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Abstract 
Today’s global internetworks challenge the ability 

of name services and other information services to locate 
data quickly. We introduce a distributed active catalog 
and meta-data caching for optimizing queries in this 
environment. Our active catalog constrains the search 
space for a query by returning a list of data repositories 
where the answer to the query is likely to be found. 
Meta-data caching improves performance by keeping fre- 
quently used characterizations of the search space close 
to the user, and eliminating active catalog communication 
and processing costs. When searching for query 
responses, our techniques contact only the small percen- 
tage of the data repositories with actual responses, result- 
ing in search times of a few seconds. We implemented a 
distributed active catalog and meta-data caching in a 
prototype descriptive name service called “Nomencla- 
tor.’ ’ We present performance results for Nomenclator in 
a search space of 1000 data repositories. 

1. Introduction 
Users cannot afford to wait for a name service 

query to search thousands of data repositories when as 
few as 1% (or even 0%) of the sites hold the information 
the users need. System capacity increases if we avoid 
unnecessary communication with data repositories. We 
improve the performance of descriptive (i.e. relational) 
name services in this highly distributed environment by 
providing a single framework for constraining the search 
space and reducing processing overhead. We introduce 
distributed active cataloging as a mechanism to isolate 
queries within a subset of the data repositories that store a 
relation. The active catalog cons!” the search space 
for a query, eliminating the overhead of contacting data 
repositories that do not contribute to the query answer. 

This work was supported in part by an AT&T Ph.D. Scholarship, Na- 
tional Science Foundation grants CCR-8815928 and CCR-9100%8. 

We introduce general meta-data caching to reduce pro- 
cessing overhead, and integrate our new meta-data tech- 
niques with existing data caching techniques. Caching 
meta-data at the query site responds to the locality of user 
queries by retaining components of the active catalog and 
storing results that constrained previous queries. It elim- 
inates the overhead of repeatedly contacting the active 
catalog for query constraint information. 

The active catalog structures its indexing facilities 
into catalog functions that accept a query and return a 
constrained search space for the query. Some catalog 
functions use relatively static information to constrain the 
search, like knowledge about the conditions used to distri- 
bute data to data repositories (called the partitioning cri- 
teria of a relation.) Other catalog functions build indices 
or hash filters [l] to capture the distribution patterns in 
changing data, or dynamically search the network for 
information to speed query processing. Still others use 
semantic constraints like information about integrity con- 
straints or the domains of attributes to constrain the 
search. The active catalog uses meta-data descriptions, 
called referrals, to specify the conditions for using cata- 
log functions. Graphs of referrals allow us to select the 
right catalog function for our needs and reap the benefits 
of multiple catalog functions in processing one query. 

Information in the active catalog is intelligently 
replicated in meta-data caches to tailor query sites to the 
types of queries they see most frequently. Intelligent 
replication is a partial replication; no one site contains the 
entire contents of the active catalog but rather those parts 
that are currently most useful to it. Information on which 
catalog functions to use and the constrained search spaces 
that result from using catalog functions are cached for 
subsequent use. When searching for query responses, our 
techniques contact only the small percentage of the data 
repositories with actual responses, resulting in search 
times of a few seconds. Even a request to search the glo- 
bal name space for a person with a popular name can be 
answered in seconds. 

Distributed active catalogs and meta-data caching 
are currently used in a prototype descriptive name service 
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and projection queries on relations that span heterogene- 
ous name services in the global intemetwork. Like the 
Domain Name System [8], Nomenclator currently uses 
timestamps to identify and replace potentially stale data 
and meta-data in its cache. In the naming environment, 
cached information is not required to be consistent, but to 
converge eventually to the new information after an 
update [2,8]. A delay in seeing a change is only an 
inconvenience, and it is a rare inconvenience because data 
and meta-data change infrequently. Users see either an 
old or a new version of each tuple; collections of tuples 
have no interdependencies that would require the con- 
sistency of multiple tuple transactions. 

The following sections describe our research in 
more detail. Section 2 provides an overview of the 
Nomenclator System Architecture. Section 3 describes 
referrals and explains how referrals form a graph that 
guides query processing. Section 4 describes catalog 
functions and the techniques for generating referrals 
dynamically without storing the entire referral graph. We 
extend the referral format in Section 5 to provide addi- 
tional opportunities for faster, user-friendly query pro- 
cessing. Section 6 gives experimental results that show 
our techniques improve performance for a wide range of 
data distribution patterns and response sizes in a search 
space of lo00 data repositories. Finally, Section 7 
describes related work, and Section 8 provides a sum- 
mary. 

2. Nomenclator 
The distributed active catalog promotes sharing of 

infomation in environments that require distributed infor- 
mation control like today’s global name spaces. The 
Nomenclator name service implements the distributed 
active catalog using a distributed catalog service and a 
query resolver (see Figure 1). The distributed catalog 
service supplies meta-data for each relation, including 
referrals, catalog function definitions, and the names of 
attributes. It provides an opportunity for the owners of 
data to advertise their information on the network. While 
the distributed catalog service supplies meta-data for 
well-known name services, like X.500 [4] and the 
Domain Name System, it also encourages the owners of 
other data to provide instruction on how to find their data. 
In the simpliest case, the owners tell the distributed cata- 
log service where their data is located. More generally, 
they can provide catalog functions to constrain searches 
of the owners’ data repositories, and we provide tools for 
generating these catalog functions. Organizations with 
proprietary information or that build value-added indices 
for information in the network can preserve their privacy 
by providing catalog function services via remote pro- 
cedure calls. 

The query resolver accepts and answers queries 
from users. It is a data driven query processing engine 
fueled by referrals. The resolver imports referrals to 
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Figure 1. 
Nomenclator System Architecture. 

catalog functions from the distributed catalog service. 
These functions generate additional referrals that the 
resolver can cache and reuse as appropriate. Typically, 
one resolver process serves several users on a local area 
network, so users can benefit from a larger resolver cache. 

3. Referrals 
Referrals are a general mechanism for describing 

distributed indexing structures. They direct query pro- 
cessing by stating the conditions for using access func- 
tions. The first type of access functions, catalog func- 
tions, constrain the search space for a query. They direct 
the search to more selective indices by returning referrals 
to other catalog functions. They constrain the search to 
specific data repositories by returning referrals to the 
other type of access functions, called data accessfunc- 
tions. Data access functions encapsulate the heterogene- 
ous access methods in the name space by mapping 
queries to the access operations of a data repository. 
They return tuples that answer the query. 

Each referral contains a template and a list of refer- 
ences to access functions (see Figure 2). The template is 
a selection predicate that describes the scope of the the 
access functions. Our system follows the following rule: 

Query Coverage Rule: if a query is covered by 
(c ) a template, then the query can be 
answered by the access functions in the refer- 
ence list. 

For example, the first referral in Figure 2 covers the 
queries in Figure 3. 

Referrals can describe the partitioning criteria of a 
relation, and also describe more complex indexing struc- 
tures. For example, the People relation is partitioned 
by organization, and we describe this partitioning criteria 
by a series of referrals like the second referral in Figure 2. 
This referral contains a data access function depicted with 
the data repository that it uses to answer queries, and it 
also covers the first query in Figure 3. Many distributed 
database systems, like Distributed INGRES [16], use an 
approach similar to ours for describing physical partitions 
of a relation, but the distributed active catalog also does 
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Figure 2. 
Sample Referrals for the People Relation. 

more than this by building indices for useful attributes, 
like a person's sumame, which are not part of the parti- 
tioning criteria. The first referral in Figure 2 describes 
one such index. It contains a catalog function depicted 
with the list of referrals it retums. This catalog function 
returns referrals that describe the distribution of a particu- 
lar surname on data repositories in the United States. The 
wildcard in name indicates that the catalog function can 
constrain the search space more effectively if name is 
included in the query. 

Referrals describe the tools (access functions) for 
locating and retrieving tuples, and the conditions (tem- 
plates) for using those tools. They are the unit of meta- 
data caching in our system. Other systems, e.g. the Com- 
munity Information System [7], Domain Name System 
[8], and R* [17], have simple versions of meta-data cach- 
ing; these systems limit cached information about data 
distribution to the partitioning criteria of a relation. We 
achieve additional performance improvements by extend- 
ing the information kept in the meta-data cache to index 
any attribute. Our referrals describe indices that span the 
entire relation, like the partitioning criteria, or describe 
indices that locate tuples for some view of the relation, 
like the catalog function in Figure 2. 

Referrals form a generalization/specialization graph 
for a relation called a referral graph. Referral graphs 
integrate the different catalog functions in our system, 
and supply a basis for catalog function construction and 
query processing. A referral graph is a partial ordering 
of the referrals for a relation. It is constructed using the 
subset/superset relationship: s c g. Referral s is a sub- 
set of referral g if the template for s is a subset of the 
template for g. s is considered a more specific referral 
than g; g is considered a more general referral than s. 

Part of the referral graph for the People relation 
is shown in Figure 4. This example contains only refer- 
rals to data access functions. For simplicity of presenta- 
tion, we leave out the data access function identifiers and 

1. select * from People where 
name = " M i l l e r "  and 
o = "UW" and 
c = "US 11 

2 .  select * from People where 
name = " O r d i l l e "  and 
c = y J S "  

Figure 3. 
Sample Queries about People in Organizations 

in the United States. 

list only the identifiers of the data repositories contacted 
by the data access functions. The arcs in the graph indi- 
cate the path from a general referral to a more specific 
referral. Notice that referrals rl, r2,  and r3 are 
ordered fiom general to specific, but that rl and r 4  
(and r 3  and r6) are not ordered by the graph. The 
direction of the arcs also indicates the direction in which 
the search space is constrained. The first query in Figure 3 
is covered by referral r 3 and also by referral r 1, but it 
is answered using r3, the more constrained (and faster) 
referral. 

The resolver query processing algorithm navigates 
the referral graph, calling catalog functions as necessary 
to obtain referrals that narrow the search space. Some- 
times, two referrals that cover the query have the relation- 
ship of general to specific to each other. The resolver 
eliminates unnecessary access function processing by 
using only the most specific referral along each path of 
the referral graph. The search space for the query is ini- 
tially set to all the data repositories in the relation. As the 
resolver receives referrals to only data access functions, it 
forms their intersection to constrain the search space. For 
example, a query about a person in the Computer Sci- 
ences Department at the University of Wisconsin is con- 
strained by referrals r 2  and r 4  in Figure 4. The inter- 
section of these referrals includes only those data reposi- 
tories listed in both referrals. Intersection combines 
independent paths through the referral graph to derive 
benefit from indices on different attributes. 

4. Catalog functions 
Catalog functions are central to the performance of 

our system. They provide an alternative to the exhaustive 
searches of many hierarchical name services, like X.500, 
and a generalization of data indices for a large internet 
environment. Remote catalog functions are services that 
are available through a standard remote procedure call 
interface. Local catalog functions, as well as data access 
functions, are C sources that are obtained by the query 
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Figure 5. 
Catalog Functions Encapsulate Parts of a Referral Graph. 

resolver from the distributed active catalog. The resolver 
dynamically compiles and loads them into its address 
space using an approach similar to CLAM [3]. 

repositories at the University of Wisconsin. It encapsu- 
lates referral r 2  (from Figure 4) and its more specific 
children. This catalog function can return referrals r2, 

the name to to specific than the referral containing the catalog function. 

catalog functions encapsulate portions of the refer- 
cfl in Figure 

r3 or r6 
log function 

appropriate. In constraining a query, a cab- 
produces a referral that is more rai graph. For example, catalog function 
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Wildcards ("*") in a template indicate which attribute 
values are used by the associated catalog function to gen- 
erate a more specific referral. In other words, catalog 
functions always follow the rule: 

Catalog Function Constrained Search Rule: 
Given a template t for a catalog function cf, 
and a query q c t, the result of using cf to 
process q, cf (9) , is a referral with template 
t' suchthat q c t' and t' c t. 

Catalog functions can also encapsulate other cata- 
log functions by calling them. For example, we can 
replace the entire graph in Figure 5 with the referral in 
Figure 6. The catalog function cf3 calls c f l  and 
cf 2, and returns the union of their results. When catalog 
functions call other catalog functions (or return referrals 
to them), they form a DAG of catalog functions that is a 
more compact, functional representation of the referral 
graph. Catalog function DAGS perform hierarchical 
indexing on multiple attributes. Catalog functions at a 
root of a DAG, like cf 3, use one or more attributes, in 
this case organization (o), to choose relevant localities in 
a large search space. They further reduce the search 
space by calling more specific catalog functions that are 
tailored to those localities, and form the union of their 
results. 

5. Revised templates 
When a catalog function forms the union of multi- 

ple referrals, some specificity can be lost. For example, if 
we process the second query in Figure 3 using cf 3, we 
receive a referral with the template name = 
" O r d i l l e "  and c = "US". This referral is the 
union of more specific referrals (from cf 1 and cf 2) 
that contained the organization attribute in their tem- 
plates, but we lose the organization information associ- 
ated with parts of the search space when cf 1 constructs 
the union. We would like to have this more specific 
information, because it helps us find previously cached 
subquery answers (in this case, a query for "Ordille" in a 
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Figure 6.  
A Catalog Function Encapsulates Figure 4. 

particular organization) and advise users on how to add 
attributes to their queries to reduce the search space. To 
provide more specific information from the referral graph 
when using general catalog functions, we adopt the gen- 
eral referral format in Figure 7(a). Each referral can qual- 
ify its references to access functions with a revised tem- 
plate. The revised template follows the Query Coverage 
Rule with respect to its associated access functions. A 
catalog function uses the general format to collapse a sec- 
tion of the referral graph into one referral. For example, 
cf 3 can collapse the graph rooted at referral r l  in Fig- 
ure 4 to the the referral in Figure 7(b). The resulting 
referral is the union of leaves of the referral graph: its 
revised templates and access functions are the templates 
and access functions of the leaves. 

The construction of general referrals with template 
t and revised templates r t l ,  r t 2 ,  ..., r t 3  follows 
two rules. The first rule is the following: 

Referral Coverage Rule: t c r t l  U r t 2  
... U r tn .  

This rule, like the Query Coverage Rule, is required for 
correctness. Catalog functions forming the union of refer- 
rals must know that the union covers the scope of the 
returned template. The catalog function cf 3 can only 
return the referral in Figure 7 (b), because it has contacted 
every organization in the United States and found only 
one place where "Ordille" is listed. The second rule is the 

Referral Constrained Search Rule: t 2 rt 1 
U r t 2  ... U r t n .  

This rule, like the Catalog Function Constrained Search 
Rule, is true by construction, because catalog functions 
always walk the referral graph by adding attribute values 
to templates. 

When a data access function is described by a 
revised template, the query resolver performs two optimi- 
zations. The intersection of the query and revised tem- 
plate is the subquery answered by the associated data 
access function and data repositories. If the answer to the 
subquery is in the data cache, the cached answer is used 
and the data repository is not contacted. If the subquery 
is inconsistent, the contents of the data repository contrad- 
ict the query and the data repository is not contacted. We 
plan to add an advice phase to the query processing algo- 
rithm. When the final search space is too large to process 
quickly, users can optionally receive a list of attributes 
that would narrow the search further. For example, the 
resolver presents the attribute values in revised templates, 
but not in the query, to the user. The user selects attribute 
values from the list to constrain the query further. 

Referrals and the four simple rules summarized in 
Table 1 allow us to unify a wide variety of indexing tech- 
niques. Catalog functions contributed by different organi- 
zations can be integrated into one structure to speed query 
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Figure 7. 
Referrals. 

t E r t l  U r t 2  ... U r t n .  

Query Coverage Rule If q G t ,  then use referral.  II 
If q G t and cf (9) returns t' , 
then q c t' and t' c t .  

Catalog Function 
Constrained Search Rule 

Referral Constrained Search Rule t 2 r t l  U r t 2  ... U r t n .  /I 
Table 1. 

Meta-Data Rules. 

(for a query q, a referral with template t', and a referral with template t, catalog function cf, and revised templates rtl, 
rt2, ... rtn.) 

processing for everyone. Referrals and the meta-data 
rules also unite our meta-data caching techniques with 
popular data caching techniques. Like other systems, 
Nomenclator uses techniques developed by Finkelstein[@ 
to cache and re-use the responses to queries. Since both 
meta-data and data cache entries are tagged with selection 
predicates, the query resolver uses the same algorithm in 
either cache to determine if a cached entry covers a 
query. Our query processing techniques traverse referral 
graphs to constrain queries to specific search spaces. 
They allow us to reap the benefits of multiple indices by 
integrating the referrals from catalog functions for dif- 
ferent parts of a relation into one referral, and by forming 
the intersection of referrals that cover the same query. 

6. Experiments 
Three issues are important in evaluating our query 

processing framework. First, we must determine whether 
we can constrain the search space for queries in a real 
environment. Are there attribute values that will isolate 
queries to a few data repositories in the global name 
space? Are users likely to know those attributes? Second, 
we must determine the performance advantages of our 
query processing framework given the existence of con- 
strained search spaces. Can we find information in the 
global name space quickly? Third, we must analyze the 
scaling behavior of our framework for query workloads 
from multiple users. How well will our query processing 
scale to millions of users? 

Our previous work shows that it is possible to con- 
strain queries in a real environment, the X.500 name 
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space [lo]. In that study, for example, the active catalog 
constrains the attribute surname with value "Miller" to 
only 32% of the X.500 data repositories in the United 
States. Surname is an attribute users are likely to 
know when searching for information about people. 
Moreover, even a common surname like "Miller" greatly 
reduces the number of data repositories searched. When 
more unusual surnames are used (like "ordille") or addi- 
tional attributes are specified, we can do even better in 
constraining the search space. 

In this study, we evaluate the benefits and costs of 
using our techniques when queries are constrained to 0 
through 100 percent of the data repositories in a relation. 
Our goal is to identify whether performance will be 
acceptable in Nomenclator's intended operating range 
where queries are isolated to some small percentage (30 
percent or less) of the data repositories in the search 
space. We know from our previous study that we can iso- 
late queries to this percentage of the data repositories. 
We are also interested in verifying that there are no 
bottlenecks to single query performance in our system. 
Our experiments compare the performance of the naive 
algorithm that searches everywhere with our query pro- 
cessing and meta-data caching techniques. The naive 
algorithm is now used in several name services, including 
X.500 and meta-services that query other names services 
like the Knowbot Information Service [5]. 

These experiments do not measure the effects of 
parallel query processing at data repositories or the 
interactions of multiple catalog functions. The costs of 
dynamically loading access functions and validating 
caches are not analyzed in this study, because these costs 
must be weighed against the benefits to a stream of 
queries. Moreover, dynamic loading costs are typically 
low [3], and access functions change very infrequently. 
Most catalog functions will come from a standard set of 
access functions that will be varied by the data used to 
initialize them. 

These first two studies investigated how Nomencla- 
tor reduces the impact of the individual user on the query 
processing environment. We are currently studying how 
Nomenclator manages queries from many users to 
achieve scalable system performance. Our continuing 
research will determine the effectiveness of caches for 
streams of queries. We are also studying the tradeoff 
between the costs of maintaining access functions, and 
the aggregate savings (for large workloads) from con- 
straining the search space and caching. 

6.1. Environment 
During the experiments, Nomenclator's distributed 

catalog server, the query resolver, the naive algorithm, 
and the data repositories all executed on different DECs- 
tations running Ultrix in a local area network. We chose 
to use a local area network for our tests, because we have 

more control over this environment than over the wide- 
area network. We were able to ensure that other network 
and computing activities did not interfere with our experi- 
ments. Experiments in the local environment are conser- 
vative, because wide-area networks have greater delays 
that make active cataloging and caching results look even 
better. 

To attain the scale of our intended wide-area appli- 
cation, we created a program that implements a variable 
number of data repositories on one host. The program 
answers a query differently depending on the data reposi- 
tory address presented with the query. We ran the pro- 
gram on 10 DECstations; each DECstation supported 100 
data repositories during the experiments. Using one pro- 
gram per host and only processing sequential queries 
prevented any context switching or query processing 
conflicts between data repositories on the same host. 

We tested against a relation stored on lo00 data 
repositories. The relation had two attributes. One attri- 
bute in the relation contained one byte values that 
occurred in 0,25,50,75 or 100 percent of the data reposi- 
tories in the relation. This attribute was specified in the 
selection predicate of the query. The other attribute con- 
tained 1 or lo00 byte value depending on the test. This 
attribute value was returned in the query response. The 
experiments occurred during non-peak weekend or even- 
ing hours on otherwise idle workstations. 

Nomenclator used one catalog and one data access 
function during the experiments. An initial referral to the 
catalog function was available from the distributed cata- 
log service. After being started by Nomenclator, the cata- 
log function used an internal Nomenclator relation to 
retrieve bit vector filters[l] that described the hash values 
of the attribute to be selected at each data repository. The 
catalog function compared the hash value of the attribute 
in the query with those in the filter to decide which data 
repositories to include in the referrals it generated for the 
query resolver. Data caching was disabled during the 
experiments, so we can evaluate the performance of 
meta-data caching in isolation. 

6.2. Results 
Our experiments measured the performance of 

queries that selected 0 to 100 percent of the data reposi- 
tories. Each query was run by the naive algorithm, by 
Nomenclator with a cold referral cache, and by Nomenc- 
lator with a warm referral cache. When Nomenclator had 
a cold cache, it initialized its cache from the distributed 
catalog service, called the catalog function, and then con- 
tacted the data repositories for query responses. The 
warm cache results report the performance of the second 
and subsequent queries in a series of identical queries. 
Nomenclator finds the cached result of the catalog func- 
tion call and does not recall the catalog function. 
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Percentage of DR’s with Query Responses 
Figure 8. 

Response Time Results for 1 Byte Response Tuples. 

Response time (in seconds) for each data distribution pat- 
tern. 

We measured the response time of each query. We 
also measured the total number of bytes transferred by all 
network messages during query processing. The total 
bytes transferred is a metric for the load placed on the 
underlying system and the computer network. The meas- 
urements reported here are the average of several runs for 
a query. 

Figure 8 reports the response time measurements 
for the queries where the data repositories returned one 
byte tuple responses, and Figure 9 reports the number of 
bytes transferred by those queries. The number of bytes 
transferred is significantly larger than the lo00 bytes of 
tuple responses, because it includes the cost of sending 
the query to the data repository and the protocol overhead 
for packaging the query and the response. In the case of 
the cold cache, it also includes the size of messages used 
to retrieve referrals and initialize the catalog function. 
Figure 10 reports the response time measurements for 
queries where the data repositories returned 1000 byte 
responses. The x-axis of each graph indicates the percen- 
tage of data repositories containing query answers. 

6.3. Discussion 
Our experiments show that our techniques to elim- 

inate data repositories from the search space can dramati- 
cally improve response time. As we anticipated, Figures 
8 and 10 report a linear relationship between the number 
of data repositories contacted and the response time. Our 
techniques successfully eliminate unnecessary work from 
the query processing without introducing new 
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Figure 9. 
System Load Results for I Byte Response Tuples. 

Thousands of bytes transferred for each data distribution 
pattem. Byte count includes queries sent, responses re- 
ceived, meta-data initialization, and communications pro- 
tocol overhead. 

Percentage of DR’s with Query Responses 

bottlenecks. Both graphs show significant response time 
improvements, because latency is an important perfor- 
mance constraint that is reduced by our query processing 
techniques. Our measurements were taken on a local area 
network under optimal conditions; wide-area network 
improvements are even greater due tr, the increased laten- 
cies in those networks. As networks become large, 
latency worsens faster than bandwidth and must be 
addressed by optimization techniques like ours. 

Figure 10 shows that response time savings are 
significant even when a large amount of data is returned. 
Since we expect typical name service queries to return a 
few thousand bytes, Figure 10 shows that even large 
name service queries will be answered quickly. When 30 
percent or less of the data repositories contain responses, 
both Figures 8 and 10 report a 70 percent or more 
increase in performance. Queries that previously 
searched the global name space for minutes (or remained 
unasked because they were too costly), can now be 
answered in seconds. 

Our experiments show a favorable tradeoff between 
the system load incurred by Nomenclator during query 
processing and the system load it eliminates by constrain- 
ing the search space. Figure 9 shows that meta-data cach- 
ing keeps the system load, as indicated by number of 
bytes transferred, below the load of the naive algorithm. 
Since obtaining referrals from the distributed catalog and 
initializing catalog functions has a data transfer cost, 
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Figure 10. 
Response Time Results for 1000 Byte Response Tuples. 

Response time (in seconds) for each data distribution pat- 
tem. 

Nomenclator exceeds the load of the naive algorithm 
when more than 35 percent of data repositories contacted. 
In our operating range of 30 percent or fewer data reposi- 
tories contacted, the active catalog consistently reduces 
system load over the naive algorithm. The benefits in 
bandwidth of eliminating unnecessary queries to data 
repositories outweighs the cost of retrieving meta-data, 
and meta-data caching eliminates even this cost. System 
load is also decreased, because we substitute an interac- 
tion with the distributed catalog service for hundreds of 
interactions with data repositories. Even when Nomenc- 
lator exceeds the bytes transferred by the naive algorithm, 
the elimination of hundreds of interactions achieves 
significant improvements in response time. This improve- 
ment exists, because latency reduction is critical to large- 
scale name service query optimization. 

Meta-data caching also leads to improved perfor- 
mance in multi-user workloads. As Figure 9 shows, 
meta-data caching can reduce the data transferred in 
retrieving referrals and initializing catalog functions. 
This reduction in load at the distributed catalog server 
eliminates bottlenecks in multi-user workloads and 
increases the ability of our system to scale to many users. 
By protecting data repositories from unnecessary queries, 
catalog functions also increase the ability of our system to 
scale to many users. Figures 8 and 10 show less dramatic 
performance gains from meta-data caching for single 
users, because latency was low in our test environment. 
This improvement will be much larger for the greater 
latencies of the wide area environment. In addition, when 

small numbers of data repositories are contacted, 
improvements of a few seconds in response time from 
meta-data caching can be quite significant, because they 
often constitute the greater percentage of the processing 
time in this operating range. 

7. Relatedwork 
Previous descriptive name services limit the extent 

of data distribution or types of descriptive queries to 
attain performance. Profile [12] processes descriptive 
queries by contacting every entry in a path of data reposi- 
tories. The path is -Sed by the user or discovered in 
the data during query processing. Performance is limited 
by the length of the chain of servers contacted. Unlike 
Nomenclator, Profile does not use caching or information 
about data distribution pattems to improve performance. 
Profile allows users to specify preferences about the 
importance and use of attributes in the query resolution 
search. Some of these preferences increase performance 
by constmining the scope of the search while others 
specify ways to interpret attributes in the name space. 
Nomenclator differs from Profile in that owners of data, 
not users, provide information that guides the search. 

X.500 [4] provides a descriptive query called 
SEARCH. This query is limited in performance, because 
it exhaustively searches subtrees in the X.500 name 
space. Neufeld [9] improves the performance of 
SEARCH for a subset of queries by augmenting the X.500 
partitioning criteria with registered attribute values. 
Registering a value guarantees that the attribute will have 
only that value in a subtree of the name space. Using 
registered values to constrain the search is similar in 
method and utility to improving query performance by 
using the partitioning criteria of a relation. We prefer a 
more general approach that uses information about data 
distribution pattems to improve performance and does not 
require owners of data to constrain the values of attributes 
in other organizations. 

The Networked Resource Discovery Project 
[13,14] provides an architecture for locating a few 
instances of a type of resource when the resource type is 
prevalent in the network. It multicasts queries to a proba- 
bilisticly chosen subset of the available data repositories. 
Successive queries do not return the same answer, and 
queries may fail even when data satisfying the query is 
present in the system. 

Multidatabase and federated database systems [15] 
typically follow the lead of distributed database systems 
[l 11 in achieving selection predicate performance. These 
systems limit their opportunities for optimization to using 
the partitioning criteria of a relation to constrain the 
search space. While this approach is useful in small sys- 
tems and on local area networks, it does not scale to sys- 
tems with thousands of data repositories. While multida- 
tabase and federated systems translate and forward each 

128 



query to all their component systems, Nomenclator only 
performs these operations when the destination has data 
that may be relevant to the query response. 

8. Summary 
Distributed active catalogs and meta-data caching 

are new techniques for improving selection predicate per- 
formance in very large, distributed environments. The 
active catalog is a distributed facility that constrains 
queries to those data repositories where query answers are 
likely to exist. Meta-data caching keeps frequently used 
components of the active catalog available locally. It 
stores the results of constraining the search space, so they 
can be re-used without additional costs. Referral graphs 
provide a single framework for using the distributed 
active catalog, meta-data caching and data caching in 
query processing. Our experiments indicate that these 
techniques improve response time and reduce system load 
for a wide range of data distribution patterns. In our typi- 
cal operating range, queries that take minutes using 
current strategies can be answered in a few seconds using 
our techniques. Our techniques are appropriate for 
environments with loose consistency constraints and we 
hope to extend them to systems with stronger consistency 
constraints. 
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