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ABSTRACT
We present a scalable temporal order analysis technique that sup-
ports debugging of large scale applications by classifying MPI
tasks based on their logical program execution order. Our approach
combines static analysis techniques with dynamic analysis to de-
termine this temporal order scalably. It uses scalable stack trace
analysis techniques to guide selection of critical program execu-
tion points in anomalous application runs. Our novel temporal or-
dering engine then leverages this information along with the ap-
plication’s static control structure to apply data flow analysis tech-
niques to determine key application data such as loop control vari-
ables. We then use lightweight techniques to gather the dynamic
data that determines the temporal order of the MPI tasks. Our
evaluation, which extends the Stack Trace Analysis Tool (STAT),
demonstrates that this temporal order analysis technique can isolate
bugs in benchmark codes with injected faults as well as a real world
hang case with AMG2006.
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1. INTRODUCTION
High Performance Computing (HPC) applications continue to

grow in complexity, often combining large numbers of independent
modules or libraries. Further, they are using unprecedented proces-
sor counts. These trends significantly complicate application de-
sign, development, and testing. In particular, interactive debugging
techniques, as implemented in tools like gdb [1], DDT [2], or To-
talView [3], no longer work well since they must gather data across
all modules or libraries and provide little assistance in identifying
tasks in which errors arise.

Novel techniques for bug detection and isolation, like Coopera-
tive Bug Isolation (CBI) [4, 5] or DIDUCE [6], target this problem
and provide users with (semi) automatic mechanisms to aid in dis-
covering root causes in sequential programs. However, extending
these approaches to parallel codes is not straightforward and re-
quires a deeper understanding of the cross-task relationships and
synchronizations. In our previous work, we developed STAT, the
Stack Trace Analysis Tool [7, 8, 9], which provides a first step
into this direction by aggregating stack trace information across all
nodes. STAT uses this information to form equivalence classes of
tasks, which identify a small subset of processes that can be de-
bugged as representatives of the entire application.

While often sufficient, stack traces can be too coarse grain for
grouping tasks and for understanding the relationship between their
execution state. This coarseness may miss critical differences or
dependencies. Thus, STAT does not always allow bug isolation
and root cause analysis. Instead, we must identify additional data
that captures the relative execution progress in each task and that
supports accurate mapping of the debug state across all tasks.

This work introduces a novel, non-intrusive and highly scal-
able mechanism that refines task equivalence sets and captures the
progress of each task. This technique creates a partial order across
the task equivalence classes that corresponds to their relative logi-
cal execution progress. For sequential code regions, our approach
analyzes the control structure of the targeted region and associates
it with an observed program location. For loops or other complex
control structures, we use static data flow analysis, implemented
in the ROSE source-to-source translation infrastructure [10, 11],



to determine which application variables capture relative progress.
We then extract their runtime values in all tasks to refine the task
equivalence sets and to determine their relative execution progress.
Similarly to previous work [12], our static techniques significantly
reduce the amount of runtime data needed for analysis.

Our methodology requires no source code changes; it analyzes
the existing code and then uses the results to locate the relevant
dynamic application state through the standard debugger interface.
Thus, our approach meets a critical debugging requirement: we
can apply it to production runs, e.g., after the application aborts or
hangs due to deadlock or livelock, thus manifesting a program bug.
This paper makes these contributions:

• We define a Metric and Notation for Application Progress
that captures the global application state and refines the no-
tion of task equivalence;
• We introduce a Task Progress Partial Order that relates ap-

plication state across processes;
• We develop a novel Application Progress Extraction Tech-

nique that combines static analysis with automated runtime
debugging techniques;
• We detail a Prototype Debugging Tool Set that implements

these techniques to detect fine grain equivalence classes and
their relationships at large scales.

Our study shows that relative progress significantly reduces the
effort to locate tasks that manifest errors for a wide array of faults.
In particular, we identify randomly injected errors in the Block
Tridiagonal (BT) benchmark of the NAS Parallel Benchmarks [13]
and a real deadlock that AMG2006 [14] exhibited at 4,096 tasks.
Our evaluation demonstrates that our technique extends STAT to
provide these benefits with moderate additional overhead.

The remainder of this paper is structured as follows. Section 2
details the current state of the art in debugging methodologies. We
then define the partial order that determines the relative progress
of tasks in a parallel application in Section 3. We then detail our
methodology, combining static and dynamic analysis, to gather that
order in large scale application runs in Section 4. Section 5 then
presents detailed experiments that evaluate the effectiveness and
performance of our temporal ordering methodology.

2. STATE OF THE ART IN SEQUENTIAL
AND PARALLEL DEBUGGING

Debugging is one of the fundamental steps in the software devel-
opment cycle. However, current techniques, particularly for paral-
lel applications, have reached their limits due to rising application
and architectural complexity. Traditional debugging techniques, in-
cluding sequential debuggers such as gdb and “printf debugging,”
in which users print key variables during repeated executions, re-
quire the user to identify coding errors and to trace their origins
manually. Traditional parallel debuggers, such as TotalView [3]
and DDT [2], are similar, although these tools must control multi-
ple processes concurrently and aggregate the distributed state. They
provide convenient interfaces to that state but the process of iden-
tifying errors remains manual. Overall, traditional debugging tech-
niques require a significant amount of user experience, intuition,
and time, and thus are not practical for large, complex applications.

Differential debugging provides a semi-automated approach to
the analysis and understanding of programming errors by compar-
ing executions [15, 16]. Recent research has focused on develop-
ing statistical techniques to pinpoint the root cause of correctness
problems automatically [4, 5, 17, 6]. While both approaches hold

significant promise, they require extensive runtime execution data
often from multiple runs or extensions that guide the analyses to
significant differences between the processes in a single run. As
a result, most techniques have not yet been applied to large scale
runs of parallel applications. Complementing these techniques, we
need mechanisms that relate the state across the individual pro-
cesses and group ones with similar behavior into task equivalence
classes. These techniques will allow users not only to reason about
the state of large sets of processes instead of having to look at each
process individually, but also to isolate errors in outliers.

Our previous work developed the Stack Trace Analysis Tool
(STAT) [7, 8], which provides scalable task equivalence class de-
tection based on the functions that the processes execute. Specif-
ically, STAT gathers stack traces across tasks and over time and
merges the traces into a call graph prefix tree, from which it iden-
tifies task equivalence classes. Users can then attach a traditional
parallel debugger to a single representative of a class with suspi-
cious behavior or to representatives from several classes. In either
case, the technique presents the user with much less data that is
targeted at the underlying problem.

STAT builds on scalable and portable tool infrastructure such as
the MRNet tree-based overlay network [18]. As a result, it has
been ported and deployed on many high-end computing systems
including Linux clusters, BlueGene/L and P, and the Cray XT4 and
5. The tool has also proven effective even at very large scales; it
has demonstrated sub-second merging latencies on 212,992 tasks,
larger than any previously published tool experiment [9].

STAT’s stack trace analysis is useful for diagnosing certain
classes of errors. It can quickly identify when a small subset of
tasks has diverged from the rest of the application, which occurs,
e.g., when most of the tasks are blocked in a barrier, waiting for one
or a few other tasks. STAT’s time-based sampling can also help to
determine when processes are making progress or when processes
are stuck in a single call path. Additionally, STAT’s intuitive rep-
resentation can quickly identify anomalous call paths, such as an
unexpected application call sequence. In general, STAT is most
effective when process behavior can be differentiated at the granu-
larity of function calls, that is, when two processes can be classified
as equivalent based on the function names in their stack trace.

STAT’s function-based equivalence classes are often a useful
starting point, but can group processes when their behaviors are dis-
tinct. For example, a function foo may contain multiple call sites to
a function bar, which are all equivalent at the function level. How-
ever, an error may manifest itself due to the context in which bar
is invoked, which we could detect by distinguishing the call sites.
Similarly, two processes can exhibit the same stack trace despite
being in different simulation time steps, which would often indi-
cate that one process is more likely manifesting an error. Thus,
function-based equivalence classes often do not differentiate tasks
sufficiently so we must consider refinements. We must also under-
stand the relationship between classes and identify the classes that
are likely to provide insight into the root causes of errors. The latter
task requires techniques that not only work at large scales but also
relate the equivalence classes to details in the source code.

3. COMPARING PROCESS STATE
THROUGH RELATIVE PROGRESS

We provide the required task equivalence class refinement and
source code insight by distinguishing processes by their relative
progress, i.e., how far their overall execution has advanced com-
pared to the other processes. Conceptually, we compare the dy-
namic control flow graphs of the processes up to the current state



Line Number
Task 1 Task 2 Rel. iter. count Logical execution order

(5) (6) it1 ≤ it2 Task 1 is behind Task 2
(5) (6) it1 > it2 Task 2 is behind Task 1
(15) (17) it1 < it2 Task 1 is behind Task 2
(15) (17) it1 > it2 Task 2 is behind Task 1
(15) (17) it1 = it2 No relative progress order

Table 1: Two MPI tasks executing the Poisson solver

of execution. Thus, we reduce the relevant state to those variables
that capture progress through that control flow. Further, as we will
demonstrate, we can identify the relevant variables in most cases
automatically through static analysis.

The relative progress of tasks in a parallel application is an in-
tuitively simple concept: we want to order tasks by how much of
the dynamic execution they have completed. We can capture sig-
nificant detail about the execution history of a task by considering
stack traces. A single stack trace can provide simple but significant
runtime data about a task’s execution. However, it captures lim-
ited temporal information: the sequence of functions (i.e., the call
path) immediately executed to reach the current state. We could
track a sequence of stack traces to capture a much richer notion of
progress through the source code, which we could use to compare
tasks in the same run. This approach is simple but infeasible: we
cannot track the stack traces from the beginning of a run in general,
particularly for production runs. Thus, we need some alternative
representation from which we can deduce progress.

Stack traces alone are insufficient. Even if we tracked stack
traces throughout execution, the same stack trace may appear mul-
tiple times in this sequence so additional information must distin-
guish them. Since we cannot practically capture the ordering of a
sequence of stack traces, we instead look for variables that partially
capture this sequencing information. We illustrate this concept with
the fragment of a Poisson solver that Figure 1 shows.

In any execution of the fragment in Figure 1a, the call to ex-

change_band at (5) always occurs before the call to sweep_band

at (6). Alternatively, the calls to handle_converged at (15) and
handle_not at (17) cannot be ordered within the fragment since
control flow ensures that only one will be executed; in multiple
tasks they are essentially concurrent. However, the context of a full
execution can change these orderings. A task at (5) has progressed
further than a task at (6) if it is at later iteration of the loop at (4)
(i.e., it is larger in the first task). Similarly, the value of it can or-
der tasks at (15) and (17). Table 1 summarizes the orderings based
on the call stack information captured at those lines and the values
of it, in which it1 and it2 are the values of it in tasks 1 and 2.

Formally, we assume a parallel application with N tasks that ex-
ecute the same program (extending our methodology to MIMD ap-
plications only requires us to merge the respective state sets). An
execution point is a relative point of execution as defined by the
current stack trace and the state (values) of variables relevant to
control flow. We denote the set of all possible execution points as
Σ. The current execution point of a process i is Pi ∈ Σ.

DEFINITION 3.1. Relative progress is a partial order �⊆ Σ×
Σ between two processes, i and j, with 0 ≤ i, j < N, such that
Pi � Pj if and only if process j has reached or passed Pi during
its execution before reaching Pj.

Intuitively, if a task is executing code with a given control flow
variable state that another task could have already executed with
the same state then that first task is earlier in its execution than the

second. Thus, it has made less progress in the logical execution
space. Relative progress is a partial order since it is reflexive (∀i :
Pi � Pi), antisymmetric (∀i, j : Pi � Pj ∧ Pj � Pi ⇔ Pi = Pj) and
transitive (∀i, j,k : Pi�Pj∧Pj �Pk⇒Pi�Pk). Relative progress is
distinguished from previously explored partial orderings of parallel
processes [19, 20] in that two processes may be ordered even when
no chain of messages connects them.

Relative progress provides a theoretical foundation to compare
the progress of different tasks. However, in order to be practical, we
must efficiently and scalably represent a task’s progress at any point
of its execution. Thus, we define an execution point representation
that uniquely identifies any execution point by combining the static
program locations of the current execution point with dynamic vari-
able state information. Our representation hierarchically describes
each program point relative to its enclosing statement block (e.g., a
basic block, loop or function call). Thus, we can locally determine
the information required to identify any program location. We aug-
ment these program points with dynamic execution information in
the form of iteration counts, i.e., how often a particular program
point has already been executed. We then combine this informa-
tion into a tuple from which we can derive a lexicographic order
that exactly corresponds to relative progress.

Our representation must treat loops very carefully because loop
iteration counts should take precedence in ordering. For the code
in Figure 1b, we represent the program points (5) and (6) as:

(5)→ 〈(4−1),(iterCount),(5−4)〉 → 〈3,(iterCount),1〉
(6)→ 〈(4−1),(iterCount),(6−4)〉 → 〈3,(iterCount),2〉

Here, both program points are in the while loop beginning at (4)
in the function starting at (1), denoted by its relative offset, (4−1),
which equals 3. Within that loop, (5) has relative offset (5−4) = 1
while (6) has offset (6−4) = 2. In order to represent the execution
points, we also must determine the iteration count (it), which we
place next to the loop statement’s offset. The runtime value must
take precedence over the offsets within the body of the loop. The
following defines our lexicographic order formally.

DEFINITION 3.2. Let A = 〈a1,a2, . . . ,an〉 and B =
〈b1,b2, . . . ,bn〉 be two program points within a function rep-
resented as a sequence of iteration counts and offsets, where each
ai or bi represents a displacement between a program statement
and the closest compound statement that contains it. Then A� B if
and only if there is an index j ≥ 1 such that (∀i < j) : (ai = bi) ∧
(a j < b j) or (∀i > 1) : (ai = bi).

We must also ensure that we properly encode incomparable ex-
ecution points, such as program points in distinct branches of a
conditional statement. Therefore, we extend this definition to en-
code the information that enforces their incomparability. Thus, we
modify Definition 3.2 as follows:

DEFINITION 3.3. Let x∈S and y∈S denote offsets from distinct
branches of the conditional statement S. Then we write x ‖ y to
indicate that x and y are incomparable.

DEFINITION 3.4. Now let A and B be as given in Definition 3.2.
Then in our revised definition, A� B if and only if there is an index
j ≥ 1 such that (∀i < j) : (ai = bi)∧ ((a j < b j)∧ (a j ∦ b j)) or
(∀i > 1) : (ai = bi).



/* Exchange ghost points of A */
(5) exchange_band( ... );

/* Jacobi sweep, computing B from A */
(6) sweep_band( ... );
(7) get_norm( ... );

/* Exchange ghost points of B */
(8) exchange_band ( ... );

/* Jacobi sweep, computing B from A */
(9) sweep_band ( ... );
(10) get_norm ( ... );
(11) MPI_Allreduce ( ... );
(12) if ( diff <= tolerance )
(13) converged = 1;

(14) if (converged)
(15) handle_converged( ... );
(16) else
(17) handle_not( ... );

(a) Solver program fragment

(1) int poisson( ) {

(2) it = 0;
(3) converged = 0;

(4) while ( it < MAX ) {

...
fragment shown in (a)
...

(18) if ( converged )
(19) break;

(20) it++;
(21) }
(22) return converged;
(23) }

(b) Iterative method that contains Figure 1a

Figure 1: MPI program solving the Poisson problem iteratively

phy@(20) poisson@(5) exchange_band…

phy@(20) poisson@(6) sweep_band…

Task₁…

… Task₂
<3,(it₁),1> ≤ <3,(it₂),2> 
→ Task₁ ≤ Task₂

<…> = <…> for all pairs in the 
prefix

Figure 2: Annotated stack traces for two Poisson solver tasks; the
first divergence determines relative progress

Under Definition 3.3 and Definition 3.4, we represent the pro-
gram points (15) and (17) in Figure 1 as follows:

(15)→ 〈(4−1),(iterCount),(14−14)∈(14−4),(15−14)〉

→ 〈3,(iterCount),0∈10,1〉

(17)→ 〈(4−1),(iterCount),(16−14)∈(14−4),(17−16)〉

→ 〈3,(iterCount),2∈10,1〉

With these representations, (15) � (17) and (17) � (15) when the
values of it are equal since 0∈10 ‖ 2∈10 and the execution points are
incomparable in our partial ordering system as desired.

Figure 2 illustrates relative progress through the Poisson solver
for a stack trace representation of two tasks. This figure repre-
sents each active stack frame with a tuple of the function name and
the line number of the callee invocation point. For illustration, we
assume that the relative progress of the tasks are equal up to the
invocation of poisson. Thus, the lexicographical order of (5) and
(6) determines the relative progress of tasks 1 and 2, eliminating a
need to evaluate later frames. We exploit this property to determine
relative progress efficiently for large scale applications.

4. AUTOMATIC EXTRACTION OF APPLI-
CATION PROGRESS

We introduce the necessary analysis techniques to determine the
progress of a running process in this section. We begin by show-
ing how to determine the components of our lexicographic order in
general, which we split into two steps. The first step finds necessary
offsets while the second determines the variables that we can use
for iteration counts. We then conclude this section by showing how
to limit the process dynamically only to relevant data, thus making
it practical for use on large scale systems.

4.1 Program Point Rewriting System
We first present a simple but efficient abstract syntax tree (AST)

analysis technique that translates a program location into the rep-
resentation described in Section 3. Our system represents a pro-
gram location by the source file and line number of an instruction.
We adopt this simplification since most application developers do
not typically write multiple expression statements on a single line.
Conceptually, our line number rewriting system is a syntax-directed
definition that uses the offset, an iteration count token, and a condi-
tional branch token as inherited attributes for each target high-level
language statement. For every production of a statement, the defi-
nition associates the statement’s offset within the containing com-
pound statement’s body and, if appropriate, either of the tokens, to
the statement’s attribute, prepended with the attribute of the com-
pound statement, which has been produced similarly.

Our analysis uses ROSE [10, 11], a compiler infrastructure that
parses high-level language source files and provides mechanisms to
manipulate the resulting AST. We use a set of line numbers within a
target function as input (we assume the binary is properly compiled
with source and line number directives so that the debugging infor-
mation is consistent with those seen by ROSE) and derive a stack
object for each. After our ROSE translator parses the function’s
source file, it performs a postorder walk on the AST, during which
it identifies all nodes that correspond to compound statements and
function definitions and tests if any of their line number ranges span
our target line numbers. We push any AST node with spanning line
numbers onto the corresponding stack. Thus, each stack holds a set
of compound statement and function definition nodes that span the
associated line number after we walk the AST. These nodes appear
on the stack in decreasing order of containment (e.g., the function
definition node is on the top of the stack).

Next, we emit a lexicographical representation of each input line
number. We first set the baseline to 0 and then pop each AST node
off of the stack. For each of these nodes, we emit the displacement
between its beginning line number and this baseline, which we then
advance by that displacement. Also, we emit a special non-terminal
token immediately after the offset if the node is a loop statement
node. This token serves as a placeholder in which our subsequent
analysis can capture the iteration count precedence for statements
within the loop body. Similarly, we emit a special token if the node
is a conditional branch so that we can identify incomparable exe-
cution points.



N1 [1:23]
FunctDef
poission 

N2 [1:23]
BlockStmt

N3 [2]
ExprStmt

iter=0;

N4 [3]
ExprStmt

converged=0

N5 [4:21]
WhileStmt

N6 [22]
ReturnStmt

return converged;

N7 [4:21]
BlockStmt 

N8 [5]
FuncCallExpr

exchange_band();

N9 [6]
FuncCallExpr
sweep_band();

... N10 [14:17]
IfElseStmt

N11 [14:15]
TrueBody

N12 [16:17]
FalseBody

N12 [15]
FuncCallExpr

handle_converged();

N12 [17]
FuncCallExpr
handle_not();

(a) AST built from Figure 1

N1[1:23]

N2[1 23]

emit [1 delim]; baseline 1

it [(1 b li ) d li ] b li 1N2[1:23]

N5[4:21]

N7[4:21]

emit [(1‐baseline) delim]; baseline 1

emit [(4‐baseline) delim]; baseline 4

emit [(4‐baseline) delim $iter delim] baseline 4

(5) emit [(target‐baseline)]; 

<1, 0, 3, 0, $iter, 1>

emit [1 delim]; baseline 1

emit [(1‐baseline) delim]; baseline 1

emit [(4 baseline) delim]; baseline 4

N1[1:23]

N2[1:23]

N5[4:21]

(6)

emit [(4‐baseline) delim]; baseline 4

emit [(4‐baseline delim $iter delim] baseline 4

emit [(target‐baseline)]; 

N5[4:21]

N7[4:21]

<1, 0, 3, 0, $iter, 2>

(b) Rewriting of (5) and (6)

N1[1:23]

N2[1:23]

emit [1 delim]; baseline 1

emit [(1‐baseline) delim]; baseline 1

N5[4:21]

N7[4:21]

N10[14:17] emit [(14‐baseline) ]; baseline 14

emit [(4‐baseline) delim]; baseline 4

emit [(4‐baseline) delim $iter delim]; baseline 4

N10[14:17]

N11[14:15]

(15)

emit [(14 baseline)     ]; baseline 14

emit [(14‐baseline) delim]; baseline 14

emit [(target‐baseline)];

<1, 0, 3, 0, $iter, 10    0, 1>

N1[1:23] emit [1 delim]; baseline 1

N2[1:23]

N5[4:21]

N7[4:21]

emit [(1‐baseline) delim]; baseline 1

emit [(4‐baseline) delim]; baseline 4

emit [(4‐baseline) delim $iter delim]; baseline 4N7[4:21]

N10[14:17]

N12[16:17]

emit [(14‐baseline)  ]; baseline 14

emit [(4 baseline) delim $iter delim]; baseline 4

emit [(16‐baseline) delim]; baseline 16

(17)

<1, 0, 3, 0, $iter, 10    2, 1>

emit [(target‐baseline)];

(c) Rewriting of (15)

N1[1:23]

N2[1:23]

emit [1 delim]; baseline 1

emit [(1‐baseline) delim]; baseline 1

N5[4:21]

N7[4:21]

N10[14:17] emit [(14‐baseline) ]; baseline 14

emit [(4‐baseline) delim]; baseline 4

emit [(4‐baseline) delim $iter delim]; baseline 4

N10[14:17]

N11[14:15]

(15)

emit [(14 baseline)     ]; baseline 14

emit [(14‐baseline) delim]; baseline 14

emit [(target‐baseline)];

<1, 0, 3, 0, $iter, 10    0, 1>

N1[1:23] emit [1 delim]; baseline 1

N2[1:23]

N5[4:21]

N7[4:21]

emit [(1‐baseline) delim]; baseline 1

emit [(4‐baseline) delim]; baseline 4

emit [(4‐baseline) delim $iter delim]; baseline 4N7[4:21]

N10[14:17]

N12[16:17]

emit [(14‐baseline)  ]; baseline 14

emit [(4 baseline) delim $iter delim]; baseline 4

emit [(16‐baseline) delim]; baseline 16

(17)

<1, 0, 3, 0, $iter, 10    2, 1>

emit [(target‐baseline)];

(d) Rewriting of (17)

Figure 3: Program point rewriting system

Figure 3a shows the AST for the code shown in Figure 1. Fig-
ure 3b through Figure 3d depict how our system emits a series of
tokens to generate the lexicographical representations of the pro-
gram points (5), (6), (15) and (17) within the poisson function.
These tokens represent x∈S as S 3 x.

4.2 Loop Order Variable Analysis
Clearly, static analysis alone cannot fully resolve our lexico-

graphic order when program points are contained in a loop. The
technique described in Section 4.1 only produces a placeholder for
the iteration count. We could instrument each loop of the program
statically with an iteration counter, which would impede many
compiler optimizations, and fetch its runtime value if needed for or-
dering. However, scientific applications have many loops, most of
which are not interesting for a particular debugging problem, so the
costs are usually unnecessary. Therefore, we devise a static anal-
ysis technique that identifies Loop Order Variables (LOVs), key
program variables with runtime state from which we can resolve
relative progress.

A LOV must satisfy certain properties. Its runtime sequence of
values must increase (or decrease) during the execution of the tar-
get loop. Further, all processes must assign the same sequence of
values. Our LOV analysis identifies program variables that satisfies
these requirements.

DEFINITION 4.1. Consider a variable x that is assigned a se-
quence of values during the execution of loop l. Let xi(p) be the
function returning the ith value of x for the task p. Then x is a LOV
with respect to l if:

(1) x is assigned a value at least once every iteration of l;

(2) the sequence of values assigned to x is either strictly increasing
or strictly decreasing during the execution of l (i.e., either
∀i : xi(p) > xi+1(p) or ∀i : xi(p) < xi+1(p)); and

(3) xi(p) is identical for all the tasks (i.e., ∀p1, p2, xi(p1) =
xi(p2)).

Our LOV analysis builds on two related branches of static anal-
ysis. First, it borrows from the extensive study on loop induc-
tion variables including loop monotonocity characterizations of
these variables [21, 22, 23]. Unlike our dynamic testing scenario,
strength reduction optimizations, loop dependence testing and run-
time array bound and access anomaly checking primarily motivate
these techniques. Second, our LOV analysis also uses the concept
of the single-valued variable, a variable that maintains identical val-
ues across all MPI tasks through all possible control flows [24, 25].
Those analyses classify variables as single-valued or multi-valued
in order to verify a program’s synchronization pattern. Like other
induction variable analysis techniques, LOV analysis requires the
def-use chain of the function containing the target loop. LOV anal-
ysis characterizes uses and definitions of key variables and tests
them for ambiguities through the def-use chain.

DEFINITION 4.2. The use of the loop invariant variable c with
respect to the loop l (i.e., no definition of c inside l reaches to the
use) is ambiguous if:

(1) multiple definitions of c reach to this use (e.g., in if (cond1)

a ← 1 else a ← 2 endif; do_work(a);, the use of
a in do_work is ambiguous); or

(2) the only definition of c results from multiple data flows into
l (e.g., in if (cond1) a ← 1 else a ← 2 endif; b

← a; do_work(b);, the use of b in do_work is ambigu-
ous); or
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Figure 4: LOV candidate variable state changes; dotted lines repre-
sent transitions for unlisted conditions

(3) the value of c cannot statically be resolved into a compile-time
constant within its containing function (e.g., in a ← ran-

dom_func(); b ← a; the use of a in b ← a is ambigu-
ous).

DEFINITION 4.3. The use of the loop variant variable v with
respect to the loop l (i.e., one or more definitions of v inside l reach
to the use) is ambiguous if either a definition of v reaching from
outside l is ambiguous by the loop invariant ambiguity rules in Def-
inition 4.2 or multiple definitions of v inside l reach to the use.

Our LOV analysis first scans the target loop and constructs a list
of expression statements in the loop that assign values to scalar
variables of integer types, hence creating new definitions of them.
For example, in the case of the C language, the list includes explicit
assignment statements like x = 3 and x = x+y∗z and implicit state-
ments like x ++. Next, LOV analysis tests the basic LOV candi-
dacy of these expression statements: does the expression have uses
of the same variable, explicitly or implicitly, that it defines (e.g., the
same variable appears on both the right-hand and left-hand sides of
an explicit assignment expression).

The next phase of LOV analysis considers a statement only when
its expression can be reduced, using the def-use chain, to a form
of basic monotonic statements: x← x + c, x← x− c, x← x ∗ c
and x← x/c where c is a positive compile-time integer literal or a
positive loop invariant variable (when c is negative, LOV analysis
simply exchanges the rule between x← x− c and x← x + c while
x← x∗ c and x← x/c are classified as non-monotonic).

We do not consider other more complex statements such as the
dependent monotonic statement [22] where its defining variable in-
herits the loop monotonicity from other monotonic variables. We
adopt this simplification because extracting one variable suffices
for loop ordering, unlike other applications of monotonic variables,
and thus the more complex monotonic variables are unnecessary.

As part of the expression reduction process, LOV analysis tests
variable usage for ambiguity based on Definition 4.2 and Defini-
tion 4.3. If the c term in a monotonic statement is ambiguous, LOV
analysis assigns the chaos state (⊥) to its defining x. Similarly,
LOV analysis assigns ⊥ to its defining x if its use is ambiguous.

Figure 4 illustrates the state changes of a loop order variable can-
didate. Each node represents a candidate loop order variable state
and each edge represents a possible state transition that its labeled
conditions trigger. The subscript of x in a node encodes the ini-
tial value of x on entry to the loop: + means the initial value (x0) is

greater than or equal to zero and− indicates it is less than zero. The
superscript of x in a node represents the loop monotonicity direc-
tion: ↑ and ↓ indicate monotonically increasing and monotonically
decreasing respectively. Similarly, the subscript of the loop invari-
ant c denotes the sign of its value. As LOV analysis iterates over
the assignment statements, it determines the state of the variable
defined by that statement based on its previously classified state
and the current classification. For example, the state of a candidate
variable becomes ⊥, regardless of its previous state, if LOV analy-
sis classifies the current statement as ⊥. Similarly, if the previous
state is x↑+ and the current statement is of the form x← x ∗ c, the
state remains x↑+. Any variable that is not ⊥ or > (the initial state)
when LOV analysis completes is a true LOV.

Our algorithm identifies it in Figure 1 as a LOV with the x↑+ at-
tribute with respect to the loop that spans (4) and (21). The loop has
only one corresponding monotonic statement, it++ at (20), and it
has an unambiguous, implicit use of it with an unambiguous ini-
tial value with the + attribute. We can reduce this expression to it

← it + 1 that triggers the state transition from > to x↑+. Thus,
this variable satisfies all LOV properties in Definition 4.1. So, we
can use its runtime value instead of the placeholder established in
Section 4.1.

4.3 Program Point Selection Strategy
Our combined static and dynamic analysis method to deter-

mine the relative progress of tasks could incur significant overhead.
Transforming all stack trace frames into the lexicographical repre-
sentation on compute nodes would allow a trace merging engine
like STAT to resolve the lexicographic order at all branching points
of the resulting prefix tree. However, dramatically increased file
system access, data storage and transfer requirements at the fringes
of an analysis tree [9] would quickly eclipse these benefits for large
scale runs that use up to hundreds of thousands of MPI tasks. Thus,
we designed an adaptive prefix tree refinement method that ad-
dresses these scalability challenges.

Our method begins with STAT’s basic stack trace prefix tree and
allows a user to refine the tree adaptively from the root to the leaves
of the tree. Thus, the user can selectively focus on parts of the tree
likely to exhibit errors. A simple menu action invokes the first step
in which we analyze all frames leading up to the children of the
first branching point, which transforms an unordered tree into an
ordered one up to the branching point. We gather runtime informa-
tion for a frame through a scalable communication infrastructure
only when the lexicographical representation for the frame con-
tains one or more LOV tokens. Otherwise, a single static analysis
can evaluate a frame for all tasks. We stop the refinement if the
runtime LOV resolution creates a new branching point; otherwise
we continue up to the children of the branching point.

Our heuristic classifies the tasks into a set of temporal equiv-
alence classes, thus presenting a user with a limited set of high-
level choices in which to explore relative progress further. The user
selects a class for further refinement and then a menu action in-
vokes our method for the sub-prefix tree determined by that tempo-
ral equivalence class. Thus, we exploit the transitivity of the partial
order: all frames in the sub-prefix tree maintain the same order, in
relation to tasks of the other classes, as determined previously. In a
sense, each branching point in the prefix tree is an idiom analogous
to an individual frame of a singleton stack trace. As each frame
allows a user to explore the temporal direction of the sequential
execution space, each branching point in our relative progress tree
allows the user to explore the temporal direction of the distributed
execution space. Thus, our methodology transforms an execution
chronology unaware prefix tree into a chronology aware one.
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(b) Adaptive refinement of Figure 5a

Figure 5: Execution chronology-unaware vs. aware call graph pre-
fix tree for the program in Figure 1 at 32 tasks

To illustrate this, we introduce an artificial bug in Figure 1 that
stalls one MPI task in the get_norm function. This Poisson solver
divides the domain up into parallel horizontal strips, and has MPI
tasks cooperatively perform the Jacobi iteration until it detects con-
vergence. Due to communication dependencies, stalling a task
quickly leads to a hang in which most tasks reach a global synchro-
nization point (e.g., MPI_Allreduce) waiting for the other tasks
that cannot make progress due to dependence on the stalled task.

On an application run that hung at 32 MPI tasks, Figure 5a shows
the execution chronology-unaware tree. While it describes stack
traces succinctly, representing each process behavior equivalence
class with a distinct node color and participating MPI rank tasks
information with caller-callee edge labels (task count:[rank

or rank range]), the unordered tree does not provide any hints
as to which classes the user should examine first. Such hints
would clearly be useful since many classes are formed even at a
small scale. On the other hand, Figure 5b captures the relative
progress order by re-drawing node labels from func@lineNumber

to func@[TTemporalRank]. We see that two refinement steps reveal
the least progressed task (rank 8), the one in which the stall oc-
curred. While ours is not the only method to detect this dead-
lock condition [26], this example demonstrates that the execution
chronology-aware tree quickly locates the least progressed tasks,
which is very useful information for many types of errors.

5. EXPERIMENTS
This section presents experiments that demonstrate the utility

of our temporal order analysis and that our prototype extension to
STAT achieves scalable performance that more than supports inter-
active debugging. As discussed previously, we build upon ROSE’s
AST manipulation capabilities and def-use analysis [10, 11] to im-
plement the analyses described in Section 4.1 and Section 4.2.

To start, STAT gathers stack traces, each of their frames contain-
ing the function name as well as source file and line number in-
formation based on the program counter. We keep the application
halted to preserve its state, in case we need to extract runtime state
from the processes. We later use the source file and line number

information as the program point input to our static analysis en-
gine. We use STAT’s existing scalable merging algorithm to handle
the fine-grain stack traces (changes to support precise source file
and line number information are straightforward) and the result-
ing merged call graph prefix tree forms an execution chronology-
unaware representation from which we can begin the refinement
process. During each adaptive refinement step, we input a set of
execution points in the same routine into our static analysis en-
gine. If the refinement requires the values of a loop order variable
from the live application processes, we multicast a request from
the STAT front end to extract the runtime values to its backend dae-
mons. The daemons subsequently communicate the result through
STAT’s scalable merging routine. At the end of each refinement
step, STAT re-draws the selected region of the prefix tree, trans-
forming that region into a temporally ordered tree by encoding the
temporal rank into each node label.

5.1 Fault Injection
Our first experiments empirically evaluate the effectiveness of

our prototype through injecting faults into BT from the NAS par-
allel benchmarks, which solves multiple independent systems of
non-diagonally dominant, block tridiagonal equations with a 5×5
block size [13]. Our fault injector can introduce a wide array of
software faults dynamically into MPI application runs. It monitors
MPI function calls using PNMPI [27] and statistically introduces
a fault into the address space of a task. We designed the faults
to emulate common application bugs. Currently, it supports three
main classes of faults: data corruption; local livelock/deadlock; and
communication errors. It emulates data corruption faults by three
different methods: increasing or decreasing the value of an element
in an MPI message by a set amount; replacing it with a random
value; or overrunning a configurable number of bytes beyond the
message boundary. We emulate local livelock/deadlock conditions
by injecting an infinite loop. Finally, we simulate a communication
error by sending a configurable number of extra MPI messages.
Our injector ensures fair observations of an application’s behavior
against a fault by randomly selecting injection parameters such as
target MPI rank, routine, data type and fault type, based on the
actual communication profile of the application and on the fault
catalogue.

The impact of fault injection varies widely. Often, the applica-
tion runs to completion with no apparent errors. Other times, it
completes but with some corrupted output or it hangs or aborts. Ta-
ble 2 summarizes the results of our experiments with BT with the C
class problem at nine MPI tasks. As its fourth column indicates, the
overall activation rate, the percentage of runs in which an injected
fault results in a manifest symptom, is 56%. Of these detected er-
roneous runs, execution hangs and aborts occur most frequently,
accounting for nearly 58% of the manifest errors. We focus on this
class since users would investigate the stack trace information of
these hard errors to gain insight into the root cause. More specifi-
cally, we randomly select one case out of each of the six fault types
among the hang cases and apply our prototype. We consider an
abort as a special hang case since we can easily map it to a hang by
installing a signal handler for all anomalous UNIX signals such as
SIGSEGV, in which the execution simply stalls.

Figure 6 depicts the resulting temporally ordered STAT graphs
on these six cases. They show that the infinite loop (Figure 6a) and
buffer overflow (Figure 6d) faults affect BT’s setup phase while the
extra message (Figure 6c) and value change (Figure 6b) faults in-
terfere with the main iteration. Also, it shows that both the value
increase (Figure 6e) and decrease (Figure 6f) faults manifest them-
selves at MPI_Barrier sites.



Error type distribution (%)
Fault Type No. Injections No. Errors Activation (%) Soft Error Hang Abort
Value Change 288 262 90.97 80.53 3.05 16.41
Value Increase 289 173 59.86 81.50 16.18 2.31
Value Decrease 290 196 67.59 83.57 11.22 5.10
Buffer overflow 868 392 45.16 15.56 17.35 67.09
Infinite loop 273 273 100.00 0.00 100.00 0.00
Extra messages 419 63 15.04 3.65 93.65 0.00

Table 2: Fault activation rates and distribution of observed errors in the NPB BT

MPBT@[T1]

setup_mpi@[T1.1]

1:[4] "earliest"

setup_mpi@[T1.2]

8:[0-3,5-8]

mpi_comm_dup_@...

1:[4]

mpi_comm_dup_@...

8:[0-3,5-8]

(a) Infinite loop: fault injected into rank 4

main@[T1]

MPBT@[T1.2]

1:[0] "oldest"

MPBT@[T1.1]

8:[1-8] "earliest"

mpi_barrier_@[T1.2]

1:[0]

adi@...

6:[1-3,5-7]

adi@[T1.1]

2:[4,8] "earliest"

copy_faces@...

6:[1-3,5-7]

x_solve@[T1.1]

2:[4,8] "earliest"

(b) Value change: fault injected into rank 0

MPBT@[T1]

adi@[T1.1]

1:[0] "earliest"

adi@[T1.3]

6:[1-2,4-5,7-8]

adi@[T1.2]

2:[3,6]

x_solve@...

1:[0]

z_solve@...

3:[1,4,7]

z_solve@...

3:[2,5,8] y_solve@...

1:[3]

y_solve@...

1:[6]

(c) Extra messages: fault injected into rank 0

MPBT@[T1]

setup_mpi@[T1]

9:[0-8]

mpi_comm_dup_@[T1]

9:[0-8]

PMPI_Comm_dup@[T1]

9:[0-8]

MPIR_Comm_make_coll@[T1.1]

1:[0] "earliest"

MPIR_Comm_make_coll@[T1.2]

8:[1-8]

comm_exch_addr@...

1:[0]

create_2level_comm@...

8:[1-8]

(d) Buffer overflow: fault injected into rank 0

MPBT@[T1]

mpi_barrier_@[T1]

9:[0-8]

PMPI_Barrier@[T1]

9:[0-8]

intra_shmem_Barrier@[T1.1E(1).1]

1:[0]
"earliest in br1"

intra_shmem_Barrier@[T1.1E(2)]

1:[1]
"earliest in br2"

intra_shmem_Barrier@[T1.1E(1).2]

6:[2-4,6-8]

intra...

1:[5]

(e) Value increase: fault injected into rank 1

MPBT@[T1]

mpi_barrier_@[T1]

9:[0-8]

PMPI_Barrier@[T1]

9:[0-8]

intra_shmem_Barrier@[T1.1E(2)]

1:[0] 
"earliest in br2"

intra...

7:[1-4,6-8]

intra_shmem_Barrier@[T1.1E(1).1]

1:[1] 
"earliest in br1"

intra_Barrier@...

1:[0]

(f) Value decrease: fault injected into rank 0

Figure 6: Temporal analysis on BT for each of the six injected fault types



While the fault types, and the affected ranks and execution points
vary, our experiments verify that the prototyped technique supports
walking the prefix tree with relative task order information, and
more importantly the quick isolation of the task from which the
error originated. That is, for all but the value change case, it lo-
cates the offending task in the least progressed task as edges in
blue in Figure 6 indicate. In the case of the value increase and de-
crease faults, our prototype identifies several incomparable children
nodes, indicating the tasks are in distinct branches of a conditional
statement at that level. In both fault types, however, the offending
task takes a conditional branch distinct from that taken by the other
tasks. Thus, the offender represents the only, and therefore, least
progressed task executing that branch by our convention. For the
value change fault, our prototype attributes the error to the most
progressed task (rank 0) and we find that problem size assertion
failed due to the value change at which point the task jumped to the
MPI barrier right before the MPI_Finalize call.

In summary, this empirical study suggests that finding either the
least or most progressed tasks simplifies finding the execution point
closer to the root cause. The study also verifies that our temporal
order technique effectively enables finding these tasks in the dis-
tributed execution space.

5.2 Case Study on AMG2006
This case study describes our experience applying the prototype

to Algebraic MultiGrid (AMG) 2006. AMG2006 is a scalable itera-
tive solver and preconditioner for solving large unstructured sparse
linear systems that arise in a wide range of science and engineering
applications. In preparation for extending it to unprecedented num-
bers of multicore compute nodes, the user was testing performance-
enhancing code modifications at increasingly large scales when a
hang occurred at 4,096 tasks.

In order to diagnose this issue, we first examined the first level
of detail with STAT, which merged stack traces based on the func-
tion names, which indicated that the hang occurred in the precon-
ditioner setup phase during creation of the mesh hierarchy. How-
ever, no equivalence class was clearly the cause of the hang. Thus,
we examined the line number-based, chronology-unaware tree and
began the adaptive refinement process. As Figure 7 shows, this re-
finement quickly identified a group of twelve tasks that had ceased
progressing due to a type coercion error at a function parameter in
the big_insert_new_nodes function.

At the first refinement step, our method evaluated all frames lead-
ing up to the hypre_BoomerAMGSetup function and found that
they were temporally equal. During this evaluation, we found one
active loop, the while loop that tests the completion of the coarsen-
ing process within hypre_BoomerAMGSetup. LOV analysis iden-
tified the level variable, which keeps track of multigrid levels, as
an LOV with the x↑+ attribute. We found that its values were four in
all 4,096 tasks.

The next refinement determined that a group of twelve tasks
had made the least progress as indicated by edges in blue in
Figure 7. Because the next refinement step for these twelve
tasks found all frames preceding the next branching point
to be equal and the branching point was in the MPI layer,
we manually inspected the code for relevant execution flows
in and around the hypre_BoomerAMGBuildExtPIInterp

→ big_insert_new_nodes →
hypre_ParCSRCommHandleDestroy path. We quickly found
a type coercion problem for int offset, a function parameter
of big_insert_new_nodes. The application team recently
widened key integer variables to 64 bit to support matrix indices
that grow with scale. However, they overlooked the definition of

Trace Type Sample Time Merge Time
Function Name Only 0.74 .004
Function Name and Line Number 6.57 .004

Table 3: STAT sample and merge times for a 256 task job in sec-
onds

this function, causing the type coercion. We theorize that at this
particular scale and input, the 64-bit integers were truncated when
coerced into 32-bits during parameter passing for the twelve tasks,
which in turn caused the tasks to send corrupted MPI messages.
Ultimately, this incorrect communication caused these tasks to
hang in the MPI_Waitall call. Once the team corrected this error,
they confirmed correct execution at this scale.

5.3 Performance
We tested the performance of STAT with temporal analysis on

Hera, an 864 node Linux cluster with an Infiniband interconnect at
Lawrence Livermore National Laboratory. Each node of Hera has
four quad core AMD Opteron chips running at 2.3 GHz. We per-
formed tests on an MPI message ring topology program, the same
test driver used in our previous work [7, 9] for performance evalu-
ations. In this simple program, each task performs an MPI_Irecv

from the previous task in the ring and an MPI_Isend to the next
task, followed by an MPI_Waitall and an MPI_Barrier. A bug
is introduced into MPI rank task 1 that causes it to hang before its
send.

We first compare the sampling and merging times for STAT gath-
ering function names only versus STAT gathering function names
as well as the source file and line number tuples. These compar-
isons were run on 16 nodes, 256 MPI tasks, and employed a flat
1-to-N topology in STAT. The results in Table 3 show a signifi-
cant, but still tolerable, increase in the time required to gather the
source file and line number of each frame in the stack traces. The
additional time arises from parsing additional debug information
in order to obtain the more detailed information. In contrast, the
merge time showed no increase, despite the additional information,
and took only four milliseconds.

Next we measure the time to perform the temporal analysis on
the resulting call graph prefix tree. With this application, three
equivalence classes are formed in main, with one task hung in
its send, another task in an MPI_Waitall, and the remaining 254
tasks in an MPI_Barrier. Our measurements found that the first
adaptive refinement of this prefix tree, which identifies the relative
progress of these three equivalence classes, took 1.58 seconds. In
the absence of active loops, an adaptive refinement step requires
STAT to perform a one-time static analysis on the front-end node.
Thus this performance represents a constant overhead independent
of scale at which the program runs that is acceptable for interactive
debugging sessions.

6. CONCLUSION
Correct MPI code proceeds forward in a coordinated manner.

When execution fails, disruption of the orderly temporal plan re-
veals important clues as to the root cause. At supercomputer
scales, though, one can no longer rely on programmer intuition to
recognize which parts of a large application have fallen behind.
We have codified this intuition as a formal partial order among
program states. The partial order uses a blend of static and dy-
namic measures: static ordering based on the control-flow struc-
ture of task code, and dynamic ordering based on Loop Order Vari-
ables (LOVs), a novel variation of loop induction variable analysis.
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Figure 7: Chronology-aware prefix tree for a code hang exhibited by AMG2006 at 4,096 MPI tasks

Taken together, these static and dynamic views offer hierarchical
progress markers that reflect relative logical progress through an
execution.

We have implemented our temporal ordering analysis as an ex-
tension of the Stack Trace Analysis Tool (STAT). Our implementa-
tion achieves scalability by starting with a chronology-unaware call
graph prefix tree that we then refine to add temporal ordering un-
der user guidance. We expressly designed our implementation for
use in production environments: it requires absolutely no changes
to application source code; it imposes zero runtime overhead on
running programs; and retrieves all needed dynamic information
postmortem, using the standard debugger interface. Experiments
with our implementation show that it is a highly effective debug-
ging tool. In a controlled study using randomized fault injection,
we quickly identified root causes across six typical classes of MPI
bugs. Temporal order analysis has proven itself in the field as well,
allowing us to diagnose and repair a real-world bug in a complex
application that does not manifest itself with under 4,096 tasks. Fi-
nally, our scalability experiments indicate that our extensions add
primarily constant overheads to STAT, which has run successfully
with 212,992 tasks.

Thus, our formal temporal partial order is not merely interesting
theoretically but is also an excellent basis for real, useful debugging
tools. For future work, we will explore several extensions, includ-
ing more techniques to handle a loop with no true LOV. We will
allow the user to identify LOVs, providing a list of possible LOVs
with some properties that our analysis cannot resolve. To overcome
aggressive compiler optimizations that can lead to significant dif-
ferences between observed code behavior and its source code, we
will also explore ways to perform our static analyses directly on the
target binary.
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