get a weight vector of au-
thor contribution percentages for all source lines in
these projects. The source lines of STL and Boost

4



code were attributed to author identity “STL” and
“Boost”, respectively.

2. Compile these projects with debugging information
using the given compiler and optimization level, and
obtain a mapping between source lines and machine
instructions. The compiler may generate binary
code that does not correspond to any source line,
such as the default constructor for a class when the
programmer does not provide it. We exclude this
code from our data set.

3. Derive weight vectors of author contribution per-
centages for all machine instructions and basic
blocks in the compiled code. We first derived
the weight vector for each instruction by averaging
the contribution percentages of the corresponding
source lines. We then derived the weight vector of a
basic block by averaging the vectors of the instruc-
tions within the basic block.

4. Take the major author as the author label, based on
the weight vector of contribution percentages of a
basic block.

We generated a data set consisting of 1,965 binaries
generated by 15 toolchains, containing 50 million basic
blocks and 700 authors. The 1,965 binaries consisted
of 131 programs, with each program having 15 different
versions.

3.2 Evaluation Methodology

We enumerate all toolchain pairs to generate training sets
and testing sets. For each evaluation pair, we used the
following evaluate strategy.

We used Dynisnt [29] to extract code features, Liblin-
ear [10] for linear SVM , and CRFSuite [28] for linear
CRF. We performed the traditional leave-one-out cross
validation, where each program was in turn used as the
testing set and all other programs were used as the train-
ing set. So, the testing set contained the binary of the
testing program generated by the testing toolchain, and
the training set contained the binaries of the training pro-
grams generated by the training toolchain.

Each round of the cross validation had two steps. First,
we selected the top 45,000 features that had the most mu-
tual information with the major authors, as done in our
previous work [26]. Second, we trained a linear SVM
and a linear CRF and predicted the author of each basic
block in the testing set. We calculated accuracy as the
percentage of correctly attributed basic blocks. We paral-
lelized this cross validation with HTCondor [17], where
each round of the cross validation is executed on a sepa-
rate machine.

3.3 Results
Table 1 shows the accuracy for all the evaluation pairs
using SVM. We make three observations from the result
table. First, our previous techniques did not work well in
multi-toolchain scenarios, as shown in the non-diagonal
cells. The red-shaded cells show the minimum (5%),
median (13%), and maximum (64%) accuracy achieved
in multi-toolchain scenarios. Second, these techniques
achieved much higher accuracy in single toolchain sce-
narios, as shown in the diagonal cells. The green-shaded
cells show the minimum (44%), median (59%), and max-
imum (70%) accuracy achieved. However, there is a 26%
accuracy difference between the minimum and maxi-
mum. Third, by comparing the accuracy numbers in each
column, we find that we always get the highest accuracy
for a testing toolchain when we use the model trained
on binaries generated by the same toolchain. This obser-
vation supports the idea that as long as we can identify
the toolchain that generated the testing binary, we know
which authorship model is the most appropriate to use.

We were not able to get any accuracy results with CRF
because CRF training took too long to finish. We com-
mented in our previous work that we spent 7 days to train
a CRF model. The previous data set had 900,583 basic
blocks and 284 authors, whereas in this study, the data
used in each evaluation pair had average 1.5 million basic
blocks and 700 authors. As the training of a linear CRF
has a time complexity quadratic in the number of labels
and linear in the total number of data instances [36], it is
not surprising that we cannot finish CRF training in any
reasonable amount of time.

The results of our study confirm that we need new ap-
proaches for authorship identification in multi-toolchain
scenarios and investigate the accuracy differences be-
tween optimization levels.

4 Approaches

We compare two approaches for multi-toolchain, multi-
author identification. First, we attempt to identify the
toolchain that generated the target binary and then ap-
ply the corresponding single toolchain authorship model.
We call this the two layer approach. Second, we con-
struct a training set that contains binaries from all known
toolchains and then train a multi-toolchain model. We
call this the unified training approach.

4.1 Two Layer Approach
Besides training multiple single-toolchain authorship
models, the other key component of the two layer ap-
proach is to perform toolchain identification. Toolchain
identification is typically performed at the function level

5



Table 1: Evaluation results of our previous techniques [26]. The diagonal cells (in bold font) represent the single
toolchain results and the green-shaded cells represent the minimum, median, maximum accuracy. The non-diagonal
cells represent the multi-toolchain results and the red-shaded cells represent the minimum, median, maximum accu-
racy.

GCC ICC LLVM
Train

Predict
-O0 -O1 -O2 -O3 -Os -O0 -O1 -O2 -O3 -Os -O0 -O1 -O2 -O3 -Os

-O0 45% 8% 7% 7% 8% 9% 7% 7% 7% 7% 8% 8% 7% 7% 7%
-O1 8% 59% 25% 22% 16% 8% 14% 16% 16% 14% 7% 10% 24% 23% 16%
-O2 7% 27% 63% 38% 18% 6% 14% 17% 17% 14% 6% 10% 28% 29% 18%
-O3 7% 25% 41% 66% 16% 6% 14% 19% 18% 14% 6% 9% 25% 25% 16%

GCC

-Os 8% 19% 20% 17% 55% 7% 13% 13% 13% 13% 7% 11% 19% 19% 14%
-O0 9% 6% 6% 6% 6% 47% 6% 7% 7% 6% 6% 6% 8% 7% 6%
-O1 7% 13% 13% 12% 11% 7% 58% 19% 19% 45% 7% 9% 16% 16% 12%
-O2 6% 14% 15% 15% 10% 7% 20% 66% 64% 21% 6% 8% 19% 19% 12%
-O3 6% 13% 15% 15% 10% 8% 20% 64% 66% 21% 5% 8% 19% 19% 12%

ICC

-Os 7% 13% 13% 12% 11% 7% 45% 20% 20% 58% 6% 9% 16% 16% 12%
-O0 9% 9% 9% 8% 9% 9% 9% 8% 8% 9% 44% 9% 8% 8% 8%
-O1 9% 10% 9% 8% 10% 7% 9% 8% 8% 9% 7% 52% 16% 15% 21%
-O2 8% 19% 19% 18% 13% 8% 14% 17% 17% 14% 7% 18% 69% 63% 40%
-O3 8% 19% 19% 18% 13% 7% 14% 17% 17% 14% 6% 17% 63% 70% 37%

LLVM

-Os 8% 19% 18% 16% 14% 7% 13% 14% 14% 13% 6% 21% 40% 38% 61%

[31]. The program level is not suitable for toolchain iden-
tification as a binary may contain code generated by dif-
ferent toolchains. For example, a programmer may com-
pile their code with one toolchain and then statically link
a library that was generated by a different toolchain. On
the other hand, a function is typically generated by one
toolchain, as the source code of a function is in a single
source file and the source file is typically the compilation
unit.

Toolchain identification can be summarized in three
steps. First, we define and extract candidate binary code
features. Rosenblum et al. [31] used instruction idioms,
which represented consecutive machine instructions, and
graphlets, which represented subgraphs extracted from
the Control Flow Graph (CFG) of a function. Second, we
perform feature selection by ranking features based on
the mutual information with toolchain labels. Third, as
a compilation unit typically contain more than one func-
tion, we perform joint classification by training a Con-
ditional Random Field model to capture the correlations
between code features and toolchain labels. Note that
training a CRF model for toolchain identification is sig-
nificantly faster compared to multi-author identification,
as there are only 1.4 million functions and 15 toolchain
labels in our data set.

The two layer approach needs to maintain multiple
classifiers: one toolchain identification classifier, and one
authorship identification classifier for each toolchain. On
the other hand, maintaining multiple classifiers brings
two advantages. First, each single-toolchain authorship
model can capture the distinct characteristics of each
toolchain. Second, the training effort of each model is
modest.

4.2 Unified Training Approach
The unified training approach constructs a multi-
toolchain training set. This idea is based on a general
machine learning practice called data set augmentation
[12]. Data set augmentation aims to improve the accu-
racy of a classifier by adding training examples that have
been modified with transformations that do not change
the label of the example. For example, in object recogni-
tion in computer vision, a cat image remains a cat image
if it is shifted one pixel to the right. Similarly, the code
written by an author remains code written by this author
if it is compiled by a different toolchain.

Compared to the two layer approach, the unified train-
ing approach needs to maintain only one classifier. How-
ever, training this classifier requires significantly more
computing power, as the size of the training set is multi-
plied by the total number of available toolchains.

5 Applying Deep Learning

We apply deep learning to automatically learn features
from raw bytes of basic blocks. We first introduce the
basics of feed-forward neural networks and then focus
on how to construct inputs to the network.

5.1 Basics of Feed-forward Nerual Net-
works

Figure 1 illustrates an example of a feed-forward neural
network and breaks down its individual components. As
shown in Figure 1a, nodes in the network are arranged
into layers: one input layer, multiple hidden layers (two
in this example), and one output layer. Typically, nodes
between adjacent layers are fully connected, and there
are no backward edges or cross layer edges.

6



Input
layer

Hidden
layers

Output
layer

(a) A network example

𝑓𝑖

𝑓𝑖

(b) An input layer node

x𝑖2x𝑖1

𝑦𝑖

𝑧𝑖 = 𝑊)
* 𝑋𝑖 + 𝑏𝑖

𝑦𝑖 = 𝜎 𝑧𝑖

…

(c) A hidden layer node

x𝑖2x𝑖1

𝑝𝑖

𝑧𝑖 = 𝑊)
*𝑋𝑖 + 𝑏𝑖

𝑝𝑖 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 𝑍 𝑖

…

(d) An output layer node

Figure 1: Overview of a feed-forward neural network. Nodes are arranged into an input layer, hidden layers, and an output layer.
Nodes in adjacent layers are fully connected. An input layer node outputs the input value fi without modification. A hidden layer
node defines learning parameters weights Wi and bias bi, and performs a linear transformation with the input Xi. The result of the
linear transformation zi then goes through a non-linear activation function σ to generate the output to the next layer. An output
layer node also defines Wi and bi and generates the prediction probability for a class.

As shown in Figure 1b, a node in the input layer takes
an input value fi and outputs the same value fi. The in-
formation used for constructing inputs is application spe-
cific. Two common choices are using manually designed
features and using raw data as inputs. Examples of raw
data include individual pixels in computer vision tasks
and raw bytes in our case.

The internal computation of a hidden layer node is
shown in Figure 1c. The number of hidden layers and
the number of nodes in a hidden layer are two hyper-
parameters that need tuning. A node in a hidden layer
takes multiple inputs from the previous layer and gen-
erates new output value to the next layer. Denote Xi =
[xi1,xi2, . . . ,xin]

T as the input vector, where n represents
the total number of nodes in the previous layer. The in-
puts first go through a linear transformation, defined as
zi = W T

i Xi + bi, where weights Wi = [wi1,wi2, . . . ,win]
T

and bias bi are two learning parameters, whose values are
determined in the training process. Note that each node
has separate weights and bias. The output is then defined
as yi = σ(zi), where σ is called the activation function.
σ is a non-linear function so that the whole network can
represent a non-linear prediction space. While the Rec-
tified Linear Unit (ReLU) is a commonly used activation
function, we found that the Scaled Exponential Linear
Unit (SELU) [21] achieved better results.

The goal of the output layer is to generate a probabil-
ity vector P = [p1, p2, . . . , pm]

T , where pi represents the
probability that the input data instance belongs to class i
and m is the total number of classes. As shown in Fig-
ure 1d, similar to a node in a hidden layer, the inputs

first go through a linear transformation zi = W T
i Xi + bi,

where Z = [z1,z2, . . . ,zm]
T . The output is defined as

pi = so f tmax(Z)i, where so f tmax(Z) is a function that
normalizes a vector of arbitrary values to a probability
vector; so f tmax(Z)i is the ith element in the probability
vector, defined as so f tmax(Z)i = (ezi)/(∑m

k=1 ezk). We
can then report the class with the highest probability as
the prediction result, or report the top-k classes by choos-
ing the k highest probabilities.

The purpose of training is to determine the values for
W and b, which can be summarized in four steps [12].

1. Initialize the weights and biases. Typically, weights
are randomly sampled from a Gaussian or uniform
distribution; biases are set to heuristically chosen
constants. The specific choice of the distributions
depends on the used activation function.

2. Calculate the loss for a training example. Suppose
the training example belongs to the Lth class. We
calculate the output of each node along the layers
in the network, and get the prediction probability
vector P. A common loss function is cross-entropy.
In this context, it is defined as−log(pL). Intuitively,
the larger pL is, the more likely we make the correct
prediction and the smaller the loss.

3. Update weights and biases by gradient descent.
This step aims to reduce the loss by updating the
weights and biases. The direction of the update is
specified by the negative of the gradient, as it repre-
sents the fastest direction along which the loss de-
creases. The magnitude of the update is specified
by a user-defined hyper-parameter called the learn-

7



ing rate.
4. Repeat the second and third steps over the train-

ing set until converging. Since the training set for
deep learning is typically too large to fit in memory,
a common practice is to split the training set into
multiple mini-batches, where one mini-batch con-
tains dozens or hundreds of data instances. Only
one mini-batch is loaded into memory at a time.

As a user of feed-forward neural networks, we need to
construct appropriate inputs to the network and tune key
hyper-parameters such as the learning rate, the number
of layers, and the number of unit in each hidden layers.

5.2 Extract Low Level Features

A key advantage of deep learning is that it can automat-
ically learn features from data. So, we use raw bytes
of a basic block as inputs, as opposed to designing the
features ourselves. As manual feature design is unlikely
to cover all relevant code properties, using raw bytes
can also potentially capture information that is not rep-
resented by existing features. To provide raw bytes as
input, we have two issues to address. First, the length
of a basic block is variable, but a feed-forward network
takes a fixed number of inputs. For this issue, we empir-
ically decided to use the first 70 bytes of the basic block
as we found over 99% of the basic blocks are short than
70 bytes. For basic blocks shorter than 70 bytes, we add
padding after the code bytes.

Second, how do we represent the value of a byte as
the inputs to the network? Ideally, we would like a
representation that will allow the network to capture in-
struction fields such as instruction prefixes, opcodes, and
operands, and the encoding of machine instructions, For
the x86-64 architecture, instruction fields do not neces-
sarily align with byte boundaries. For example, the lower
four bits of a REX prefix byte represents four different
fields. Therefore, we use bit values as inputs. Specifi-
cally, we translate bit value 0 to input value -1, bit value
1 to input value 1, and padding bit to value 0. This repre-
sentation allows the network to distinguish padding from
real code bits.

However, using only raw bytes of a basic block as in-
put cannot capture higher-level structural features such
as control flow, data flow, and the context. This is be-
cause structural properties are the results of interactions
between multiple basic blocks and extracting structural
code features is the result of extensive, semantic analysis
of the binary code [3, 25, 34]. We reuse existing basic
block level structural features [24, 26, 32] as additional
inputs.

6 Evaluation

We evaluated our techniques with the same multi-
toolchain data set discussed in Section 3. Recall that
this data consists of 1,965 binaries generated by 15
toolchains, containing 50 million basic blocks and 700
authors.

We focus on two aspects of our techniques: how
well the two layer approach and the unified training ap-
proach can perform multi-toolchain, multi-author identi-
fication, and whether DNN can improve accuracy over
traditional machine learning techniques such as SVM.
As either the two layer approach or the unified training
approach can be paired with either SVM or DNN, we
evaluated the following four techniques: two-layer-svm,
two-layer-dnn, unified-svm, and unified-dnn.

6.1 Evaluation Methodology

Our evaluations are based on leave-one-out cross valida-
tion, where all 15 versions of a program are considered
as a fold. So, in each round of cross validation, the train-
ing set contains all 15 versions of 130 programs, and the
testing set contains all 15 versions of the other program.

For two-layer-dnn, we train a toolchain identifica-
tion classifier with linear CRF using all binaries in the
training set. We then train 15 single-toolchain au-
thorship classifiers with feed-forward neural networks,
where each classifier is trained with the corresponding
version of the 130 programs. For testing, we first use the
toolchain identification classifier to determine the which
toolchain generated the functions in the testing binaries,
and then we apply the corresponding single-toolchain
authorship model to predict the authors of all basic
blocks. The steps for two-layer-svm is similar to the
steps for two-layer-dnn, but we replace feed-forward
neural networks with linear SVM. For both unified-svm

and unified-dnn, we train a multi-toolchain authorship
model with all binaries in the training set and then pre-
dict the authors of binaries in the testing set. Accuracy
is calculated as the number of correctly attributed basic
blocks over the total number of basic blocks.

We used Dynisnt [29] to extract code features, Liblin-
ear [10] for linear SVM, CRFSuite [28] for linear CRF,
and TensorFlow [37] for deep learning. It is straight-
forward to parallelize the training and testing of neural
networks in TensorFlow. In our experiments, we used
four CPUs for training and testing each feed-forward
neural networks. We parallelized our evaluations with
HTCondor [17]. Note that the two layer approach has
more parallelism than the unified training approach. For
the unified training approach, we can parallelize different
rounds of cross validation. For the two layer approach,
we can parallelize different rounds of cross validation,

8



as well as the training of toolchain identification and
all single-toolchain authorship models within a round of
cross validation.

6.2 Evaluation Results

A key question to answer in our evaluations is how
well we can perform multi-toolchain, multi-author
identification. Our results show that two-layer-svm,
two-layer-dnn, and unified-dnn achieved 59%, 71%,
and 68% accuracy for classifying 700 authors on code
generated by 15 toolchains, as opposed to as low as
5% accuracy when a mismatched authorship model is
used. Our techniques can help prioritize investigation:
two-layer-dnn achieved 82% top-5 accuracy and 86%
top-10 accuracy. Our results show that unified-svm did
not scale to the merged training set containing all 15
toolchains.

To better understand the accuracy achieved the two
layer approach, we investigated how the accuracy of
toolchain identification impact multi-author identifica-
tion. Our toolchain identification classifiers achieved
93% accuracy for identifying 15 toolchains, where ac-
curacy is calculated as the number of functions that we
identified the correct toolchain over the total number of
functions. To investigate the impact of 7% error rate on
toolchain identification, we repeated experiments with
two-layer-svm and two-layer-dnn using an oracle for
toolchain identification. We observed less than 1% accu-
racy improvement by using an oracle for toolchain iden-
tification. Therefore, we believe current toolchain identi-
fication techniques are good enough for multi-toolchain,
multi-author identification.

We then compared two-layer-dnn and
two-layer-svm on two aspects to understand how
two-layer-dnn improved accuracy. First, we broke
down the accuracy achieved by DNN and SVM in single
toolchain scenarios. Table 2 shows that DNN improved
not only the overall accuracy, but also the accuracy
for all 15 toolchains. In addition, two-layer-dnn

had a slightly reduced accuracy difference between
optimization levels, as ICC -O0 had the lowest accuracy
(62%) and ICC -O3 had the highest accuracy (79%),
compared to two-layer-svm, where LLVM -O0 had the
lowest accuracy (44%) and LLVM -O3 had the highest
accuracy (70%).

Second, we compared the accuracy of SVM and DNN
for different sizes of basic blocks. As shown in Figure 2a,
we can see that SVM suffers when there are small basic
blocks. This observation aligns with the results presented
in our previous study [26] and can be explained simply
as small basic blocks provide fewer code features for pre-
diction. On the other hand, DNN achieved much higher
accuracy on small basic blocks. We attribute this im-

provement to the advantage of deep learning: our DNN
models extract features at bit level, which can capture
information that is not represented by existing low level
features. For larger basic blocks (byte size larger than
20), both DNN and SVM have varying accuracy, and
DNN does not seem to outperform SVM. Note that we
only use the first 70 bytes of a basic block, but this de-
cision does not hurt accuracy for blocks larger than 70
bytes. Figure 2b shows the cumulative distribution of
basic blocks in different sizes. Since about 80% of the
total basic blocks are smaller than 20 bytes, the accuracy
improvement on small basic blocks explains the overall
improvement of DNN.

Since unified-svm did not scale to the merged train-
ing set, it shows that unified-dnn has better train-
ing scalability. We observed similar accuracy results
from unified-dnn compared to two-layer-dnn: (1)
unified-dnn has similar accuracy differences between
optimization levels, where O0 code has lowest accu-
racy, and O2 and O3 code have highest accuracy; (2)
unified-dnn has a similar accuracy trend in terms of
block sizes.

Last, we discuss the needed training time. For
two-layer-dnn, it took about 30 hours to train a DNN
model and about 10 hours to train a linear CRF model
for toolchain identification. For two-layer-svm, it took
about 20 hours to train a linear SVM, and we use the
same linear CRF models for toolchain identification. For
unified-dnn, it took about 240 hours to train a DNN
model. Note that we can significantly speed up the train-
ing of DNN models by deploying them on GPUs and
more CPUs. We believe the training cost of unified-dnn
is practical.

6.3 Experiences of Deep Learning

As we are the first project to apply deep learning to
multi-author identification, we report our experiences of
deep learning tuning. We used the Adam optimizer in
our experiments, as it has been shown empirically to be
more effective than other optimization methods [20]. We
first discuss several factors that are fundamental for us to
achieve any success on training DNN models:

1. Use a small initial learning rate. Typical values for
the initial learning rate are between 10−5 and 1, with
a default value 0.01 [5]. We followed this recom-
mendation and found that we needed a small initial
learning rate, around 10−4. Too large values such as
0.01 and 0.001 caused the training loss to increase
with training and eventually diverge to infinity.

2. Using SELU as the activation function allows train-
ing deeper networks compared to using ReLU, and
we achieved better results when using SELU. The
best SELU network had 10 hidden layers, while the

9



Table 2: Comparison of single toolchain results between SVM and DNN. For convenience of comparison, we copy the results for
SVM from the diagonal cells in Table 1. DNN improved accuracy for all 15 toolchains.

O0 O1 O2 O3 Os Avg
SVM DNN SVM DNN SVM DNN SVM DNN SVM DNN SVM DNN

GCC 45% 64% 59% 69% 63% 70% 66% 75% 55% 66% 58% 69%
ICC 47% 62% 58% 68% 66% 79% 66% 79% 58% 68% 60% 73%
LLVM 44% 63% 52% 64% 69% 77% 70% 77% 60% 69% 60% 71%
Avg 45% 63% 57% 67% 66% 76% 67% 77% 58% 68% 59% 71%

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●
●

●●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●
●

●

●

●

●

●

●●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

0 20 40 60 80 100

30
40

50
60

70
80

Block size in bytes

A
cc

ur
ac

y

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●●

●

●
●
●

●
●●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●
●

●

●●
●
●

●

●

●●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

SVM
DNN

(a) Model Comparison

0 20 40 60 80 100

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Block size in bytes

F
ra

ct
io

n 
of

 b
as

ic
 b

lo
ck

s

(b) Cumulative Distribution

Figure 2: Comparison between accuracy of SVM and DNN on basic blocks in different sizes. DNN significantly outperforms
SVM for small basic blocks. As there are more small basic blocks, DNN achieved better overall accuracy.

best ReLU network had 5 hidden layers.
3. Shuffle the training data before training. We started

with dividing data into mini-batches by iterating ev-
ery binary in the training set and putting consec-
utive basic blocks into one mini-batch. As adja-
cent basic blocks are likely written by the same
author, this caused each mini-batch to have code
from only a few authors and different mini-bathes to
have disjoint sets of authors, which in turned caused
the training to repeatedly optimize the weights and
biases for different authors and led to fluctuating
training accuracy. Shuffling the training data so that
each mini-batch contains code from more authors
makes the training converge to a high training accu-
racy.

We did not observe significant improvement by tuning
the number of hidden units per layer. Our networks are
set to have 800 hidden units per layer. We let all hidden
layers have the same number of units as Larochelle et al.
[22] empirically showed that an even-sized network ar-
chitecture performs no worse than a decreasing-sized or
an increasing-sized architecture. Our results align with
this recommendation. The decision of 800 hidden units

per layer is based on two considerations. First, a hidden
layer wider than the input layer typically performs better
than a hidden layer narrower than the input layer [5]. Our
input layer has 704 units (560 units for 70 bytes and 144
units for structural features), so our hidden layer should
be wider than 704 units. Second, on the other hand, too
wide hidden layers will significantly increase training
time as the number of learning parameters is quadratic
in the number of units per layer. We tried more units
and fewer units per layer and observed about the same or
lower accuracy.

7 Understanding the Models

We investigate the internals of our machine learning
models to better understand how the models work. We
focused on three toolchains (GCC -O2, ICC -O2 and
LLVM -O2). We stress that our observations are anec-
dotal, meaning that we did not find any conflicting facts,
but we cannot prove them either due to the complexity of
the data sets and the machine learning models.

10



16K/18%,
290/49%

6K/7%,
47/8%

4K/5%,
17/3%

5K/6%,
7/1%

GCC

ICC LLVM

19K/22%, 
46/8%

18K/20%, 
21/4%

20K/23%,
163/28%

Figure 3: A Venn diagram of selected features in models
from two-layer-svm. The results are represented in a form
“A/B,C/D”, where A represents the total number of features,
B represents the percentage of total features, C represents the
number of structural features, and D represents the percentage
of structural features.

7.1 Different Features Are Selected for Dif-
ferent Toolchains

Two key questions for understanding the impact of com-
pilation toolchains on authorship are (1) do we need
different features for different toolchains? And (2) if
there are features that are indicative of authorship for
all toolchains, do these features contribute similarly to
the models for the different toolchains? We try to an-
swer these questions by examining the selected features
and their weights in two-layer-svm. Note that while
two-layer-svm has lower accuracy than two-layer-dnn

and unified-dnn, we choose to analyze two-layer-svm

as SVM models are easier to interpret than deep learning
models.

For the first question, Figure 3 shows a Venn dia-
gram of the number of uniquely selected features and
the number of commonly selected features. We selected
45,000 features each for GCC, ICC, and LLVM. Since
some features were selected by more than one toolchain,
there are only 88,000 selected features in total. 65% of
the selected features are uniquely selected by a single
toolchain, with 22%, 23%, and 20% of features uniquely
selected by GCC, ICC, LLVM, respectively. On the other
hand, only 18% of the selected features are selected by
all three toolchains. Among the 88,000 features, there
are 591 structural features. 40% of the structural features
are uniquely selected by a single toolchain, while 49% of
the selected structural features are selected by all three
toolchains. Our results show that overall, we need differ-
ent features for different toolchains, but a much higher

Spearman correlation

F
ra

c
ti
o

n
 o

f 
fe

a
tu

re
s

−0.2 0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.1

0
.2

0
.3

0
.4

Figure 4: The histogram of Spearman correlations for com-
monly selected features by all three toolchains in GCC model
and ICC model.

percentage of structural features are shared.
For the second question, we analyze the weights of

features that are selected by all three toolchains. An
SVM model defines a weight for each pair of author a
and feature f . When f is observed in a basic block, the
larger the weight, the more likely that the basic block
is written by a. For a given feature, we can generate a
ranking of all authors to summarize its contribution to
a model. If a feature has similar rankings for different
toolchains, we can conclude that this feature contributes
similarly to all models for the different toolchains. Note
that we analyze the rankings instead of the actual values
of weights because the values of weights of a feature also
depend on the other features in the model. As GCC, ICC,
and LLVM each have uniquely selected features, the ac-
tual values of weights in different models are not directly
comparable.

We calculated the Spearman correlation [35] to mea-
sure similarities between author rankings. The value of
the Spearman correlation of two rankings is between -
1 and 1, where -1 means opposite rankings, 0 means
that there is no association between two rankings, and
1 means the same ranking. Figure 4 shows the histogram
of Spearman correlations for the GCC model and the ICC
model. We can see that most features have Spearman
correlation values between -0.1 and 0.3, indicating that
the rankings for GCC has little or no association with
the rankings for ICC. We repeated the same analysis for
GCC and LLVM, and ICC and LLVM, with results sim-
ilar to Figure 4. Therefore, our results suggest that com-

11



Table 3: Unit distributions in hidden layers. Column “Dom.”
represents dominant units and “Exc.” represents exclusive
units.

GCC ICC LLVM
Dom. Exc. Dom. Exc. Dom. Exc.

Layer 1 0.6% 0.0% 24.0% 1.0% 75.4% 71.4%
Layer 2 10.4% 0.1% 48.6% 6.4% 41.0% 22.6%
Layer 3 7.6% 0.4% 61.4% 10.5% 31.0% 17.5%
Layer 4 8.0% 0.5% 55.6% 7.3% 36.4% 19.5%
Layer 5 9.7% 0.1% 67.4% 3.9% 22.9% 8.4%
Average 7.3% 0.2% 51.4% 5.8% 41.3% 27.9%

monly selected features typically contribute differently
to predictions in different toolchains.

7.2 DNNs Can Internally Recognize the
Toolchain

In Section 6.2, our evaluation results show that
two-layer-dnn and unified-dnn have similar results.
This suggests that unified-dnn can internally recognize
the toolchain that generated the input data, even with-
out explicitly training for toolchain identification. Note
that a similar phenomena was observed in computer vi-
sion research, where Zhou et al. [38] found that a deep
learning model trained for scene classification (whether
an image describes a office or a bedroom) can internally
recognize objects (whether an image contains a desk or
a bed), even without explicitly training for object classi-
fication.

We adapted the techniques presented by Zhou et al. to
investigate whether unified-dnn can internally identity
toolchains. In this investigation, we used DNN with 5
hidden layers and using ReLU as the activation function,
as SELU networks are too deep to manually inspect. The
basic idea is that the larger the absolute value of the acti-
vation of a hidden unit, the more active the unit. By ex-
amining the top K activations generated by using a data
set as input, we can determine whether a unit is most ac-
tive for GCC, ICC, or LLVM code.

We used 500,000 basic blocks as input and made sure
that GCC, ICC and LLVM each accounted for about one
third of the total input set. We recorded the top K = 1000
activations for each unit and summarized each unit with
a tuple (G, I, L), where G is the number of GCC basic
blocks in the unit’s top K activation list, I is the number
for ICC and L is the number for LLVM. We call a unit
GCC dominant if GCC basic blocks are the most in the
unit’s top 1000 activation list and GCC exclusive if GCC
basic blocks constitute more than 90%. Similarly, we
have ICC and LLVM dominant and exclusive units.

Table 3 breaks down unit distributions in different lay-
ers. In the first hidden layer, there are many LLVM ex-
clusive units, but almost no ICC or GCC exclusive units.
Layer 2 - 5 have similar unit distributions to each other:

Table 4: Total number of basic blocks (in millions).

O0 O1 O2 O3 Os
GCC 1.46 1.30 1.29 1.62 1.11
ICC 1.55 1.18 2.36 2.36 1.16
LLVM 1.62 1.21 1.60 1.70 1.14

there are more ICC dominant units than LLVM dominant
units, and there is a modest number of GCC dominant
units.

We make three observations from our results. First,
the large number of LLVM exclusive units suggests that
LLVM code has many unique patterns and the network
dedicates a significant number of units to represent them.
The first hidden layer has a large number of LLVM ex-
clusive units to learn these patterns, indicating that these
patterns can be easily derived from the input. Second,
the large number of ICC dominant units suggests that
ICC code also exhibits distinguishable patterns. Learn-
ing these patterns happened mostly in the last four layers.
However, the small number of ICC exclusive units sug-
gests that most of these patterns are not unique to ICC
code. Third, GCC code has the fewest distinct patterns to
learn, where learning the GCC patterns happened mostly
in the last four layers. Our observations align with our
knowledge about these compilers. Both ICC and LLVM
aim to be compatible with and extend GCC, so it is rea-
sonable that GCC code has the fewest unique patterns.
On the other hand, as LLVM is developed by a large
community of compiler researchers, it is not surprising
that LLVM code shows the most unique patterns.

In summary, the distinct activation patterns of our net-
work provide strong evidence that unified-dnn can in-
ternally determine which toolchain generated the input
basic block.

7.3 Unoptimized Code Is More Difficult to
Attribute

Traditional wisdom is that compiler optimization can
drastically change the structure of binary and distort the
styles of the original authors. So, optimized code should
be more difficult to attribute than unoptimized code.
However, our results in Table 2 show the exact opposite:
we achieved higher accuracy on optimized code than un-
optimized code. Our investigation suggests that compiler
optimizations actually work in our favor for improving
accuracy. We find two pieces of supporting evidence.

First, when compiling without optimizations, the com-
piler tends to generate boilerplate code regardless of the
authors; in practice such code provide little useful infor-
mation for learning author style. In optimized code, the
boilerplate code is replaced by optimized code, which
reflects the structure and style of the surrounding code,

12



Table 5: Percentages of basic blocks that contains boilerplate
code patterns.

O0 O1 O2 O3 Os
GCC 14.0% 0.7% 0.7% 0.5% 0.8%
ICC 17.0% 0.2% 0.1% 0.1% 0.2%
LLVM 12.8% 2.1% 1.2% 1.1% 1.7%

Table 6: Percentages of basic blocks caused by function inlin-
ing.

O0 O1 O2 O3 Os
GCC 0.0% 40.6% 41.9% 57.0% 29.1%
ICC 0.0% 0.0% 66.7% 66.7% 0.0%
LLVM 0.0% 0.0% 57.2% 59.8% 37.0%

so is more useful for learning. In the code that we stud-
ied, we identified two prevalent examples of boilerplate
code when not using optimizations, function preamble
and function epilogue. To estimate the effects of this
boilerplate code, we counted the total number of basic
blocks and calculated the percentage of basic blocks con-
taining these examples. Table 4 shows the total number
of basic blocks for each toolchain and Table 5 shows that
-O0 code has a modest number of basic blocks contain-
ing boilerplate code (above 12%), while code compiled
at other optimization levels have significantly fewer such
basic blocks (below 3%). These results suggest that boil-
erplate code negatively impacts learning.

Second, function inlining can improve learning. When
an author’s code is inlined at multiple call sites, the com-
piler creates more data instances in the author’s style as
compared to no inlining. We used Dyninst to understand
the debugging information to determine whether a basic
block is from an inlined function. Table 6 shows that -
O0 code has no inlined basic blocks and -O3 code has the
most inlined basic blocks. We notice that the percentages
of inlined basic blocks are positively correlated to the
single-toolchain accuracy achieved by two-layer-dnn.
In Figure 5, we show linear regression analysis between
the percentages of inlined basic blocks and the single-
toolchain accuracy. This linear regression model has
an R-squared coefficient of 0.85 and a p-value of about
10−5, indicating that there is indeed a strong positive cor-
relation between function inlining and accuracy.

In summary, our investigation suggests that compiler
optimizations improve learning, making unoptimized
code more difficult to attribute.

8 Conclusion

We have presented new techniques to perform multi-
toolchain, multi-author identification. We started with
an extensive evaluation of existing multi-author iden-

●

●

●

●

●

●

●

●

●

●

●

●

0 10 20 30 40 50 60 70

65
70

75

Percentage of inlined basic blocks

A
cc

ur
ac

y

Figure 5: Correlation between inlining and accuracy. Each
data point represents a toolchain. The x-axis represents the
percentage of inlined basic blocks. The y-axis represents the
single-toolchain accuracy achieved by two-layer-dnn. The
dashed line represents regression line for all points.

tification techniques, showing that existing techniques
did not work well in multi-toolchain scenarios. We de-
signed two new techniques to overcome the weaknesses
of existing techniques: the two layer approach that com-
bines toolchain identification and single-toolchain au-
thorship identification, and the unified training approach
that train multi-toolchain authorship models based on a
multi-toolchain data set. We also applied deep learning
to multi-author identification, using raw bytes of basic
blocks as input to automatically extract low level fea-
tures. Our techniques achieved 71% accuracy, 82% top-
5 accuracy, and 86% top-10 accuracy for classifying 700
authors, showing that analysts can effectively prioritize
investigation based on our prediction. Our results also
showed that our deep learning models consistently out-
performed traditional learning methods such as SVM.
We then tried to understand the internals of our machine
learning models by investigating the feature weights of
SVM and the activations of neurons in DNN. We learned
interesting lessons from our investigation, such as that
unoptimized code is more difficult to attribute. These
lessons learned from investigating our models provide
valuable insights on how compilation toolchains impact
authorship styles.

In summary, we showed that we can perform practical
multi-author identificaiton in multi-toolchain scenarios.
Our work lays the foundation for future research topics
such as whether we can suppress programming styles to
evade identification, whether we can impersonate some-
one else’s coding style to mislead identification, and in-
vestigating the impact of code obfuscation techniques on
code authorship.

13



Acknowledgments

This work is supported in part by National Science Foun-
dation Cyber Infrastructure grants ACI-1547272 and
ACI-1449918, the Department of Homeland Security
under AFRL Contract FA8750-12-2-0289, and grants
from Cray Inc. and Intel Corp. This research was per-
formed using the compute resources and assistance of the
UW-Madison Center For High Throughput Computing
(CHTC) in the Department of Computer Sciences.

References

[1] A. Abbasi, W. Li, V. Benjamin, S. Hu, and H. Chen. De-
scriptive analytics: Examining expert hackers in web fo-
rums. In 2014 IEEE Joint Intelligence and Security In-
formatics Conference (JISIC), Hague, Netherlands, Sep.
2014.

[2] S. Alrabaee, N. Saleem, S. Preda, L. Wang, and M. Deb-
babi. Oba2: An onion approach to binary code authorship
attribution. Digital Investigation, 11, Supplement 1:S94
– S103, May 2014.

[3] D. Andriesse, X. Chen, V. van der Veen, A. Slowinska,
and H. Bos. An in-depth analysis of disassembly on full-
scale x86/x64 binaries. In 25th USENIX Security Sym-
posium (USENIX Security 16), Austin, TX, USA, Aug.
2016.

[4] Apache Software Foundation. Apache http server,
http://httpd.apache.org.

[5] Y. Bengio. Practical recommendations for gradient-based
training of deep architectures. In Neural networks: Tricks
of the trade, pages 437–478. Springer, 2012.

[6] V. Benjamin and H. Chen. Securing cyberspace: Identi-
fying key actors in hacker communities. In 2012 IEEE
International Conference on Intelligence and Security In-
formatics (ISI), Arlington, VA, USA, June 2012.

[7] A. Caliskan-Islam, F. Yamaguchi, E. Dauber, R. Harang,
K. Rieck, R. Greenstadt, and A. Narayanan. When coding
style survives compilation: De-anonymizing program-
mers from executable binaries, Dec. 2015. Technical Re-
port, Arxiv, http://arxiv.org/pdf/1512.08546.pdf.

[8] C. Cortes and V. Vapnik. Support-vector networks. Ma-
chine Learning, 20(3), Sep. 1995.

[9] Y. David, N. Partush, and E. Yahav. Statistical simi-
larity of binaries. In 37th ACM SIGPLAN Conference
on Programming Language Design and Implementation
(PLDI), pages 266–280, Santa Barbara, California, USA,
June 2016.

[10] R.-E. Fan, K.-W. Chang, C.-J. Hsieh, X.-R. Wang, and
C.-J. Lin. Liblinear: A library for large linear classifi-
cation. Journal of Machine Learning Research, 9:1871–
1874, June 2008.

[11] Git. https://git-scm.com/.

[12] I. Goodfellow, Y. Bengio, and A. Courville. Deep learn-
ing. MIT press, 2016.

[13] S. Hendrikse. The Effect of Code Obfuscation on Author-
ship Attribution of Binary Computer Files. PhD thesis,
Nova Southeastern University, 2017.

[14] Hex-Rays. IDA, https://www.hex-
rays.com/products/ida/.

[15] T. K. Ho. Random decision forests. In 3rd International
Conference on Document Analysis and Recognition (IC-
DAR), Montreal, Canada, Aug. 1995.

[16] T. J. Holt, D. Strumsky, O. Smirnova, and M. Kilger.
Examining the social networks of malware writers and
hackers. International Journal of Cyber Criminology,
6(1):891–903, Jan. 2012.

[17] HTCondor. High Throughput Computing, 1988.
https://research.cs.wisc.edu/htcondor/.

[18] J. Jang, M. Woo, and D. Brumley. Towards automatic
software lineage inference. In 22nd USENIX Conference
on Security (SEC), Washington, D.C., 2013.

[19] W. M. Khoo, A. Mycroft, and R. Anderson. Rendezvous:
A search engine for binary code. In 10th Working Confer-
ence on Mining Software Repositories (MSR), pages 329–
338, San Francisco, CA, USA, May 2013.

[20] D. Kingma and J. Ba. Adam: A method for stochastic
optimization. arXiv preprint arXiv:1412.6980, 2014.

[21] G. Klambauer, T. Unterthiner, A. Mayr, and S. Hochre-
iter. Self-normalizing neural networks. arXiv preprint
arXiv:1706.02515, 2017.

[22] H. Larochelle, Y. Bengio, J. Louradour, and P. Lamblin.
Exploring strategies for training deep neural networks.
Journal of Machine Learning Research, 10:1–40, June
2009.

[23] Mandiant. Mandiant 2013 Threat Report, 2013. Mandi-
ant White Paper, https://www2.fireeye.com/WEB-2013-
MNDT-RPT-M-Trends-2013 LP.html.

[24] X. Meng. Fine-grained binary code authorship identifica-
tion. In 24th ACM SIGSOFT International Symposium on
Foundations of Software Engineering, Student Research
Competition Track (FSE-SRC), Seattle, WA, USA, 2016.

[25] X. Meng and B. P. Miller. Binary code is not easy. In The
International Symposium on Software Testing and Analy-
sis (ISSTA), Saarbrcken, Germany, July 2016.

[26] X. Meng, B. P. Miller, and K.-S. Jun. Identifying multi-
ple authors in a binary program. In 22nd European Con-
ference on Research in Computer Security (ESORICS),
Oslo, Norway, Sep. 2017.

[27] X. Meng, B. P. Miller, W. R. Williams, and A. R. Bernat.
Mining software repositories for accurate authorship. In
2013 IEEE International Conference on Software Main-
tenance (ICSM), Eindhoven, Netherlands, Sep. 2013.

[28] N. Okazaki. Crfsuite: a fast implementation of condi-
tional random fields (crfs), 2007.

[29] Paradyn Project. Dyninst: Putting the Performance in
High Performance Computing, http://www.dyninst.org.

14



[30] A. Rahimian, P. Shirani, S. Alrbaee, L. Wang, and
M. Debbabi. Bincomp: A stratified approach to compiler
provenance attribution. Digital Investigation, 14, Supple-
ment 1, 2015.

[31] N. Rosenblum, B. P. Miller, and X. Zhu. Recovering the
toolchain provenance of binary code. In 2011 Interna-
tional Symposium on Software Testing and Analysis (IS-
STA), Toronto, Ontario, Canada, July 2011.

[32] N. Rosenblum, X. Zhu, and B. P. Miller. Who wrote this
code? identifying the authors of program binaries. In 16th
European Conference on Research in Computer Security
(ESORICS), Leuven, Belgium, Sep. 2011.

[33] A. Sæbjørnsen, J. Willcock, T. Panas, D. Quinlan, and
Z. Su. Detecting code clones in binary executables. In
18th International Symposium on Software Testing and
Analysis (ISSTA), pages 117–128, Chicago, IL, USA, July
2009.

[34] B. Schwarz, S. Debray, and G. Andrews. Disassembly of
executable code revisited. In Ninth Working Conference
on Reverse Engineering (WCRE), Richmond, VA, USA,
Oct. 2002.

[35] C. Spearman. The proof and measurement of association
between two things. The American Journal of Psychol-
ogy, 15(1):72–101, 1904.

[36] C. Sutton, A. McCallum, et al. An introduction to condi-
tional random fields. Foundations and Trends R© in Ma-
chine Learning, 4(4):267–373, 2012.

[37] TensorFlow. An open-source software library for ma-
chine intelligence, 2015. https://www.tensorflow.org/.

[38] B. Zhou, A. Khosla, A. Lapedriza, A. Oliva, and A. Tor-
ralba. Object detectors emerge in deep scene cnns. arXiv
preprint arXiv:1412.6856, 2014.

15


