
APPLICATION MOBILITY

BY

VICTOR CHARLES ZANDY

A dissertation submitted in partial fulfillment

of the requirements for the degree of

Doctor of Philosophy

(Computer Sciences)

at the

University of Wisconsin—Madison

2004

© Copyright by Victor C. Zandy 2004
All Rights Reserved

APPLICATION MOBILITY

VICTOR CHARLES ZANDY

UNDER THE SUPERVISION OF PROFESSOR BARTON P. MILLER

AT THE UNIVERSITY OF WISCONSIN — MADISON

Application mobility is the ability for an application to travel with its user, moving

between computers or moving with a computer between locations. We describe new

techniques that enable unmodified applications to move independently of each other without

requiring changes to infrastructure or actions by administrators. The techniques are based on

three new abstractions that overcome the obstacles to application mobility unresolved by

previous work in process migration and mobile computing.

First, we introduce reliable network connections, an abstraction that automatically detects

network connection failures caused by movement, and that recovers from these failures

transparently. We introduce an enhancement detection protocol that enables the use of this

abstraction in environments where not all applications support it. This protocol is a general-

purpose solution to the problem of safely detecting, at user-level, the presence of remote

support for any type of network communication enhancement.

Second, we introduce the abstraction of a window session, a transportable representation

of the state of a graphical user interface, that allows the user interface of a running application

to be moved, either with or independently of the application process, from one display to

another. This abstraction is sufficiently general to support the additional functionality of

replicating user interfaces across multiple displays.

Third, we allow applications to access files through the abstraction of a name space that

appears static, but which changes its file access strategies as the application moves. We

developed the flac language to specify such name spaces. Flac enables the concise description

of file access strategies in terms of services that provide access to file name spaces, and name

space composition operators that capture mobile file access semantics. These same

descriptions can be used to prescribe the run-time behavior of an application’s file name space

by handing them to a system that implements the semantics of flac.

We have implemented systems that demonstrate that these abstractions can be built

entirely from user-level code with no application modifications and with generally

imperceptible overhead, and can support the mobility of ordinary programs across

administrative boundaries and over extended periods of disconnection.

iii

Acknowledgments

It is a great pleasure to thank the people who helped me with my graduate career.

Bart Miller, my thesis advisor, is precisely the sort of teacher, critic, and editor that I

wanted and needed. He patiently taught me about ideas, writing, presenting, reading, hacking,

and the power of incremental progress. I was very, very lucky to have worked so closely with

him.

Miron Livny probed the boundaries of my ideas at every stage, exposing dimensions I had

not seen and still have not adequately explored. He has planted seeds for years of future work.

Marv Solomon generated insightful questions and comments at every talk I gave on my

work, offered unprovoked encouragement and affirmation, and carefully reviewed this

dissertation with his amazing eye for intellectual, technical, and stylistic quality.

Paul Barford provided invaluable early technical review of the network component of this

work, thoughtful feedback on the final result, and years of insight into the mind of the network

researcher and general career guidance.

Vadim Shapiro, my first advisor at UW, gave me advice about research and life that

despite all appearances I could not stop repeating to myself. He also introduced me to many

beautiful ideas: the quad-edge is still my favorite data structure.

Andrea Arpaci-Dusseau lent thoughtful review to the early stages of the work, and offered

encouragement throughout.

iv

My committee members exemplify the deep commitment of the entire faculty and staff of

UW Computer Sciences Department to providing a comfortable and resourceful intellectual

environment for graduate students.

Phil Roth, my friend and colleague, provided emotional, intellectual, and logistical

support without which I could not have succeeded.

Other friends, particularly Jeremy Zauderer, Maurice Zauderer, Andrew Prock, and

Graham Betts, repeatedly gave emotional support at crucial moments.

Alex Ryskin led me astray from physics, gave me access to computers and problems to

work on, debugged and critiqued my terrible programs, and otherwise started all this trouble.

A parade of shrinks and awesome psychopharmacology preserved mental hull integrity.

Anna Zandy, my sister, has the unusual burden of being a younger sibling idolized and

admired by her older brother. Her patience and tolerance for the travails of education and daily

renewal of her enthusiasm for learning inspire me through my darkest struggles. Also, I

profoundly depend on her to explain professional sports to me.

Janet and William Zandy, my parents, have supported my intellectual development above

all other considerations, providing infinite love, understanding, and access to an immaculately

clean bedroom.

Fran and Bill Twiddy, Meg’s parents, have opened their hearts and embraced me with an

unbelievable level of kindness.

Meg Twiddy, whom I love intensely and wildly, was my backbone. I would have collapsed

without her.

v

Contents

Abstract . i

Acknowledgements . iii

Contents . v

Figures . viii

1Introduction. 1

1.1 Reliable Network Connections . 3

1.2 Checkpoints of User Interfaces. 5

1.3 Mobile File Access . 6

2 Related Work . 9

2.1 Process Migration . 10

2.2 Network Connection Mobility . 12

2.3 User Interface Mobility. 14

2.4 File I/O . 16

2.4.1 File Systems. 16

2.4.2 Name space operations . 17

2.5 Desktop Mobility . 18

3 Reliable Network Connections . 21

3.1 Network Connection Failure Model . 24

3.1.1 TCP Review. 24

3.1.2 Events Leading to Aborts . 26

3.2 Detecting Socket Enhancements. 26

3.3 Reliable Sockets . 30

3.3.1 Rocks Overview. 30

3.3.2 Experience . 35

3.4 Reliable Packets . 38

3.5 Security . 43

3.6 Process Checkpointing . 44

vi

3.7 UDP . 46

3.8 Performance . 47

3.8.1 Throughput and Latency . 48

3.8.2 Connection . 50

3.8.3 Reconnection . 51

3.9 Portability . 51

4 User Interfaces . 57

4.1 System Overview . 60

4.1.1 Initialization . 61

4.1.2 GUI Migration . 62

4.1.3 GUI Replication. 64

4.1.4 GUI+Process Migration. 64

4.2 Implementation . 65

4.2.1 Hijacking the Application . 65

4.2.2 Finding the Window Server . 67

4.2.3 Synchronizing Communication . 69

4.2.4 Retrieving and Regenerating GUI Resources . 70

4.2.5 Maintaining Transparency . 72

4.3 Evaluation . 74

4.3.1 Detach and Re-attach Latency . 74

4.3.2 Interactive Overhead . 75

4.4 Security . 76

5 File I/O . 79

5.1 The Language . 82

5.1.1 Services and Specification . 82

5.1.2 Path operations. 83

5.1.3 Overlay combinator . 84

5.1.4 Select Combinator . 85

5.1.5 Transfer Combinators . 88

5.2 Additional Examples. 90

vii

5.2.1 Replica selection . 91

5.2.2 Importing Environments . 92

5.2.3 Copy-on-write unions . 94

5.3 Flac Run-Time Implementation . 95

5.3.1 Tracking Context . 97

5.3.2 Responding to Location Changes . 98

5.3.3 Transfer Combinator . 99

5.3.4 Process Migration . 100

5.3.5 Intercepting I/O operations . 101

5.4 Evaluation . 103

6 Conclusion . 108

6.1 Contributions . 108

6.2 Perspectives . 110

References . 113

viii

Figures

3.1 An established TCP connection.. 24

3.2 The enhancement detection protocol.. 28

3.4 The reliable socket state diagram . 31

3.3 The reliable sockets architecture. 31

3.5 The reliable packets architecture. 40

3.6 Average rocks and racks throughput and latency. 49

3.7 Average TCP connection establishment time. 50

3.8 Windows Sockets API (Version 2) calls. 53

4.1 The elements of a GUI-based application. 58

4.2 Initializing the application process. . 61

4.3 Detaching a GUI from Desktop A.. 62

4.4 Re-attaching a GUI to Desktop B. 63

4.5 Replicating a GUI on Desktop B.. 64

4.6 Migrating an application process and its GUI from a laptop to a desktop computer. . . 66

4.7 Average detach and re-attach latency. 75

4.8 Breakdown of detach latency for Netscape. 75

4.9 Average round trip time for a minimal X protocol request and reply. 76

5.1 File access methods change with application context. 80

5.2 Flac abstractions. . 81

5.3 Path operators. . 84

5.4 Identity relationship of overlay and path operators. 86

5.5 Two ways to test software. 93

5.6 Testing on several operating system versions. 93

5.7 Collecting operating system versions. . 94

5.8 Architecture of prototype flac run-time.. 96

5.9 Environment of our flac experience. . 104

5.10 Flac specification for Emacs. 105

1

Chapter 1

Introduction

Application mobility is the ability for an application to travel with its user, moving

between computers or moving with a computer between locations. Application mobility

combines issues in process migration with issues in mobile computing. The issues in process

migration center around the problem of moving a running program off one machine and

resuming its execution on another. The issues in mobile computing center around the problem

of providing users who move with their computers uninterrupted access to their work from

locations where resources are not available or must be accessed by different means. This

dissertation unifies the concepts common to these two areas. It describes new techniques that

enable unmodified applications to move independently of each other across machines and

locations without requiring changes to the infrastructure or actions by the administrators.

These techniques contribute to the area of process migration by expanding the set of

program state that can be migrated and the contexts in which migration can occur. The state

includes network connections, user interfaces, and access to file systems; we enable these

resources to be migrated for programs running on unmodified operating system and network

2

infrastructure. These techniques contribute to the area of mobile computing by enabling

interactive applications to tolerate disconnection and often remain available to their users

during periods of disconnection, and to automatically respond to changing resource access

requirements.

We draw these areas together by identifying three common goals for supporting

application mobility:

• Transparency to applications. It should be possible to move any existing application

without preparations such as re-programming or re-linking the application code with

mobile-aware functionality. Such transparency increases the opportunity for users to

benefit from mobility functionality — they are not restricted to certain applications or

encumbered with program modifications.

• Independence of movement. The unit of mobility should be individual applications in

execution. This level of mobility gives users the freedom to move only the applications

that they want or need at their new location, leaving other applications behind or free to

move elsewhere. An important benefit of this freedom is the ability to leave behind

programs that would be inappropriate to move, such as games on a home machine or a

program that accesses proprietary data on an office machine.

• No modification to infrastructure. Users should be able to move their applications

within and between administrative domains without special cooperation from

administrators such as access to modified operating system kernels, special file system

configurations, or proxy services. A solution to this goal can enable application mobility

to be deployed entirely at the convenience of its users.

The key challenges in enabling application mobility constrained by these goals is the

ability to capture and migrate the state of application resources that are external to the process

abstraction. These resources include network connections, user interfaces, and file systems.

3

No previous work addressing the movement of applications that use these resources has

achieved all of these goals.

The contribution of this dissertation is a collection of new techniques for moving these

three types of resources. The rest of this chapter previews these techniques.

1.1 Reliable Network Connections

The first part of this dissertation addresses the question of how to move applications that

use network connections. Most network communication protocols are not designed to support

communication between end points that move or disconnect for extended periods. Rather,

these actions cause ordinary network connections to fail, raising errors from which

applications that are oblivious to mobility do not recover. Existing protocols that do support

mobility, such as Mobile IP [55], require kernel modifications and lack support for extended

periods of disconnection and independent application movement.

Our idea is to provide to ordinary applications the abstraction of a network connection that

never fails — a reliable network connection. This abstraction, from the application’s

perspective, is indistinguishable from an ordinary network connection. It maintains during

movement and disconnection the illusion of being temporarily blocked but otherwise viable,

while transparently locating and re-establishing communication with its peer on behalf of the

application. In addition, it interoperates with applications that use conventional network

connections, silently reverting to ordinary network connection functionality when it detects

the absence of compatible functionality in its peer.

The challenges in designing a user-level reliable network connection include finding

effective, efficient, and application-transparent mechanisms to detect connection failures,

4

preserve in-flight data and other communication state, and locate and re-connect with lost

peers. In addition, interoperability requires a technique to detect peers that support reliable

network connections that is not hostile to peers that do not.

We have defined two new user-level implementation models for reliable network

connections, and implemented systems, reliable sockets (rocks) and reliable packets (racks),

to validate and evaluate them. The models differ in how they intercept network

communication; each represents a different set of trade-offs between implementation

complexity and performance. We also have designed a new enhancement detection protocol, a

safe, user-level, general-purpose protocol that can be used by any system with the need to

remotely detect the presence of enhanced network connection functionality.

Reliable network connections and the rocks and racks implementations make the

following contributions to network connection mobility:

• Failure detection: They automatically detect network connection failures, including those

caused by link failures, extended periods of disconnection, change of IP address, and

process migration, within seconds of their occurrence.

• Automatic recovery: They automatically recover failed connections without loss of in-

flight data, even when one end (it does not matter which one) changes its IP address. For

the rare cases in which both ends move at the same time, rocks and racks provide a

callback interface for a third-party location service, one of several value-added interfaces

provided to rocks- or racks-aware applications by the rocks-expanded API (RE-API).

• Interoperability: When an application using either rocks or racks establishes a new

connection, it safely probes its remote peer for the presence of a rocks- or racks-enabled

socket, and falls back to ordinary socket functionality if neither is present.

• User-level implementation: Users can use rocks and racks without re-compiling or re-

linking existing binaries and without making kernel modifications, and rocks can be

installed by unprivileged users.

5

1.2 Checkpoints of User Interfaces

The second part of this dissertation addresses the question of how to move the graphical

user interface (GUI) of a running program. No existing window system that we know of has

functionality to detach a user interface from one display and move it to another. The interface

to the window system provides only operations to create, destroy, and manipulate the

individual resources of an application’s user interface.

Our idea is to define an abstraction, called a window session, that represents precisely the

user interface state of an individual application. The ability to manipulate window sessions

engenders operations for detaching, re-attaching, and replicating an application’s user

interface.

The main challenge is to provide access to window sessions without making modifications

to the application or window system. Applications interact with window systems using

protocols whose messages contain server-dependent information, such as handles for

identifying windows and other resources. These messages must be transformed to reflect the

new handles and resources after a window session is moved. In addition, window servers lack

critical primitive operations, such as the ability to enumerate all of the user interface resources

belonging to an application, that are necessary to isolate the window sessions of individual

applications.

To validate the usefulness of window sessions for application mobility, we have developed

a system, called guievict, that introduces the window session abstraction to an existing

window system. In addition to showing that window sessions can effectively support user

6

interface movement for application mobility, our system makes the following contributions to

user interface mobility:

• Migration occurs at application granularity: Users can select and move the GUIs of

individual applications from their desktop, leaving the GUIs of other applications behind

or free to move elsewhere.

• No modification to applications: Any application program, including those based on

legacy toolkits, can be migrated without modifications such as re-programming, re-

compiling, or re-linking.

• Unpremeditated migration: Users do not need to run their applications in a special way,

such as by redirecting their GUI communication through a proxy.

• No modification to window systems: The new functionality is encapsulated in a window

server extension, implemented on top of the window server extension API, that is loaded

in the server when it is started, and a library that is loaded in the application at run-time.

• Improvement to a widely-used window system: Our implementation is based on the X

window system [67], whose architects have long regretted not designing support for user

interface movement [27]. We have characterized and implemented the essential

functionality, and we have been invited to contribute our extension to the X window server

code base.

1.3 Mobile File Access

The third part of this dissertation addresses the question of how to provide an application

that is moving with uninterrupted access to its files. Movement may force an application to

change its method for accessing a file system. It may also make access to a file system

impossible, unreliable, or slow, prompting users to copy their files to another file system.

We would like mobile applications to access files through a name space that automatically

and transparently performs these adaptations. We provide access through a variety of existing

file systems, rather than building a new file system. Our idea is to create a language for

7

specifying the semantics of such a name space. This language serves two roles: it enables

concise description of semantics with which users can easily modify and compare strategies

for mobile file access, and it enables unambiguous prescription of the semantics to a system

that automatically manages file name spaces to applications.

We have designed a new language, called flac (file access), with abstractions and

operators for specifying mobile file access strategies over existing file systems. The main

challenges in its design were identifying simple primitive operators that can be composed to

express a variety of practical access strategies. We have implemented a prototype interpreter

for flac, and used it to validate both the idea that a language can describe file access strategies

and prescribe their automatic implementation.

The flac language and our prototype implementation of a flac run-time make the following

contributions to file access for mobile applications.

• A descriptive language: Flac can concisely describe the file name space of a mobile

application. It provides service abstractions to represent the methods by which an

application accesses file systems, composition operators to express strategies for

combining and changing services during movement, and operators to bind services to an

application’s file name space. We demonstrate the descriptive power of the language by

specifying and comparing a variety of new and old file name space semantics.

• A prescriptive language: Name space specifications written in flac are executable. Users

of mobile applications describe their file access strategies in a single, maintainable flac

specification that they hand to a flac translator. This translator, after checking the

specification for errors and possibly verifying properties such as file consistency

guarantees, generates an implementation of the name space semantics for the user’s

applications.

• User-level implementation: We have built a prototype run-time interpreter for the flac

language that operates entirely at user level. It requires no special network services,

8

operating system features, or administrative support, and it operates transparently to

applications. We show that it can provide uninterrupted access to file systems in multiple

administrative domains to unmodified applications that move across different machines

and different networks.

The rest of the dissertation is organized as follows. Chapter 2 describes related work,

where we show the void in process migration and mobile computing research into which we

seat application mobility, and explain how previous approaches to moving network

connections, user interfaces, and access to files fall short of our goals. Our contributions are

presented over the next three chapters. Each of these technical chapters presents the ideas,

implementation, and evaluation of one of our results: reliable network connections

(Chapter 3), user interface mobility (Chapter 4), and file access mobility (Chapter 5). They

may be read in any order. Chapter 6 shows how these components collectively support our

vision for application mobility, reviews contributions, and offers perspectives on the results.

9

Chapter 2

Related Work

We describe previous work related to application mobility. The overall picture is that

previous work in mobility, both process migration and mobile computing, has targeted

mobility problems that are different from application mobility. In some cases, particularly

process migration, we can borrow some existing techniques to support application mobility. In

others, particularly the mobile computing work to support mobile network connections, user

interfaces, and file access, the existing techniques are largely incompatible with the issues in

application mobility, prompting the need for the new techniques of this dissertation.

We first discuss the foundation of process migration technology upon which we can build

application mobility support, highlighting how previous work in process migration omits

necessary support for general mobility of resources — network connections, user interfaces,

and file access — external to the process abstraction. We then discuss previous efforts to

support the mobility of these resources, and show how they fall short, largely because they

address different problems. Finally, we review how these other types of mobility problems

10

most closely related to application mobility, which we characterize as desktop mobility

problems, have led to weaker functionality than that of application mobility.

2.1 Process Migration

Process migration is the ability to move a program in execution from one machine to

another [46]. Process migration functionality is central to application mobility because it

enables applications in execution to follow their users to new machines.

Process migration has been studied as an operating system function since the early 1980s.

It was a feature in DEMOS/MP [61] (1983), LOCUS [81] (1984), V [80] (1985), and

Sprite [19] (1991). These research systems had the advantage that they could implement

kernel mechanisms for process migration. These systems were based on network of machines

in a common administrative domain, so movement was limited to other machines in the same

domain. In some cases, a process that migrated to a new machine had residual dependencies

on its previous machines, access to which was necessary for the transparency of the

movement.

Despite this kernel-level research, process migration is not a feature of commodity

operating systems today. Instead, many systems for user-level process migration have been

developed, including Condor [40], Libckpt [58], Process Hijacking [88], and

others [13,15,74,75]. These systems involve user-level code, linked into the program, that can

be invoked during execution to create a snapshot of the state of the running program, called a

checkpoint. Migration is completed by moving the checkpoint to a new machine and restarting

it. In general, most previous user-level process checkpointing systems have provided the

ability to checkpoint the state of the basic process abstraction — the memory and register state

11

of the process — but not the state of additional resources used by the program, including

network connections, file access, and user interfaces. The Condor system is an exception. It

provides migrating processes with access to the file system of a fixed machine by redirecting

I/O requests made by the process to a proxy on the machine. This service is one type of file

access mobility that is useful for mobile applications, but mobility scenarios can require other

types of file access, depending on the mobile application’s context, such as access to files

while disconnected from a network. The goal of our file access research is to concisely specify

these different types of file acess services and the various situations in which they are used.

Zap [50] is a recently developed process migration system with similar goals to

application mobility. Zap presents abstraction of a pod, a collection of running programs that

are migrated as a unit. The design and functionality of Zap has several differences with our

techniques for application mobility. First, Zap is based on a set of kernel modifications to

virtualize the system call interface for the applications of a pod, enabling the pod to be moved

to a new machine transparently to the applications. Second, the pod abstraction is rigid — it is

not possible to move running programs into or out of a pod. Third, Zap has less flexible and

general mechanisms for network, file access, and user interface mobility than those we have

developed. In particular, Zap uses a packet re-writing system similar to racks and

MSOCKS [41] (see Section 2.2) to support network connections, but cannot handle extended

periods of disconnection; it supports mobile file access only for pods that move among

machines that share the same network file system; and it depends on a desktop mobility

system (see Section 2.5) to move user interfaces.

12

2.2 Network Connection Mobility

Network connection mobility is the ability for applications to move with open network

connections. The basic mobility functionality of a system providing this service is to

transparently preserve the application-level abstraction of an open connection across a change

of network address of the machine on which the application is running. This functionality can

be added to the network at the IP level [59], to the implementation of the transport protocol

(such as TCP [60]), or to the application’s interface to the the network stack (most commonly

the sockets API [76]).

Persistent Connections [90] and Mobile TCP [63,64] are user-level systems that interpose

a library between application code and the sockets API that preserves the illusion of a single

unbroken connection over successive connection instances. Persistent Connections does not

preserve data that is in-flight at the time of reconnection, so its functionality is safe to use

when both ends of the connection are quiessent and all their previous messages have been

received at the remote end. Mobile TCP has a mechanism to preserve in-flight data, but it

requires a special kernel interface to access the contents of the TCP send buffer (such

interfaces are neither common nor standard) and can fail during extended periods of

disconnection. Both of these systems depend on a third party to locate and re-establish contact

with a disconnected peer, and neither interoperates safely with ordinary applications.

The MobileSocket [49] system provides a transparent wrapper to the Java sockets API

package that is similar in design to Mobile TCP sockets, but with a user-level in-flight data

buffer that avoids the limitations of Mobile TCP sockets. However, its buffering strategy can

degrade application data flow and, as our implementation experience demonstrates (see

Section 3.3), is unnecessarily complicated. In addition, MobileSocket cannot be used by non-

13

Java applications and MobileSocket-based applications cannot communicate over TCP

sockets with applications that do not use MobileSocket.

The TCP Migrate option [69] is an experimental kernel extension to TCP. It introduces a

new state to the TCP state machine that an established connection enters when it becomes

disconnected and returns from when the connection is re-established. The Migrate option is

designed to interoperate with applications running on machines that do not have Migrate

option installed, falling back to ordinary TCP behavior. However, it addresses a mobility

model less general than that of application mobility. Specifically, it does not support extended

periods of disconnection or the migration of an application with an open network connection

to a new machine. A mechanism to migrate applications with open network connections was

developed to use the Migrate option in a web server reliability system [70], but like other

similar kernel modifications [4,52,84,89], it was a research experiment that has not become a

standard feature in any commodity operating system.

Descending one level in the network stack to the IP level, Mobile IP [55] routes all IP

packets, including those sent by TCP and UDP, between a mobile host and ordinary peers by

redirecting the packets through a home agent, a proxy on a fixed host with a specialized

kernel. Mobile IP is designed for host mobility and is not well-suited for application mobility.

Specifically, at the IP level, the home agent does not have a per-connection view of the data it

is forwarding, which is necessary to support the independent movement of individual

connections and to protect connections against failure during extended periods of

disconnection. A Mobile IP home agent could overcome these limitations by emulating the

TCP state machine — requiring functionality to interpret the transport layer of packets,

maintain per-connection associations, and buffer and acknowledge TCP packets on behalf of

14

disconnected endpoints — but no such extension has been reported. We demonstrate that the

same functionality can be achieved at user-level with systems like rocks or racks.

MSOCKS [41] has architectural similarities to both rocks and racks. MSOCKS enables a

client application process to establish a mobile connection with an ordinary server by re-

directing the connection through a proxy running on a special kernel. The proxy is based on a

kernel modification called a TCP splice that allows the client, as it moves, to close its end of

the connection and establish a new one without affecting the server. Like the racks system, the

TCP splice translates the state of the original connection held open by the server to the state of

the current connection held by the client. Like the rocks system, it uses an in-flight buffer to

preserve data sent from the client to the server. However, unlike our systems, MSOCKS has

no automatic failure detection and reconnection and does not support migration of

applications with open network connections to new machines.

2.3 User Interface Mobility

Our goal in user interface mobility is to enable the graphical user interface (GUI) of an

application to be moved to a new display, either with its associated application process or

independently of it.

The xmove system [72] is the only other existing system with similar goals. Xmove

enables the GUIs of unmodified X windows [67] applications to be moved to new displays

while they are running. It is based on a proxy that emulates the X window server. Instead of

connecting to the actual window server, the user re-directs their application to an instance of

this proxy when starting their application. The proxy forwards the application’s window

operations to the actual window server, simultaneously recording the state of windows as they

15

are created and changed. When the user wishes to move the user interface, they notify the

xmove proxy of their intent, and the proxy deletes the windows from the current server and

recreates them from the recorded state on the new window server.

The main drawback of xmove is that it was designed to support only the movement of the

user interface to a new display, not the migration of both the GUI and application process. The

difference is that the xmove proxy must be migrated with the application or left behind as a

residual dependency, and the communication channel between the xmove proxy and the

application must be preserved. Process migration of GUI-based applications with xmove is

possible: we built a system that checkpointed the state of the xmove proxy and (using rocks)

the communication between the application and the xmove proxy, which successfully

extended the scope of xmove’s functionality to process migration. However, the resulting

system is architecturally cumbersome: there is an extra process to checkpoint and restart on

each migration. We show in Chapter 4 that our abstraction of the window session can deliver

the same functionality more efficiently and cleanly; we also show that it is not necessary to

redirect the application to a proxy prior to movement.

Another approach to user interface mobility is to integrate mobility support into the

window system libraries from which user interfaces are composed [28]. This functionality has

been included in the design of a recent user interface library, GTK [54]. The advantage of this

approach is that the application contains its own mobility support, and no external mechanism

like the xmove proxy is required to facilitate movement. However, it has the limitation that

mobility is available only to those applications built on the library. Legacy applications and

applications built with other new libraries (such as KDE [77]) cannot be directly run over

GTK; they must be ported.

16

Systems have been developed to support user interfaces mobility at the granularity of the

desktop [16,39,50,65,66,68,82], the set of all applications running on a machine. Systems

facing similar issues have been developed to replicate desktops across multiple

machines [1,2,4,6,8,9,25,31,34]. This unit of mobility is coarser than that of application

mobility, and different techniques are required to support application mobility. However, our

application mobility techniques can be used to reproduce desktop mobility functionality,

including replication. We discuss this topic separately in Section 2.5.

2.4 File I/O

We want mobile applications to have uninterrupted access to an apparently unchanging

file name space, including across movements to different administrative domains and over

periods of disconnection. Our approach is based on a language for describing file access

strategies depending on location and other contextual information. No other system has tried

this approach before; we compare our functionality to that of file systems that support

mobility, and discuss operating system file name space operations that influenced the design

of our language.

2.4.1 File Systems

The basic idea behind all file systems that support mobility is to distribute replicas of files

to various locations, and to enable applications that are clients of these systems to access files

from any available replica. The unit of replication may be either an individual file or a

container of files such as a disk volume. These systems are important to application mobility

because, when they are available, they provide a type of file system that a mobile application

may use for file access. However, these systems do not fully address file access requirements

17

of mobile applications because they are not available in all administrative domains, and most

require administrator assistance to control their policies and configuration.

The Coda file system [37] manages a replica of a subset of a user’s files, called a hoard, on

a mobile computer that the user can access when they are disconnected from the network.

Coda requires kernel-level support on the file system client, and files must be served from a

Coda file server. Other research file systems, such as that of Locus [81], the Ficus [51] file

system, and systems based on Bayou [56], are similar to Coda in that they provide access,

using specialized operating systems, to file replicas for mobile program; the main conceptual

differences among them are the consistency models under which the replicas are managed.

Although Coda is not widely deployed, similar functionality has been introduced in

commodity operating systems. The Offline Files feature in Microsoft Windows [45] provides

a hoarding system for files from a remote file server. However, this feature can only be used

with Windows file servers, and its availability to users depends on policies that are configured

by the administrator of the file server. Likewise, recent versions of Apple’s OS X [3] provide

a file system hoarding feature also similar to Coda. However, this feature only works with the

iDisk file system, a premium network file system service controlled by Apple; users of OS X

cannot harness its functionality for other file systems.

2.4.2 Name space operations

Our language for expressing file system access strategies is based on file name space

composition operators. A file name space is the set of files provided by a file system; our

language provides operators for manipulating and combining the name spaces of different file

systems to provide a unified, unchanging name space to a moving application. While our

18

language is the first to provide name space operators for mobility, the semantics of these

operators were influenced by operators developed for other purposes.

The Plan 9 operating system [57] provides a per-process name space and a set of

operations for manipulating the name space. Its name space operators are designed to connect

services, represented as file systems, to a process. They include a union operator that mounts a

set of a file systems to the same point in the name space of the application, allowing the files

of multiple file systems to be available under the same sub-tree of the file system hierarchy.

This feature that inspired the semantics of a similar operator (overlay) in our language. At

a higher level, however, Plan 9 lacks name space functionality designed for mobility, such as

the ability to transparently switch, in response to mobility events, the file system that serves a

portion of an application’s name space.

The 3-D file system [38], the Translucent File System [32], and the BSD union

mount [53] each provide a name space operator similar to Plan 9’s union operator. This

operator provides additional semantics for copying files among the file systems comprising a

union mount point. The original purpose of these semantics was to support version control for

software development. However, the ability to move files between file systems is essential to

mobile file access, and our language provides a file transfer operator (transfer) that, while

significantly more general than this union operator, was inspired by its semantics.

2.5 Desktop Mobility

Mobile access to applications at the granularity of the desktop, the set of all applications

with which a user interacts at a machine, is a more thoroughly studied alternative to

application mobility [16,39,50,65,66,68,82]. Despite the superficial similarity of having the

19

goal of providing mobile users access to their applications, desktop mobility approaches have

several important differences from application mobility. The fundamental difference is that

desktop mobility does not allow mobile access to be controlled on a per-application basis:

either all applications on a desktop can be accessed, or none. This model precludes mobile

users from accessing any of their applications when security policies set by administrators

prohibit mobile access to select applications.

The remaining differences depend on how desktop mobility is implemented. There are

two basic approaches, with significantly different mobility properties. First, remote desktop

access systems enable a mobile user to access a single desktop as they move among different

computers [50,65,66,68,82]. In these systems, only the point from which the users accesses

their desktop changes; the applications running on the desktop do not move with the user. The

main limitation of these systems is that they are based on remote access. Disconnected users

have no access to their applications. Users of networks with high latency, low bandwith, or a

high rate of packet loss can experience a user interface that feels unresponsive.

Second, desktop migration systems enable the entire desktop to be migrated with the

user [16,39]. The basic approach is to run the operating system and applications in a virtual

machine whose state can be checkpointed and moved when the user moves. The main

limitation of these approaches is that the amount of state to be moved can be large (on the

order of gigabytes), since it includes the memory, processor, and device state of the machine

being emulated. This adds significant latency to beginning and end of movement operations as

the user waits for the machine state to be checkpointed or restored, and it requires the ability

to transport a larger amount of data than most networks or portable storage devices can

20

support [39]. This overhead is excessive for users who want to move only one or a few

applications.

21

Chapter 3

Reliable Network Connections

An application may move while it has open network connections. Movement can

introduce disconnection for an extended period of time, change of IP address, or migration to

a different machine, all of which are circumstances under which ordinary network

connections fail. We need a way to preserve the state of an application’s connections in these

circumstances. Such a system should be implemented at user level, so that it can be used by

any user. Reliable sockets (rocks) and reliable packets (racks) are the systems we developed to

address this problem. The idea is to provide a transparent layer over the application’s network

communication interface that provides a reliable network connection, one that automatically

detects and recovers from failures including those caused by movement.

Rocks and racks are based on enhancements layered over the communication interface on

both side of a network connection. This design raises the problem of determining whether a

communication peer supports a particular enhancement. We solve this problem with a new

enhancement detection protocol (EDP). This protocol is based on a carefully chosen sequence

of user-level operations performed during the establishment of a connection that should be

22

harmless to unenhanced peers and whose outcome has a low probability of confusing an

unenhanced peer with an enhanced one.

Rocks and racks are distinguished from previous work by several major features:

• Failure detection: They automatically detect network connection failures, including those

caused by link failures, extended periods of disconnection, change of IP address, and

process migration, within seconds of their occurrence.

• Automatic recovery: They automatically recover failed connections without loss of in-

flight data, even when one end (it does not matter which one) changes its IP address. For

the rare cases in which both ends move at the same time, rocks and racks provide a

callback interface for a third-party location service, one of several value-added interfaces

provided to rocks- or racks-aware applications by the rocks-expanded API (RE-API).

• Interoperability: When an application using either rocks or racks establishes a new

connection, it safely probes its remote peer for the presence of a rocks- or racks-enabled

socket, and falls back to ordinary socket functionality if neither is present. Remote

detection of rocks and racks is accomplished by the enhancement detection protocol,

which can be used by any type of socket enhancement (not just rocks and racks) and can

be implemented at user level.

• User-level implementation: both systems can be used without re-compiling or re-linking

existing binaries and without making kernel modifications, and rocks can be installed by

unprivileged users.

In addition to mobility, the functionality of rocks and racks can be used for other

applications. For example, the ability to transparently replace a network connection could be

used by a performance tuning system to change the static parameters of a network connection,

such as buffer sizes, that are otherwise impossible to change after a connection has been

initialized.

The main difference between rocks and racks is the way that they track communication.

Rocks are based on a library that is interposed between the application code and the operating

23

system. The library exports the sockets API to the application, permitting it to be transparently

dropped into ordinary applications, and modifies the behavior of these functions to detect

connection failures and mask them from the application. While this implementation model is

convenient for user-level process migration, it cannot be used with statically-linked or

privileged programs and to be completely transparent to applications it requires several

complicated mechanisms not related to mobility. Racks, in contrast, are based on a separate

user-level daemon that uses a kernel-level packet filter to redirect the flow of selected packets

to the daemon. Racks do not introduce any code into the processes that use them, making

them usable with any program and enabling a simpler implementation than that of rocks. The

price for this convenience is an approximately 50% increase in latency and 15% decrease in

throughput.

This focus of this chapter is on the Linux implementation of rocks and racks. Although the

notion of a reliable network connection is general, implementing rocks and racks involves

features that vary among platforms, including available mechanisms for tracking

communication and the API and I/O models provided for network programming. We also

describe the portability issues that emerged during our initial port of rocks from Linux to

Microsoft Windows.

The remaining sections of the chapter are as follows. Section 3.1 discusses the TCP failure

model as it relates to mobility. Section 3.2 presents the enhanced socket detection protocol.

Section 3.3 presents the architecture and functionality of rocks and describes our experience

with its implementation model. Section 3.4 presents racks. Section 3.5 discusses the security

issues of rocks and racks. Section 3.6 relates rocks and racks to process checkpointing and

migration. Section 3.7 discusses our approach to the reliability and mobility of UDP.

24

Section 3.8 evaluates the performance of the Linux implementation of rocks and racks.

Section 3.9 discusses portability.

3.1 Network Connection Failure Model

Rocks and racks extend the reliability of TCP by detecting failures to TCP connections

and preventing applications from becoming aware of them. We review the essential

background on TCP, then turn to the relationship of its failure modes to mobility events.

Although the failure modes discussed here can be derived from the specification of the

protocol, this is the first analysis of these failures from the perspective of mobility.

3.1.1 TCP Review

TCP provides reliable bi-directional byte stream communication between two processes

running on separate hosts called the local host and the peer host (see Figure 3.1). The

operating system kernels on each host maintain the state of their end in a TCP socket. A TCP

socket is identified by an internet address comprised of an IP address and a port number; a

pair of such addresses identifies a TCP connection. Applications manipulate sockets through

calls to the sockets API.

Figure 3.1: An established TCP connection.

Sockets API

Application Code

Network

Local Host

Data in flight from local host to peer host
Data in flight from peer host to local host

Kernel
Sockets API

Application Code

Peer Host

Kernel
TCP SocketTCP Socket

Receive
Buffer

Send
Buffer

Receive
Buffer

Send
Buffer

25

The TCP reliability mechanism is based on a pair of buffers in each socket and a scheme

for acknowledging and retransmitting data. When the local application process writes to the

socket, the local kernel copies the data to the socket’s send buffer before transmitting it to the

peer. This data remains in the send buffer and is periodically retransmitted until the kernel

receives an acknowledgement of its receipt from the peer. When the local kernel receives data

from the peer, it copies it to the destination socket’s receive buffer and sends back an

acknowledgement. The receive buffer holds data until it is consumed by the application

process. A process cannot pass more data to TCP than can be stored in the combined space of

the local send buffer and the peer receive buffer. This limits the maximum amount of in-flight

data, data that has been passed from the process to the kernel on one end but not yet consumed

by the process from the kernel on the other end, that can exist at any time over a TCP

connection.

TCP connection failures occur when the kernel aborts a connection. Aborts primarily

occur when data in the send buffer goes unacknowledged for a period of time that exceeds the

limits on retransmission defined by TCP. Other causes for an abort include a request by the

application, too many unacknowledged TCP keepalive probes, receipt of a TCP reset packet

(such as after the peer reboots), and some types of network failures reported by the IP

layer [10]. Once an abort has occurred, the socket becomes invalid to the application.

26

3.1.2 Events Leading to Aborts

Mobile computer users routinely perform actions that can lead to the abort of TCP

connections. These actions include:

• Disconnection: A mobile host becomes disconnected when the link becomes unreachable

(such as when the user moves out of wireless range), when the link fails (such as when a

modem drops a connection), or when the host is suspended.

• Host changing its IP address: A host might move to a new physical subnet, requiring a

new IP address, or a suspended host might lose its lease on its IP address provided by a

service like DHCP [20] and get a new one. This change of IP address will lead to a failure

of the TCP connection the next time one endpoint attempts to send data to the other.

• Process changing its host: Process migration can cause two types of failures. First, it

changes the IP address of the process. Second, unless the process migration mechanism

can migrate kernel state, it will separate the process socket descriptor from the underlying

kernel socket. The original kernel socket will be closed or aborted while further use of the

descriptor by the process will refer to a non-existent socket.

• Host crashing: The peer of the crashed host will either reach its retransmission limit while

the host is down or, after the host reboots, receive a reset message in response to any

packet it sends to the host. Rocks and racks can handle host crashes when then are

combined with a process checkpointing mechanism, in which case the failure mode

reduces to that of either one of the previous two actions.

3.2 Detecting Socket Enhancements

When establishing a new connection, acting as either a client or a server, rocks and racks

must determine whether the remote peer supports either one of these enhancements. Existing

techniques for exchanging such information, such as TCP options, are reserved for privileged

users and require kernel modifications. The novelty of our enhancement detection protocol is

that it provides a user-level technique for exchanging enhancement information that does not

have negative effects on unenhanced peers. All non-trivial costs of the protocol are borne by

27

the client, so it is reasonable to deploy in production servers, and it does not interfere with

network infrastructure such as network address translation (NAT) devices [21] or

firewalls [22]. The protocol is general purpose: it can be used by other mobility systems such

as MSOCKS [41] or mobile TCP sockets [63,64], and it can support systems that enhance

sockets with other functionality such as compression, encryption, or quality-of-service. For

example, the EDP is an alternative to the common practice of reserving a new port for

encrypted versions of legacy network services such as IMAP [18].

It is not obvious how to remotely distinguish an enhanced socket from an ordinary one

using only user-level mechanisms. The problem for the enhanced socket is to unmistakably

indicate its presence to remote processes that use enhanced sockets without affecting those

that do not. The socket enhancement code cannot simply announce its presence when the

connection is established, as others have suggested [63,64], since an unenhanced process is

likely to misinterpret the announcement. It is also problematic to use a separate connection,

because any scheme for creating the second connection could conflict with other processes

that do not participate in the scheme. And despite the multitude of socket options, it is not

possible to use socket options to construct a distinct socket configuration that could be

remotely sensed.

In fact, we believe that it is generally impossible to perform user-level enhancement

detection successfully in all cases. Our approach instead was to find a way that is successful

given our observation and understanding of how most programs use the sockets API. The

EDP is based on an extremely unusual combination of socket operations initiated by the client

that is safe to perform on unenhanced servers.

The protocol is in five steps as follows (see Figure 3.2):

28

1. Client Probe: The client and server perform a four step protocol to establish to the client

that the server is enhanced:

a. The client opens a connection to the server.

b. The client closes its end of the connection for writing, using the sockets API function

shutdown.

c. The server detects the end-of-file and sends an enhancement announcement in response

that indicates its enhanced condition to the client, then closes the connection.

d. The client receives the announcement and now knows the server is enhanced. It closes

the connection.

2. Client Announcement: The client opens another connection to the server and sends an

enhancement announcement. Now both the server and the client are mutually aware of

Figure 3.2: The enhancement detection protocol.

connect

shutdown

read

connect

accept

read
write

accept

EOF

“ENHANCED”

TCP handshake

“ENHANCED”

“ROCKS or RACKS”

“ROCKS”

close

write

read
write

read
write

read

write

read

close

read

write

read
write

write

read

Knows Server
Is Enhanced

TCP handshake

Knows Client
Is Enhanced

Client Probe

Client
Announcement

Enhancement
Negotiation

Enhancement
Initialization

Application
Communication

Client Server

1.

2.

3.

4.

5.

29

being enhanced.

3. Enhancement Negotiation: The client and server exchange messages to agree on which

enhancements they will use.

4. Enhancement Initialization: The client and server perform enhancement-specific

initialization.

5. Application Communication: The protocol is complete; the application code begins

normal communication.

The enhancement announcement must be a pattern that is extremely unlikely to be

produced by unenhanced clients or servers. We use a fixed, long (1024 byte) string of random

bytes as the announcement.

There are a few interesting cases to consider. First, when an enhanced client connects to an

unenhanced server and performs Steps 1 and 2 of the protocol, an ordinary server, depending

on how it has been programed, usually will close or reset its end of the connection, obliviously

send data, or do nothing. In any case, the client does not receive the announcement from the

server, and so it aborts the protocol and reverts to ordinary behavior. However, in the case that

the server does nothing, the client needs some way to know it should abort. Although only a

strange server would quietly leave open a connection that has been closed for writing by its

client (we have not seen it happen), should this ever happen the client has a timeout to prevent

it from hanging. The timeout period is a multiple of the time it took for connect to succeed, a

conservative estimate of the time for several round trips.

Second, if an unenhanced client that is connected to an enhanced server happens to

perform the first two steps of the protocol, which includes reading from a half-closed

connection, then it will unexpectedly receive the announcement generated by the server.

30

However, this client behavior is too bizarre to be worth accommodating; for example,

although some remote shell client implementations may use shutdown in a similar way [76],

they always send commands and data to the server beforehand, so they do not apply to this

case.

Finally, the two client connections may reach two different servers if the server

application is replicated behind a device that distributes incoming connections to multiple

server machines. However, this arrangement only affects the protocol when the replicated

servers are non-uniformly enhanced, which is a problem with deployment, not the protocol.

3.3 Reliable Sockets

Reliable sockets are implemented as a library interposed between the application process

and the kernel at both ends of a TCP connection (see Figure 3.3). The library exports the

sockets API to the application code to enable it to be transparently dropped into ordinary

applications. The library also exports the rocks expanded API (RE-API), which enables

mobile-aware applications to set policies for the behavior of the reliable sockets library and to

manually control some of its mechanisms.

We give an overview of the reliable sockets architecture and operation and then describe

our experience with rocks, particularly issues that are pertinent to any system that attempts to

interpose user-level functionality between application code and the kernel.

3.3.1 Rocks Overview

The operation of a reliable socket can be summarized by the state diagram shown in

Figure 3.4. A reliable socket exists in one of three states: CLOSED, CONNECTED, or

SUSPENDED. Note that these states correspond to reliable socket behavior that affects the

31

process, not the internal TCP socket state maintained by the kernel. A reliable socket begins in

the CLOSED state.

To establish a reliable socket connection, the application code makes the usual sequence

of sockets API calls to create a TCP connection. Instead of being handled by the kernel or the

system sockets library, these calls are handled by the rocks library, which performs the

following steps:

1. Test for interoperability: The rocks library performs the EDP and reverts the socket to

Figure 3.3: The reliable sockets architecture.

Figure 3.4: The reliable socket state diagram

Rock

In-Flight Buffer

Application Code

Network

Local Host

Data in flight from local host to peer host
Data in flight from peer host to local host

Kernel

RE-API Sockets API
Rocks Library

Sockets API

Rock

Application Code

Peer Host

Kernel

RE-API Sockets API
Rocks Library

Sockets API

TCP Socket
Receive
Buffer

Send
Buffer

TCP Socket
Receive
Buffer

Send
Buffer

In-Flight Buffer

CLOSED

CONNECTED SUSPENDED

Con
ne

ct/
Acc

ep
t

Clos
e

TCP Failure

Reconnect

Abort

32

ordinary socket behavior if the peer does not support rocks or racks.

2. Establish the data connection: The data connection is a TCP connection that, once the

reliable socket connection is established, is used for application communication.

3. Initialize: The rocks establish an identifier for the connection based on the addresses of the

connection endpoints and a timestamp, perform a Diffie-Hellman key exchange [43] for

later authentication, and exchange the sizes of their kernel socket buffers (which are

available from the sockets API).

4. Establish the control socket: The control socket is a separate UDP socket that is used to

exchange control messages with the peer. It is mainly used to detect the failure of the data

connection.

Following these steps the rock changes to the CONNECTED state. Once connected, the

application can use the rock as it would use any ordinary socket.

The rock buffers in-flight data as it is sent by the application. The size of the in-flight

buffer is the sum of the size of its TCP send buffer and the size of its peer’s TCP receive

buffer, the maximum number of bytes that can be in flight from the rock to its peer. When the

application sends data, the rock puts a copy of the data into the in-flight buffer, and increments

a count of bytes sent. Older data in the in-flight buffer is discarded to make room for new data;

the choice of size for the in-flight buffer guarantees that data that has not yet been received by

the peer remains in the buffer. When the application receives data, the rock increments a count

of bytes received.

Connection failures are detected primarily by heartbeat probes that are periodically

exchanged between the control sockets. Unlike the TCP retransmission mechanism,

heartbeats detect connection failures within seconds instead of minutes, their sensitivity can

33

be tuned with the RE-API on a per-connection basis, and they work even if the connection is

idle. Although the TCP keep-alive probe can also detect failures of idle connections, it is

poorly suited for reliable sockets because its two hour minimum default period generally

cannot be lowered on a per-connection basis, only on a system-wide basis by privileged users.

A rock switches to the SUSPENDED state when it detects that it has not received several

successive heartbeats (the number can be adjusted using RE-API).

The use of a separate control socket is motivated by the difficulty of combining

application data and asynchronous rocks control data on the same TCP connection. When

both flow over a single connection, there must be a way to transmit heartbeat probes even

when ordinary data flow is blocked by TCP, otherwise rocks would suspend perfectly good

connections. TCP urgent data is the best available mechanism for this type of communication,

but it has several limitations. First, although sockets can receive urgent data out-of-band,

sending the heartbeat over the same connection as application data would interfere with

applications, such as telnet and rlogin, that make use of urgent data. Second, on some

operating systems, including Linux, when new out-of-band data is received, any previously

received urgent data that has not been consumed by the application is merged into the data

stream without any record of its position, possibly corrupting the application data. Since it

cannot be guaranteed that a heartbeat is consumed before the next one arrives, this corruption

cannot be prevented. Third, on some operating systems, including Linux, when the flow of

normal TCP data is blocked, so is the flow of both urgent data and urgent data notification. A

separate control socket avoids all these problems.

A suspended rock automatically attempts to reconnect to its peer by performing the

following four steps:

34

1. Establish a new data connection: Each rock simultaneously attempts to establish a

connection with its peer at its last known address, the IP address and port number of the

peer end of the previous data connection. Whichever connection attempt succeeds first

becomes the new data connection.

2. Authenticate: The rocks mutually authenticate through a challenge-response protocol that

is based on the key they established during initialization.

3. Establish a new control socket: The new control socket is established in the same manner

as the original control socket.

4. Recover in-flight data: The rocks perform a go-back-N retransmission of any data that was

in-flight at the time of the connection failure. Each rock determines the amount of in-flight

data it needs to resend by comparing the number of bytes that were received by the peer to

the number bytes it sent.

Rock reconnection is a best-effort mechanism: it depends on the ability of one end (it does

not matter which one) to establish a new connection to the other. A rock cannot establish a

new connection if (1) the other end has moved during the period of disconnection, (2) it is

blocked from establishing a new connection by a firewall, or (3) the last known address of the

peer was masqueraded by a NAT device. Although ordinary applications cannot recover from

these cases, the RE-API provides an interface to support mobile-aware applications with

alternate means of recovery. Mobile-aware applications can receive a callback when a

connection is suspended or when its reconnection timeout expires, and they can specify an

alternate last known address. Suspended rocks attempt to reconnect for three days, a period of

time that handles disconnections that span a weekend; the RE-API can be used to change or

35

disable the period on per-rock basis. Rocks suspended longer switch to the CLOSED state and

behave to the application like an ordinary aborted socket.

A rock closes gracefully when the application calls close or shutdown. If the application

attempts to close a suspended rock, the rock continues to try to reconnect to the peer, and then

automatically performs a normal close once it is reconnected, preserving in all but one case

the close semantics of TCP. The outstanding case is that an application attempt to abort a TCP

connection is converted by the rocks library to an ordinary close, because rocks uses the abort

mechanism to distinguish connection failure from intentional application-level close. We have

yet to see an application that depends on abort semantics, but should one exist, rocks could

use the control socket to indicate an application abort.

Rocks include two programs, rock and rockd, that make it simple to use rocks with

existing applications. rock starts a program as a rock-enabled program by linking it with the

reliable sockets library at run time. rockd is a reliable socket proxy that enables rock-enabled

applications to move while they have open connections to applications that do not support

rocks. This mobility is enabled by re-directing the communication between the applications

through the rockd. Although the connection between the rockd and the ordinary application is

not reliable, the rocks-enabled application can freely move. To simplify the use of rockd, the

RE-API has an option to redirect a new connection through a rockd when the enhancement

detection protocol detects a peer that does not support rocks.

3.3.2 Experience

The rocks implementation functions well for many interactive programs including ssh,

telnet, and X windows clients such as GNU Emacs and Adobe Framemaker. On hosts where

36

we have root access, we have modified the startup scripts for the corresponding servers to use

rocks; on other server hosts, we establish rocks connections through rockd. Using rocks by

default generally works well since the EDP switches to ordinary sockets when necessary.

However, problems sometimes arise when trying to use rocks with a new application. The

main issue is maintaining application transparency; new applications can exhibit behavior that

interferes with the rocks library in unanticipated ways. The point of this section is to illustrate

the major problems that must be handled by a system that uses user-level interposition to

maintain application transparency: reliably intercepting function calls, sharing resources

among processes and invocations of programs, and virtualizing various OS resources.

We usually link an application with the reliable sockets library by using the preloading

feature of the Linux loader, a commonly available mechanism that enables a library to be

linked with binaries at execution time. Preloading has several problems. First, not all binaries

support preloading: it cannot be performed on static binaries, since it depends on the dynamic

linker, and for security reasons it is usually disabled for setuid binaries. Second, system

libraries do not always correctly support preloading: the name resolver in the Linux C library,

for example, contains static calls to socket that cannot be trapped by the preloading

mechanism. Rocks works around this problem by patching the C library with corrected calls at

run time, but this technique requires knowledge of the problematic functions, which may

change with new library versions. Third, the rocks library may not be the only library that the

user wants to interpose in their application. For example, they may also link those used by

Kangaroo [78], Condor [40], or those created by the Bypass toolkit [79]. Multiple library

interposition requires a sensible ordering of the libraries, linkage of intercepted function calls

through each library, and consistent management of file descriptors and other kernel resources

37

virtualized by the libraries, none of which happens automatically. Although libraries

generated by Bypass can co-exist with other interposed libraries, most others just assume they

will be placed at the layer closest to the kernel.

Since the rocks state resides in user space, it is not automatically managed by the kernel

when the application calls fork or passes the underlying socket descriptor to another process

over a Unix socket. When a rock becomes shared in either of these ways, the rocks library

does several things. First, it moves the state of the rock to a shared memory segment, and

forces all sharing processes to attach to the segment. Second, it makes one of the sharing

processes responsible for monitoring the rock’s heartbeat and triggering its reconnection in

the event of failure. Third, in the other sharing processes, it periodically verifies that the

responsible process is still running and, if it is not, chooses another process to resume its

responsibilities.

Another problem stemming from rock sharing is that a server daemon that hands off

incoming client connections to subprocesses may find itself accepting reconnection attempts

from past connections. Rocks maintains in shared memory a table mapping rock identifiers to

processes. When a server rock accepts a reconnection attempt, it uses this table to locate the

process that has the other end of that suspended connection, and passes the new connection to

it.

A similar problem with the user-level state of a rock occurs when the application calls

exec. If left alone, exec would expunge from the process all rocks state, including the rocks

library, but retain the underlying kernel sockets. When the rocks library intercepts an

application call to exec, it creates and shares its rocks with a temporary process, sets the

environment variables used to preload the rocks library, and then allows the exec call to

38

execute. If the call fails, the library kills the temporary process. If the call succeeds and the

rocks library is loaded, the library transfers the state of the rocks from the temporary process

during its initialization. If the call succeeds but, because the preloading does not work in the

new binary, the rocks library is not loaded and the temporary process eventually times out and

closes the rocks.

Maintaining transparency requires virtualizing additional mechanisms, including: (1)

emulating polling, asynchronous I/O, and non-blocking I/O semantics for reliable sockets,

since data may be available to read from a user-level buffer in the rocks library; (2)

multiplexing the timers and signal handlers set by both the application and the heartbeat

mechanism; and (3) virtualizing process control interfaces such as wait, kill, and SIGCHLD to

isolate processes created by the application from those created by the rock library.

None of these issues alone is particularly difficult, but in aggregation the mechanisms we

have introduced to preserve transparency are nearly as substantial as the socket enhancements

they support and they create additional operating system dependencies that diminish the

portability of rocks.

3.4 Reliable Packets

Seeking an alternative to the application transparency problems created by the rocks

library, we developed reliable packets with the goal of supporting network connection

mobility outside the kernel without the need to execute in process’ address space. The main

idea is to use a packet filter to manipulate the packets that are exchanged between the kernel-

level socket endpoints of the connection, instead of trying to control the behavior of the

sockets API seen by applications. This idea is similar to the use of packet manipulation in the

39

TCP migrate option [69] and the TCP splice of the MSOCKS proxy [41]. The main

differences are that racks perform packet manipulations without kernel modifications and they

provide additional functionality including interoperability, long-term connection suspension,

and automatic failure detection and reconnection.

A packet filter [48] is a kernel mechanism that enables a user process to select packets that

traverse the host network stack. Packet selection is based on a set of matching rules, such as a

particular combination of TCP flags or a range of source IP addresses, that the process

dynamically passes to the packet filter. Early applications of packet filters included user-level

implementation of network protocols, trading the performance penalty of passing network

traffic over the user-kernel boundary for the convenience of kernel independence [48]; racks

follows this tradition. However, as the primary use of packet filters turned to network

monitoring [42,47], the kernel functionality that enabled packets to be redirected through user

space became replaced with more efficient mechanisms for passing copies of packets, making

systems like racks difficult to develop. Recently the ability to control packets from user space

has returned to some operating systems, primarily to support firewall software. Our

implementation is based on the Linux netfilter technology [7], but it also could be built using

FreeBSD’s divert sockets [17].

Racks are implemented in a daemon, the rackd, that uses a packet filter to insert itself in

the flow of packets between local sockets and the network (see Figure 3.5). The job of the

rackd is to prevent local TCP sockets from aborting due to connection failure. Since the rackd

executes as a separate process outside of both the kernel and application processes, the rackd

lacks the ability to change the binding of kernel sockets to other processes. If it allowed

sockets to abort, as the rocks library does, it could not recover the connection.

40

The rackd inspects packets flowing in either direction and, for each packet, decides

whether to discard it or to forward it, possibly modified, to its destination. At any time, the

rackd may also inject new packets destined for either end of the connection. Because these

operations are privileged on Linux, the rackd needs to run with root privileges.

To be compatible with rocks, the rackd emulates the behavior of reliable sockets,

generating a packet stream that is indistinguishable from that induced by the rocks library.

However, for connections in which the peer is also managed by a rackd, it takes advantage of

the fine control it has over packets to use a simpler enhancement detection protocol and to

detect failures without a separate control socket.

The rackd exchanges messages with the rackd or rocks library at the other end of each

connection during initialization, authentication, and reconnection. The rackd sends a message

by injecting it as if it were data sent by the local socket. It sends the message in a TCP packet

whose sequence number follows the sequence number of the last data emitted by the local

socket. Once a message has been sent and acknowledged, the local socket and the remote end

Figure 3.5: The reliable packets architecture.

Host

Local
TCP

Socket

Kernel

User

Packet

Network

 Filter

Outbound
Packet Flow
Inbound
Packet Flow

Application
Process Rackd

41

no longer have synchronized sequence numbers. The rackd rewrites packets as it forwards

them to map sequence and acknowledgement numbers to those expected by the socket.

To establish new connections under the control of the rackd, the rackd configures the

packet filter to redirect packets in which only the TCP SYN flag is set; these packets are the

first in the three-way handshake of TCP connection establishment. It receives both outbound

initial SYN packets (connection attempts issued by local client sockets) and inbound ones

(attempts by remote clients to connect to local servers). Since the initial SYN contains the IP

address and port number of both ends of the connection being created, it contains all the

information necessary for the rackd to select subsequent packets for that connection.

When the initial SYN originates from a local socket, the rackd completes the three-way

handshake on its behalf, except it uses a different initial sequence number from the one

supplied in the initial SYN and it blocks the local socket from seeing the packets exchanged

during the handshake. It performs the EDP client probe over the established connection and

then closes it. The rackd then allows the local socket to complete the three-way handshake by

sending the original initial SYN packet. If it determined from the EDP probe that the peer is

enhanced, the rackd takes control of the connection. Otherwise, it releases the connection by

configuring the packet filter to cease redirecting the associated packets; since the local socket

connection was established using the original initial sequence number and no messages were

exchanged, it can function normally without the rackd.

When the initial SYN originates remotely, the rackd allows the local socket to perform the

three-way handshake. The rackd data watches for one of three initial events from the remote

client: (1) if the client performs a client probe, the rackd sends the enhancement

announcement to the client and closes both ends of the connection; (2) if the client sends an

42

enhancement announcement, it exchanges reliable sockets initialization messages; otherwise,

(3) the rackd releases the connection.

The connection establishment protocol is short circuited if a rackd is present at both ends

of the connection. When sending an initial SYN, the rackd modifies the packet to include an

unallocated TCP option value that indicates it was produced by a rackd. A rackd that receives

an initial SYN containing this option also includes the option in the second packet of the

three-way handshake. At this point, both ends of the new connection are mutually aware of

their racks support, and immediately following the third packet of the handshake they

initialize a reliable sockets connection. As with any other TCP options, the rackd option is

ignored on hosts that do not look for it.

Racks detect failures on an established connection using the TCP keepalive protocol

instead of a separate control socket. The rackd periodically sends a standard keep-alive probe,

a TCP packet with no payload whose sequence number is one less than the last sequence

number acknowledged by the peer. When the rackd on the other end receives this packet, it

forwards it to the remote socket and in response, the remote socket sends the standard reply to

a keepalive probe: an acknowledgement of the current sequence number. To the sending

rackd, these acknowledgements serve the role of a heartbeat that asserts the viability of the

connection. This technique is unaffected by the use of the keepalive option by the processes

on either end of the connection: TCP responds to the probes even if the option is not set and

TCP is not affected by the presence of more probes than usual. The keepalive protocol is used

when the rackd is connected to another rack; when connected to a rock, the rackd manages a

separate control socket.

43

When it suspends a connection, the rackd must prevent the local socket from aborting,

which will happen if there is unacknowledged data in the send buffer or if the application has

enabled the TCP keep-alive probe. The rackd sends to the local socket a TCP packet

advertising a zero receive-window from its peer. These packets indicate to the local socket

that the peer is viable, but currently cannot accept more data. The local socket periodically

probes the remote socket for a change in this condition. While the connection is suspended,

the rackd acknowledges the probe, leaving the window size unchanged. Although TCP

implementations are discouraged from closing their windows in this manner, their peers are

required [10] to cope with them and remain open as long as probes are acknowledged.

Racks reconnect in the same way as reliable sockets: each end of the connection attempts

to reconnect to the last known address of its peer. When the rackd receives a new initial SYN

from a remote socket, it first checks whether it is destined for the previous local address of any

suspended racks. If it is, it handles the SYN as an incoming reconnection. To maintain

consistency with the local socket, the rackd rewrites the packets of the new connection to

match the source IP address, port numbers, and sequence numbers to those expected by the

receiving socket, a function similar to that performed by the TCP splice in MSOCKS [41].

3.5 Security

Rocks and racks do not provide additional protection from the existing security problems

of network connections. To that end, rocks and racks guarantee that a suspended connection

can only be resumed by the party that possesses the key established during initialization. Since

it is obtained through the Diffie-Hellman key exchange protocol, the key is secure against

passive eavesdropping [43].

44

Like ordinary network connections, rocks and racks are vulnerable to man-in-the-middle

attacks staged during the key exchange or after the connection is established. Resolving this

limitation requires a trusted third party that can authenticate connection endpoints. Currently,

applications that require this additional level of security can register callbacks with the RE-

API to invoke their authentication mechanism during initialization and reconnection. It should

be easy to extend rocks and racks to interface with a public key infrastructure, but we are

waiting for this technology to become more widespread. Rocks and racks are compatible with

existing TCP/IP-based protocols for encryption and authentication, such as SSH [85] and

IPsec [35].

In addition, rocks and racks may be more sensitive to denial-of-service attacks because

they consume more resources than ordinary connections. Most of the additional memory

consumption occurs at user level in the rocks library or the rackd, however additional kernel

resources are consumed by the rock control socket and the rackd packet filter rules. These do

not represent new types of denial-of-service attacks, but they may lower the requirements for

an attacker to bring down a host.

3.6 Process Checkpointing

Existing process checkpoint mechanisms can take advantage of reliable sockets without

any modification. When a process linked with rocks is checkpointed, the state of the rocks

library is automatically saved with the rest of the process address space. When the process is

restarted from the checkpoint, the rocks library detects that the socket file descriptors have

become invalid, and initiates their recovery. A process that uses rocks can be migrated with its

connections simply by restarting its checkpoint on the new host.

45

Racks are more complicated to checkpoint. We have experimented with adding racks

checkpointing support to a user-level checkpoint library that is linked with the process it

checkpoints. A rack checkpoint consists of the state maintained by the rackd and, since the

rackd does not buffer in-flight data, the contents of the kernel socket buffers. When directed

by the checkpoint library, the rackd induces the socket to transmit the contents of any

unacknowledged data in its send-buffer by advertising a large receive window. The

checkpoint library obtains the receive-buffer contents by reading from the socket. When

restoring a rack checkpoint, the checkpoint library passes the checkpoint to the rackd, creates

a new socket, and connects the socket to a special address. The rackd intercepts the packets

exchanged during the connection and rather than establishing a normal connection, resumes

the connection from the checkpoint. To restore the socket buffers, the checkpoint library sends

the send-buffer contents through the socket, and the rackd transmits the receive-buffer

contents to the local socket.

The process checkpointing functionality enabled by rocks and racks can be used in several

ways. To tolerate the failure of a single node, the process running on that node can be

checkpointed and then restarted when the node recovers. The same checkpoint can also be

used to migrate the process to another node by restarting the checkpoint on the new node. In

the same manner, the entire application can be migrated to a new set of hosts, although this

migration must be performed one process at a time to ensure successful reconnection.

Alternately, the RE-API could be used to link an arbitrary mechanism for locating migrated

processes with the rocks library.

Racks and rocks can also be used to obtain a global checkpoint of a TCP-based parallel

application, such as one based on MPI [44] or PVM [26] in direct message routing mode,

46

from which the application can be restarted after a hardware failure. They free the checkpoint

mechanism from any knowledge of the library-level communication semantics of the

application, since the rocks and racks recovery mechanisms operate on the underlying

sockets, the least common denominator. In contrast, other systems that checkpoint parallel

programs, such as CoCheck [74,75] and MIST [13], are explicitly aware of the

communication library used by the application. Care must be taken to ensure that the

checkpoint of a parallel program is globally consistent. One approach is to stop each process

after it checkpoints. Once all processes have checkpointed, the application can be resumed. A

more general approach that does not require the entire application to be stopped is to take a

Chandy and Lamport distributed snapshot [14].

We have used racks and rocks to checkpoint and migrate the processes of an ordinary MPI

application running under MPICH [30]. The application runs on a cluster of workstations

using the MPICH p4 device. Once the application is started, each process can be signalled to

checkpoint and then terminate or stop.

3.7 UDP

Rocks or racks are not an obvious fit with UDP-based applications. However, the mobility

features of rocks and racks can be a benefit to UDP applications by enabling a program to

continue its communication following a change of address or an extended period of

disconnection. For example, rocks or racks could allow streaming media applications to

automatically continue after user disconnection and movement. On the other hand, the

reliability features of rocks and racks are not always appropriate for UDP. Although they

could simplify the reliability mechanisms of some UDP applications, for others the reliable

47

delivery of all data may compromise the application’s performance or be poorly matched to its

reliability model.

Since UDP is inherently unreliable, applications that use UDP must be prepared for lost,

duplicated, and out-of-order datagrams. Applications generally use timeouts to trigger

retransmission of lost data and to decide that communication should be aborted. It would be

difficult for rocks and racks to override timer-based mechanisms, since that would require

them to understand the application sufficiently to separate timer events related to

communication failure from those that trigger other events such as user-level thread

scheduling. Instead, the main benefit of rocks and racks to UDP applications is that they can

be a source of information about mobility.

The RE-API provides callbacks through which mobile-aware applications can be notified

when a failure has been detected by rocks or racks and when the reconnection mechanism has

located the remote peer. These callbacks are not a replacement for reliability mechanisms used

by the application, but rather they provide these mechanisms with additional information

about communication failures. In the rare cases in which the full reliability features of rocks

and racks are appropriate for a UDP application, the RE-API also allows the application to

tunnel UDP packets over a rocks- or racks-managed TCP connection.

3.8 Performance

We have evaluated rocks and racks data transfer throughput and latency, connection

latency, and reconnection latency over TCP connections between a stationary 500MHz Intel

Pentium III laptop and a mobile 700MHz Intel Pentium III laptop both running Linux 2.4.17.

Overall, there are few surprises. The additional context switches and copying of redirecting

48

packets through the rackd makes racks the more expensive of the two systems. The overhead

of rocks is noticeable only when data is transferred in small packets, while the performance

effects of racks are more significant and occur at larger block sizes. The startup cost of both

rocks and racks connection establishment is significantly higher than that of an ordinary TCP

connection, but only on the order of 1 ms. Altogether, we feel the overhead is acceptable for

the level of mobility and reliability functionality provided by these systems.

3.8.1 Throughput and Latency

We attached the stationary laptop to a 100BaseT ethernet switch in our department

network and measured the TCP throughput and latency between it and the mobile laptop from

three different links: the same switch, the department 802.11b wireless network, and a home

network connected to the Internet by a cable modem (in the uplink direction). We compared

throughput and latency of ordinary sockets, rocks, and racks with varying block sizes. Block

size is the size of the buffer passed to the socket send system call. We report average

measurements over five runs (see Figure 3.6).

The overhead of rocks and racks is most vividly illustrated on the fast link. For blocks of

size 100 bytes and larger, ordinary sockets and rocks have comparable throughput that is close

to the link capacity (around 90Mb/sec). For smaller blocks throughput drops for all three

connection types, however the drop is larger for rocks. The latency overhead of rocks is small

(around 10 usec) and independent of block size. We attribute the rocks overhead to the various

per-operation costs incurred during data transfer over rocks, including the overhead of

copying into the in-flight buffer, periodic heartbeat interruptions, and the rocks wrappers to

underlying socket API functions. Racks have more dramatic overhead. While they have

49

throughput similar to rocks on small blocks, for larger blocks it plateaus at a significantly

lower rate (less than 75Mb/sec). There is also a higher per-block latency overhead that, unlike

rocks, increases with the block size. We attribute this overhead to the additional per-packet

rackd context switches and system calls and the overhead of copying packets in and out of the

rackd.

Figure 3.6: Average rocks and racks throughput and latency.
Results shown for 100BaseT, 802.11b, and cable modem links. Note that the cable modem throughput graph has

a non-zero y-axis, exaggerating the differences.

100BaseT Throughput

0
10
20
30
40
50
60
70
80
90

100

1 10 100 1000 10000
Block size (bytes)

T
h

ro
u

g
h

p
u

t
(M

b
/s

ec
)

Sockets
Rocks
Racks

100BaseT Latency

0

100

200

300

400

500

600

700

800

900

1000

0 200 400 600 800 1000 1200 1400
Block size (bytes)

L
a

te
n

c
y

 (
u

s
e

c
)

Sockets

Rocks
Racks

802.11b Throughput

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

1 10 100 1000 10000
Block size (bytes)

T
h

ro
u

g
h

p
u

t
(M

b
/s

e
c

)

Sockets
Rocks
Racks

802.11b Latency

0

1000

2000
3000

4000

5000

6000

7000
8000

9000

10000

0 200 400 600 800 1000 1200
Block size (bytes)

L
a

te
n

c
y

 (
u

s
e

c
)

Sockets
Rocks
Racks

Cable Modem Throughput

0.11

0.111

0.112

0.113

0.114

0.115

0.116

0.117

0.118

1 10 100 1000 10000
Block size (bytes)

T
h

ro
u

g
h

p
u

t
(M

b
/s

e
c

)

Sockets
Rocks
Racks

Cable Modem Latency

0

10000

20000

30000

40000

50000

60000

70000

80000

0 200 400 600 800 1000 1200
Block size (bytes)

L
a

te
n

c
y

 (
u

s
e

c
)

Sockets
Rocks
Racks

50

The performance effects of racks and rocks are less easily discerned on the slower links.

While we had exclusive access to the 100BaseT switch, the measurements on the 802.11b and

cable modem networks were subject to the varying conditions of these shared networks,

making it difficult to capture clear differences. On the 802.11b link, the standard deviation is

about 20% of the average throughput and about 15% of the average latency. On the cable

modem, the standard deviation is about 4% of the average throughput and about 40% of the

average latency. We conclude that the overhead of racks is still apparent on slower links, but

not the overhead of rocks.

3.8.2 Connection

We measured the connection overhead in a rock-to-rock connection and a rack-to-rack

connection. We timed 100 application calls to connect and report the average times in

Figure 3.7. Rock connection time is about 18 times higher than the time for ordinary socket

connection, while rack connection is about 16 times higher. The most expensive aspect of

both connections is the key exchange for authentication, an operation that involves large

integer arithmetic and takes approximately 2 ms. Although these times are high, connection

times are still about 4 ms, which we deem an acceptable cost for the added reliability and

mobility.

Connection Type Time (usec)

Ordinary Sockets 221
Rocks 3908
Racks 3588

Figure 3.7: Average TCP connection establishment time.

51

3.8.3 Reconnection

We measured the amount of time it takes to reconnect a suspended rock or rack.

Reconnection time is the time following a restoration of network connectivity that a rock

spends establishing a new data and control socket with the peer and recovering in-flight data.

For the experiment, we suspended a connection by disabling the network interface on one

machine, then measured the time elapsed from when we re-enabled the interface to when the

connection returned to the ESTABLISHED state.

The elapsed time over multiple runs of the experiment were always under 2 seconds. This

time is less than the time required to restart most non-trivial applications that would fail

without rocks or racks, and small in the time scale of the events that typically lead to network

connection failures, such as change of link device, link device failure, laptop suspension, re-

dial and connect, or process migration, and so, we conclude, acceptable.

3.9 Portability

An initial port of rocks to Microsoft Windows has been completed. The goals of this port

were to test the generality of our techniques and to make the system available to a wider set of

users. Because the Windows sockets API (winsocks) contains significantly more calls than the

Unix sockets API, the strategy has been to first port the subset of winsocks corresponding to

the Unix calls, and then incrementally add support for the remaining calls. The status of the

port is that rocks supports enough of winsocks (version 2, the current version) to work with

two ssh clients, SSH and SecureCRT, the Windows ftp client, and some simple servers. Three

aspects of rocks required major effort to port: intercepting calls to winsocks API; supporting

Windows I/O models that are not available on Unix or not supported by rocks on Unix; and

52

processing heartbeats. The parts of rocks that are based on socket and operating system

features common among Unix and Windows, such as the enhancement detection protocol in-

flight buffers, connection initialization, and the reconnection algorithm, required little effort to

port.

Winsocks is implemented in a library that is loaded in each Windows process that uses it.

Rocks needs a way to transparently intercept calls that the application makes to this library.

Unfortunately, Windows does not provide a mechanism like the Unix preload loader option

for inserting new code at an API layer. Several techniques have been developed by the

Windows programmer community to achieve this functionality. The one we decided to use

involves re-writing the in-memory import table, a jump table in each library or executable for

calls to external functions that is patched at run time. Rocks uses a special application

launcher that starts the application, allows the operating system to perform run-time linking,

loads the rocks library, and then replaces import table entries for winsocks calls with jumps to

the corresponding calls in the rocks library. It was easy to integrate this new mechanism into

rocks because there is a clean separation between the sockets API implementation in the rocks

library and the mechanism that re-directs application calls to it.

Although winsocks provides significantly more calls than the Unix sockets API (see

Figure 3.8), more than half of these calls involve operations that are independent of rocks.

Calls that rocks can ignore include those involving (1) name services and network addresses,

which like their Unix counterparts do not affect connections, (2) multipoint and multicast

networks, which are not supported by rocks on Unix, and (3) connect and disconnect data,

which is data sent upon connection establishment and termination, an optional transport

protocol feature that is not available for TCP or UDP.

53

Of the calls that must be ported, the easiest subset to port are those that map directly to the

Unix sockets API. Except for minor differences in function call names and parameter types,

these calls are identical to their Unix counterparts. They have been ported as needed; we do

not expect the remaining calls in this category to be challenging to port.

The more challenging calls are those related to three I/O models that are not supported by

rocks. The model that has been ported is that which enables network events to be converted to

messages sent to a window. Rocks must ensure that this binding is preserved across

disconnection and reconnection events, and it must ensure that messages caused by socket

failure are not forwarded to the window. When the rocks library intercepts a call to

WSAAsyncSelect, the call that establishes this binding, it binds the event to an invisible

window whose message dispatcher forwards desirable events to the requested windows, but

drops events caused by socket failure, instead switching the rock to the suspended state.

Types of Calls Winsock API Calls

Affected
By Rocks

Unix analogues
accept, bind, closesocket, connect, getpeername, getsockname, getsockopt,
ioctlsocket, listen, recv, recvfrom, select, send, sendto, setsockopt, shutdown,
socket, WSADuplicateSocket, WSAGetLastError, WSASetLastError

Startup and Cleanup WSAStartup, WSACleanup
Window binding WSAAsyncSelect

Event object binding
WSACloseEvent, WSACreateEvent, WSAEnumNetworkEvents,
WSAEventSelect, WSAResetEvent, WSASetEvent,
WSAWaitForMultipleEvents

Overlapped I/O WSAGetOverlappedResult, WSAIoctl, WSARecv, WSARecvEx,
WSARecvFrom, WSASend, WSASendTo, WSASocket

Extensions AcceptEx, ConnectEx, DisconnectEx, GetAcceptExSockaddrs, TransmitFile,
TransmitPackets

Not
Affected
By Rocks

Name Services and Net-
work Addresses

freeaddrinfo, GetAddressByName, getaddrinfo, gethostbyaddr, gethostbyname,
gethostname, getnameinfo, getprotobyname, getprotobynumber, getservbyname,
getservbyport, htonl, htons, inet_addr, inet_ntoa, ntohl, ntohs,
WSAAddressToString, WSAAsyncGetHostByAddr,
WSAAsyncGetHostByName, WSAAsyncGetProtoByName,
WSAAsyncGetProtoByNumber, WSAAsyncGetServByName,
WSAAsyncGetServByPort, WSACancelAsyncRequest,
WSAEnumNameSpaceProviders, WSAEnumProtocols, WSAGetQOSByName,
WSAGetServiceClassInfo, WSAGetServiceClassNameByClassId, WSAHtonl,
WSAHtons, WSAInstallServiceClass, WSALookupServiceBegin,
WSALookupServiceEnd, WSALookupServiceNext, WSANSPIoctl, WSANtohl,
WSANtohs, WSAProviderConfigChange, WSARemoveServiceClass,
WSASetService, WSAStringToAddress

Multipoint and Multicast WSAJoinLeaf
Connect Data WSAAccept, WSAConnect, WSARecvDisconnect, WSASendDisconnect

Figure 3.8: Windows Sockets API (Version 2) calls.
Ported calls are shown in boldface.

54

Whenever a suspended rock is reconnected, any previously established event bindings are

restored.

The other two types of I/O models require a similar strategy, but they have not been

implemented yet. First, network events can be converted to notification of Windows event

objects, which are synchronization objects similar to (but not exactly) binary semaphores.

When a network event of interest occurs on a socket, this binding mode causes the event

object to be signalled, after which a thread waiting on the event is awakened.

Second, overlapped I/O is similar to the Unix asynchronous I/O model in which I/O

operations started by the application return immediately and the operating system notifies the

application when the operation completes. Use of this model is not widespread in Unix

programs [76] and so it has not yet been supported in the Unix version of rocks.

The remaining winsocks calls that need to be ported are functions that act as wrappers for

common sequences of socket operations. For example, AcceptEx in addition to accepting a

new connection returns a copy of the local and remote addresses of the connection and reads

an initial block of data. Since these calls can be described in terms of underlying sockets API

calls, it should be simple to port them by re-implementing their definition over rocks versions

of the same functions.

The final major porting effort involved a new design for the mechanism that sends and

receives heartbeats and suspends rocks that have not received heartbeats recently. On Unix,

these operations are performed in a signal handler that is periodically called using one of the

timers the operating system provides to processes. Such a facility is not available on Windows

– there is no way to asynchronously interrupt a thread – so instead heartbeats are handled in a

thread, called the control thread, that is created for each rock. The control thread is also used

55

for reconnection, which on Unix is handled in a separate process. This new design is simpler

than the Unix design and would be possible to implement on Unix; the advantages of

substituting it for the current Unix mechanism would be less platform-specific code and the

elimination of potential contention for the Unix timer facility between the rocks library and

the application.

56

57

Chapter 4

User Interfaces

Interactive applications have graphical user interfaces (GUIs) that a user may wish to

move with the application or independently of the application. Both types of movement

require the ability to extract the state of a GUI from one machine and regenerate it on a

different one transparently to the application. Guievict is our system for performing this

operation. The main idea behind guievict is to capture the application’s window session, a

transportable representation of its GUI. This abstraction precisely encapsulates the GUI state

of the application — not individual windows of the application, nor the windows of all

applications that are being displayed on a particular machine. In addition to enabling the

mobility operations of moving a running application’s GUI to a different display and

migrating a running application with its GUI to a different machine, window sessions enable

GUIs to be replicated on multiple displays, a necessary primitive for building collaborative

applications [2], without any application-level support for replication.

58

Guievict is distinguished from previous work by the following characteristics:

• Migration occurs at application granularity; users can select and move the GUI of

individual applications from their desktop, leaving the GUIs of other applications behind

or free to move elsewhere.

• Any application program, including those based on legacy toolkits, can be migrated

without modifications such as re-programming, re-compiling, or re-linking.

• Migration can be unpremeditated; users do not need to run their applications in a special

way, such as by redirecting their GUI communication through a proxy.

• No modifications to window system code are required; the new functionality is

encapsulated in (1) a window server extension, implemented on top of the window server

extension API, that is loaded in the server when it is started, and (2) a library that is loaded

into the application at run-time.

Figure 4.1 shows the essential elements of a GUI-based application. The application runs

in one or more processes on the execution host and the user interacts with it from a possibly

different desktop host. The desktop comprises a display, keyboard, and mouse managed by a

window system that multiplexes the desktop for all applications that interact with the user at

that host. The window system responds to requests for GUI services (such as creating a

window) sent by the application and passes notification of desktop events (such as a mouse

Figure 4.1: The elements of a GUI-based application.
The user interacts with the application through hardware managed by the window server on the desktop host.

The application process executes on a possibly different execution host, exchanging GUI-related messages with
the window server over a communication channel.

User

Execution Host

Application

GUI Libraries

Desktop Host

Window
 Server

Keyboard
Mouse

Display

Communication
Channel

59

click) to the application over a communication channel such as a network connection or

(when the execution and desktop hosts are the same) shared memory. The state of the

application GUI is distributed between the window system and a library (often called a

toolkit) in the application process.

Guievict has been implemented for the X window system [67] (using the XFree86

implementation) and required overcoming four challenges:

• Dynamically taking control of the window system operations of a running program.

Guievict injects code into the application process that discovers the process’s

communication channel to the window server and synchronizes its communication with

the server.

• Retrieving the GUI resources of an application: The guievict X window server extension

enables an application, at any time, to determine the identifiers of its GUI resources and

the dependencies among these resources, and to extract these resources in a form from

which they can be regenerated on a new desktop.

• Regenerating an application’s resources in another desktop host: Guievict uses standard X

protocol operations to regenerate GUI resources in the new window server.

• Ensuring GUI migration is transparent to the application: Applications whose GUIs have

been migrated can be confused by the resulting changes to resource identifiers, message

sequence numbers, and display characteristics such as pixel depth. Guievict interposes a

filter (called the guimux) on the communication between the application that provides the

mapping necessary to maintain transparency. The guimux also serves as a multiplexor for

GUI replication.

Although other commodity window systems, such as Microsoft Windows and the Quartz

system in Apple’s OS X, have significantly different architecture and programming models

from X windows, they present similar fundamental barriers to capturing window sessions. For

example, Windows also lacks an interface for enumerating all of the GUI resources that an

application has allocated [86] and, since the operating system rather than the application

60

assigns identifiers to resources, it also requires guievict-like systems to provide a way to hide

changes in GUI resource identifiers from the application. Most OS X applications are based

on toolkit libraries provided by the operating system. The toolkits do not provide operations

for capturing window sessions, and the interface between the toolkit libraries and the window

system is undocumented [3].

The main limitations of guievict are that (1) it requires the user to install the X window

server extension on their desktop hosts, (2) it requires the application binary to contain symbol

table entries for the window protocol stubs it calls, and (3) it has a large (20 second) overhead

in checkpointing font state. We discuss implications and possible workarounds of the last two

issues in Section 4.2.

The remainder of the chapter is organized as follows. Section 4.1 presents the architecture

of guievict. Section 4.2 describes its implementation. Section 4.3 presents the evaluation of

guievict. Section 4.4 identifies the security issues raised by guievict.

4.1 System Overview

A guievict user first attaches (see Figure 4.2) guievict to their application, after which

they can perform any of three operations: migrating the application’s GUI from one desktop

host to another, replicating the application’s GUI on multiple desktops, and migrating the

application process along with its GUI. These operations involve four system components.

The guievictor is a program that the user runs to control the guievict system. The user runs it

on the host running the application process. The guievict client library is loaded by the

guievictor at run time into the application process and implements application-side GUI

migration operations. The guievict server extension is the corresponding server-side

61

component. The guimux is a daemon, started by the client library, that runs on the execution

host and ensures that GUI migration and replication is transparent to the application.

The remainder of this section describes the guievict operations in detail. The next section

discusses solutions to the technical problems underlying these operations.

4.1.1 Initialization

The user prepares a running application process for the guievict system by invoking the

guievictor’s initialize operation, passing the application process identifier as an argument. The

guievictor hijacks [88] the application process: it stops the process and forces it to load and

initialize the guievict client library (see Figure 4.2). Hijacking is transparent to the

application; afterward, the guievictor resumes the application process, allowing it to continue

normally. During its initialization the client library establishes a communication channel for

future interaction with guievictor. When the user later runs guievictor again to request a

guievict operation, guievictor uses the channel to interrupt the application process and send

commands to the client library.

Figure 4.2: Initializing the application process.
The guievictor stops the application process, forces it to load the guievict client library, and exits.

Execution Host

Application

X libraries

guievictor

Execution Host

Application

X libraries

guievict

Before Initialization After Initialization

 client
library

62

The guievict server extension must be loaded and initialized in the window server before

the user’s first request for a guievict operation. Because the XFree86 window server does not

support run-time extension loading (although it contains much of the necessary mechanism),

the user must arrange for the extension to be loaded when the server is started, which entails

adding a line to its configuration file.

4.1.2 GUI Migration

GUI migration is broken down into two steps.

First, the user requests the application (with a guievictor command) to detach its GUI

from the window server. In response the guievict client library (see Figure 4.3):

1. Synchronizes the application’s communication with the window server and blocks the

application from further communication;

2. Retrieves the window session from the server;

3. Closes the connection to the window server.

Figure 4.3: Detaching a GUI from Desktop A.
The guievict client library requests the window session from the guievict server extension at Desktop A, then

closes the connection.

Execution Host

Application

X Libraries

guievict lib

Desktop Host A

Window
 Server

Window
Session

Retrieve

Window
Session

Desktop Host B

Window
 Server

Execution Host

Application

X Libraries

guievict lib

Desktop Host A

Window
 Server

Desktop Host B

Window
 Server

Window
Session

Before Detach After Detach

Window system
socket connection
Guievict message

guievict
extension

guievict
extension

guievict
extension

guievict
extension

63

Second, the user requests the application to re-attach its GUI to a new window server (see

Figure 4.4). The guievict client library starts a guimux process, replaces the application’s

socket to the window server with a full-duplex pipe to the guimux process, and then transfers

control to the guimux process. Then the guimux process:

1. Opens a connection to the new window server;

2. Regenerates the state of the window session;

3. Signals the guievict client library to resume the application.

The re-attach operation may come an arbitrary period of time after the detach. In the

meantime, the client library suspends the execution of application code to prevent the

temporary absence of a window server connection from affecting the application. For the

common case of a user who wishes to detach from one desktop and attach to another in one

logical operation, the guievictor provides a combined detach and attach command.

Figure 4.4: Re-attaching a GUI to Desktop B.
The guievict client library establishes a new connection to Desktop B through the guimux, which forwards all

window communication between the application and Desktop B, starting with the request to regenerate the
window session.

Before Re-attach
Execution Host

Application

X Libraries

guievict lib

Desktop Host A

Window
 Server

Desktop Host B

Window
 Server

Execution Host

Application

X Libraries

guievict lib

Desktop Host A

Window
 Server

Desktop Host B

Window
 Server

Window
Session

guimux

Window
Session

Window
Session

Window

Session

Window system
socket connection
Guievict message

After Re-attach

guievict
extension

guievict
extension

guievict
extension

guievict
extension

64

4.1.3 GUI Replication

GUI replication is a simple variation of GUI migration. The user requests (with the

guievictor) the application to replicate its GUI on another window server. The guievict client

library performs all but the final step of the detach operation. That is, it acquires the current

state of the window session, but does not close the connection to the window server. It then

performs a normal attach operation to connect the GUI to the additional window server (see

Figure 4.5). If this is the first time an attach operation has been performed, it also redirects the

original window server connection through the guimux process.

4.1.4 GUI+Process Migration

Guievict supports the simultaneous migration of the application process and its GUI.

Figure 4.6 shows a typical scenario for this type of mobility in which the execution and

desktop hosts are the same (such as a laptop) and the user wants to migrate their application

process and its GUI to another host (such as the computer on their desk). In this scenario, the

Figure 4.5: Replicating a GUI on Desktop B.
Replication is similar to migration, except that the connection to Desktop A is preserved and multiplexed by

guimux with the connections to other desktop hosts.

Execution Host

Application

X Libraries

guievict lib

Desktop Host A

Window
 Server

Window
Session

Retrieve

Window
Session

Desktop Host B

Window
 Server

Execution Host

Application

X Libraries

guievict lib

Desktop Host A

Window
 Server

Desktop Host B

Window
 Server

Window
Session

guimux

Window
Session

Window

Session

Window
Session

Window system
socket connection
Guievict message

Before Replicate After Replicate

guievict
extension

guievict
extension

guievict
extension

guievict
extension

65

user uses guievictor to request the application to migrate, providing two arguments: the name

of the new X window server and the name of the new execution host. Guievict then:

1. Detaches the application’s GUI from its window server;

2. Terminates the guimux daemon (if one is running);

3. Checkpoints the application process, producing a checkpoint file [40] containing the state

of the application process, including its window session;

4. Exits the application process.

At this point the user must transport the checkpoint file to the new execution host and

invoke the guievictor to restart the application process. To complete the migration, guievict:

5. Restores all the state of the application process except for its GUI;

6. Attaches the application process to the new window server.

4.2 Implementation

We implemented guievict on x86 Linux using the XFree86 implementation of the X

window system. The major technical issues were: hijacking the application, finding the

application’s connection to the window server, synchronizing this connection, retrieving and

restoring GUI resources, and ensuring that GUI migration is transparent to the application.

4.2.1 Hijacking the Application

Process hijacking can be safely implemented with basic dynamic instrumentation

mechanisms, such as those provided by the Dyninst API [12]. These include stopping the

process, forcing the process to execute code to load and initialize the guievict client library,

and then resuming the process. The guievictor contains its own implementation of these

66

mechanisms to avoid requiring users to install additional software like the Dyninst API

(which contains much more functionality than guievict requires).

The guievictor forces the application process to load the guievict client library by injecting

code that calls the run-time library loading feature (usually named dlopen) of the process’s

dynamic loader, a simple technique that is easy to implement for dynamically-linked

programs. Guievict introduces hijacking functionality to cope with statically-linked programs.

Figure 4.6: Migrating an application process and its GUI from a laptop to a desktop computer.
(1) The guievict client library detaches the GUI from the window server; (2) guievict checkpoints the application

process, producing a checkpoint file containing the entire application state including the window session; (3)
After transporting the checkpoint file to the desktop host, guievict restarts the application process; (4) guievict

re-attaches the GUI to the desktop window server.

Application

X Libraries

guievict lib

Laptop

Window
 Server

Application

X Libraries

guievict lib

Desktop

Window
 Server

Window
Session

Application

X Libraries

guievict lib

Laptop

Window
 Server

Window
Session

Application

X Libraries

guievict lib
Window
Session

Application

X Libraries

guievict lib

Desktop

Window
 Server

Window
Session

guimux

Window
Session

Checkpoint
File

Retrieve

Window
Session

WindowSession

Window system
socket connection
Guievict message

1. Detach

2. Checkpoint

3. Restart

4. Re-attach

guievict
extension

guievict
extension

guievict
extension

guievict
extension

67

The idea is to map and initialize a copy of the dynamic loader into the process’s address space,

essentially by reproducing the initial steps the operating system takes when loading a

dynamic-linked program. This instance of the dynamic loader does not control the original

code in the process, but rather serves only to provide an implementation of dlopen that

guievictor can invoke the same way it does for dynamically-linked programs. Support for

statically-linked programs is important because many GUI-based applications are distributed

statically to avoid forcing users to have the necessary GUI library dependencies.

The guievict client library creates a named Unix domain socket to act as the

communication channel for subsequent interaction with the guievictor. The library deletes the

socket when the application exits normally. The socket name is based on the application’s

process and user identifiers to avoid conflicts with other independently running instances of

guievict and to allow stale sockets left behind by abnormal termination to be cleaned up by the

user who discovers them. The guievictor gets the attention of the guievict client library by

writing a message the socket, causing the application process to receive a signal that is

handled by the library.

4.2.2 Finding the Window Server

X windows applications communicate with the window server over a Unix domain or

TCP socket. Unlike proxy-based systems such as xmove [72], guievict may be invoked after

the creation of the connection to the window server. It must search the file descriptors of the

process for sockets connected to a window server. Most operating systems provide a way, for

example a /proc entry on Linux, to list the open file descriptors of a process; on those that do

not, guievict can test each possible file descriptor with the fstat system call. Guievict looks for

68

a file descriptor that (1) refers to a socket inode (as reported by the fstat system call), and (2) is

connected to a window server.

The second condition is difficult to check. In many cases, the getpeername system call,

which returns the address of the socket on the other side of a connection, is sufficient: guievict

looks for a socket whose peer address is one of the well-known X window server TCP ports or

Unix domain socket names. This filter can fail if the application is tunnelled to the window

server through a proxy, since the peer address of its socket will be the proxy’s address. In

many common proxy configuration, such as ssh tunnels [85] and firewall port forwarding

rules [91], the difference between the proxy address and a normal window server address is a

small positive offset in the port number, which is easy to recognize.

In the unlikely event that getpeername does not reveal an obvious window server

connection, guievict checks whether the peer address of each socket leads to a window server.

It creates a new socket, attempts to connect it to the peer address, and, if the connection

succeeds, performs the first round of the standard X windows handshake. If the server gives

the expected response to the handshake, guievict concludes that it has found a socket

connected to an X server. If the probe fails on all sockets, guievict gives up control of the

application.

The use of this probe raises two concerns. First, the probe may succeed on non X window

servers that happen to respond to the handshake like a X windows server. In practice, the

response is distinguishable from that seen in common protocols such as ssh, telnet, ftp, and

http, however unfortunately it is not so distinctive to presume that conflicts will not occur in

less common protocols. In the event of a false positive, guievict should eventually receive

nonsensical messages from the server, after which it will abort. Second, the probe may have a

69

negative effect on probed servers. Although server implementations should be robust to

spurious connections, not all existing ones are, particularly those that have not been hardened

for Internet deployment. For users who cannot risk using the probe, the guievictor accepts a

command line argument to identify the file descriptor or peer address of the window system

connection.

4.2.3 Synchronizing Communication

Guievict must ensure that the state of the window session does not change while it is being

retrieved. Changes to window state are caused by messages exchanged between the

application and the window server. Guievict synchronizes the communication by finding a

point in the message stream where there are no partially sent or unanswered requests, and then

blocks further communication.

The synchronization occurs in two steps. First, guievict forces the application process to

reach a message boundary in the stream of messages from the application to the server. It does

so by examining the application’s process stack before starting an operation, searching for X

library functions that are stubs for X protocol requests. If such a function appears on the stack,

which indicates that the application process may be in the middle of sending a message,

guievict sets a timer, resumes the application code for a short period of time, and then re-

examines the stack. This procedure repeats until the stack is free of potentially unsafe

functions.

Second, guievict sends an X protocol request containing an illegal resource identifier to

the server. The only effect of this request is that it elicits an error message from the server.

Guievict reads and scans the stream of messages from the server until it recognizes the error,

70

at which point the client has no unanswered requests and the connection is synchronized. The

messages read before the error are buffered and re-sent to the application from the guimux

when the application is allowed to resume.

Detecting the presence of X protocol stubs on the application process stack depends on the

presence of the symbols for these functions in the application process. This is not an issue for

dynamically-linked applications because the symbols must be present to facilitate linkage.

However, symbols may be stripped from statically-linked executables. Today, because of this

limitation the guievictor refuses to work with stripped static applications. More research is

needed to overcome this limitation; one idea is to try to infer message boundaries through

some kind of analysis of the byte stream flowing over the socket, perhaps by matching

patterns most likely to occur at fixed locations within an X protocol message.

4.2.4 Retrieving and Regenerating GUI Resources

X windows applications create, modify, and destroy GUI resources through the exchange

of X protocol messages with the X window server. GUI resources reside in the window server

and are indirectly manipulated by the application by 32-bit resource identifiers, which are

drawn from a namespace that is global across all clients of a window server. Clients choose

the low-order bits of the identifier for each resource that they create, but they must set the

high-order bits to a fixed client id chosen by the server when the application connects to it.

It is generally impossible to locate the resource identifiers in the application process’s

code and data, so guievict must get them from the X window server. The window server

manages a per-client table of allocated resources but, unfortunately, it does not provide

external access to the information in this table. Since no previously reported server extension

71

has addressed this limitation, guievict provides the missing interface. Using our new

GetResources request, an application can request the server to return an enumeration of all the

resources that the application has created. For most types of resources, the resource identifier

is sufficient for the application to retrieve the state of the corresponding resource with

standard X protocol requests, but there are four exceptions: windows, graphics contexts,

cursors, and fonts. The GetResources reply for windows includes the background pixel value

and the window’s cursor identifier. The replies for graphics contexts and cursors include their

entire state: for a graphics context, a small array of flags, and for a cursor, its bitmap and

geometry.

Fonts are more complicated. X windows fonts are stored at the server. Clients acquire the

use of a font by sending a request to the server containing a font resource identifier and the

name of the font. The server loads and binds the font to the identifier if it has the font, and

otherwise returns an error. Applications can request detailed geometric information about the

font associated with a font identifier, but unfortunately there is no request to map a font

identifier to the name of the font. (A similar lack of support for reverse mapping an identifier

to a name must be overcome by systems that want to determine the name of an open file from

its inode number [88].) Strangely, the window server discards the font name after loading a

font, so the mapping is not feasible even within the context of a server extension. To generate

this mapping, the guievict client library performs during the detach operation a search that

indirectly maps each font identifier to a font name. It requests the server to list of all of its

stored fonts (a standard X protocol request), and then searches this list for a font whose

geometry matches that of each font identifier. Usually, the font name suffices to regenerate the

font resource on a new window server, but sometimes the new server does not have a font

72

with that name. In those cases, guievict searches the font list on the new server and selects the

font with the closest matching geometry, using a least-squares font matching algorithm similar

to that used by HP Shared X [25]. This complicated and expensive approach to migrating font

resources could be eliminated by switching to client-managed fonts, a recently proposed

architectural change to the X window system [27] that is beginning to appear in recent

distributions. While waiting for this practice to become standard, we minimize the overhead

by having guievict cache in the application’s file system the names and geometry of the fonts

supported by each server it visits.

Sometimes it is not possible to regenerate pixel-based resources identically to their

previous instances. Displays can vary by the number of bits per pixel (depth) and the method

by which pixels are mapped to colors (visual type), both of which cause the meaning of pixel

values to change. Xmove provided an additional translation operation that mapped pixel

values from their previous depth and visual to that available on the current server. Recent

developments for the X server, however, promise to eliminate the need for such translation. In

particular, the R&R extension and shadow framebuffers [29] are server-based mechanisms for

virtualizing depth and visual that have been designed with the goal of providing heterogeneity

support for migration and replication systems. Guievict complements these developments;

together they combine to produce a system for GUI migration that hides display

heterogeneity.

4.2.5 Maintaining Transparency

The main role of the guimux daemon is to make GUI migration transparent to the

application process by translating resource identifiers and sequence numbers that appear in

73

the messages exchanged between the application and the window server. The resource

identifier mapping is initialized during the regeneration of GUI resources. The guievict client

library regenerates a resource by issuing an ordinary X protocol resource creation request

containing the original identifier. As guimux forwards these requests, it replaces the identifier

with an unused identifier that is valid in the current window server. For subsequent messages

from the application to the server, the guimux maps references to resources to their current

identifier; it performs a similar reverse mapping on messages from the server to the

application. As the application destroys resources, they are removed from the map.

Sequence numbers occur in messages sent from the window server to the application and

represent the number of messages the server has processed for the application; they do not

occur in messages from the application. The guimux replaces the sequence number of a

message with the next sequence number expected by the application process. This procedure

is initialized when guievict synchronizes the communication to the window server. At this

point, the next sequence number expected by the application process is the sequence number

contained in the sentinel error reply.

Replication of windows on multiple displays extends the role of the guimux process.

While managing a replicated GUI, the guimux maintains a separate translation map for each

window server connection. Messages from the application are translated and sent to each

window server. Messages from the window servers are reverse translated and forwarded in

series to the application. To control the behavior of replicated GUIs, guimux accepts a set of

commands, sent by the guievictor, that act as primitives for setting replication policy. For

example, the user can suppress the forwarding of keyboard, mouse, and window modification

events from selected desktop hosts to allow users seated at those desktops to observe but not

74

modify the state of the GUI; more sophisticated policies for managing collaborative

work [2,31] can be built over these primitives.

4.3 Evaluation

We have evaluated the performance of guievict’s GUI migration functionality. As a point

of reference, we compared its performance to the proxy-based xmove system [72]. We

measured the time to detach and re-attach a GUI and the impact on interactive response.

Measurements were taken on a 700 MHz Pentium-III laptop running XFree86 4.2.0 on Linux

2.4.18 using the most recent release of xmove [71]. Overall, the results are not surprising. As

reported in detail below, guievict takes longer than xmove to detach a GUI from a window

server, but re-attaches in comparable time. Xmove and guievict (after re-attach) both increase

the latency of the communication between the application process and the window server, but

not enough to be perceptible to users.

4.3.1 Detach and Re-attach Latency

We measured the latency of detaching a GUI from a window server and then re-attaching

it to the same window server for several applications. The guievict detach latency is the

elapsed time from the moment the guievict client library receives the detach command to just

after it closes the connection to the window server. The guievict re-attach latency is the

elapsed time from the moment the guievict library receives the re-attach command to just after

it allows the application process to continue. The xmove latencies are analogous. We ran both

the application process and the window server on the laptop and detached the application’s

GUI after its initial windows were drawn but before any user interaction with the GUI. We

report average measurements over five runs. The results are reported in Table 4.7.

75

Guievict has a much more expensive detach operation than xmove. Table 4.8 breaks down

the average guimux detach time for one application. The most expensive stage is mapping the

font identifiers to fonts names, during which most of the time is spent waiting for the server to

return the complete list of the fonts. However, this operation only happens the first time

guievict detaches a GUI from a given server, since guievict caches the information in the file

system. More generally, guievict takes longer to detach because it retrieves the GUI state

when it receives the detach request, while xmove collects the GUI state as it is created.

Guievict and xmove have similar re-attach performance, which is to be expected because they

perform similar tasks during this stage.

4.3.2 Interactive Overhead

To measure the impact of guimux and xmove on interactive response we created a small

application that repeatedly sends a request of minimal size (8 bytes) to the window server and

waits for a reply of minimal size (32 bytes). We measured the average time for 1000 round

Application
Guievict Latency

(msec)
Xmove Latency

(msec)

Detach Re-attach Detach Re-attach
Xterm 21,042 46 32 134
Xmame 21,100 55 857 96
Emacs 21,198 148 45 230
Ghostview 21,655 379 315 307
Netscape 21,655 667 362 432

Figure 4.7: Average detach and re-attach latency.

Stage Time (usec)
Font List 21,052,039
Pixmaps 562,205
Windows 31,824
Fonts 6,986
Graphics Contexts 1,977
Cursors 113
Colormaps 63

Figure 4.8: Breakdown of detach latency for Netscape.

76

trips for the application by itself, after it has been detached and re-attached with guievict, and

through xmove. The results are reported in Figure 4.9.

Guievict and xmove have a measurable impact on the round trip time, caused by the

overhead of redirecting the window system communication through a proxy. Since the

overhead is less than a millisecond, it should not ever be perceptible to users.

4.4 Security

Guievict introduces three issues related to the security of X window applications and

servers.

First, the owner of the application process must be able to control who is able to migrate or

replicate its GUI. The policy we have implemented is to allow only the owner of a process to

perform guievict operations on the process. This policy is enforced by two mechanisms. First,

the standard operating system protection prevents one user from modifying a process of

another user, which implies that a process can only be hijacked by its owner. Second, the

guievict library authenticates the messages it receives from the guievictor. It uses the

credential passing mechanism of Unix domain sockets to ensure that the sender of a message

is the same user who owns the application process. These mechanisms suffice to protect an

application process from ordinary users, but not, of course, from the superuser of the

execution host.

System Latency
(usec)

None 70
Guievict 107
Xmove 133

Figure 4.9: Average round trip time for a minimal X protocol request and reply.

77

Second, the guievict server extension should not weaken the security of the X window

system, a goal we believe we have met. Since the GetResources request only returns

information about the resources of the application that issues the request, it cannot be used to

learn about the resources of another application. Although a man-in-the-middle attack could

be staged to inject a GetResource request in another application’s connection to the window

system, the information that would be revealed could also be obtained from passive

eavesdropping on the connection, an existing X windows vulnerability [24]. The defense, then

and now, is to encrypt the connection.

Third, the owner of a desktop host must authorize guievict to re-attach a GUI to their

display. Most X server access control mechanisms (such as MIT-MAGIC-COOKIE) require an

authorized application to possess a server-generated capability that it can present to the server

when it establishes a connection. This capability gives its possessor complete access to the X

server. The desktop owner must have a secure way to transfer the capability to the guievict

user, and they must trust the guievict user not to abuse the access to the server. Guievict does

not provide capability transfer mechanisms and it does not change the access control policies

of the X server. These issues are trivial in migration scenarios, where the desktop user and the

guievict user are usually the same, since the user can transfer the capability when they log in

to the execution host to run the guievictor. However, these issues must be revisited in any GUI

replication system built over guievict’s replication mechanism.

78

79

Chapter 5

File I/O

Ideally, a moving application should be able to access its files at any time during its

execution. Sustaining this illusion requires various strategies for preserving access to files.

Movement may force an application to change its method for accessing a file system. It may

also make access to a file system impossible, unreliable, or slow, prompting users to copy

their files to another file system. Even a simple mobility scenario may involve the use of local

file systems, network file systems, remote I/O protocols, and file caches (see Figure 5.1).

We have designed a system that performs these adaptations automatically and

transparently on behalf of an application. It presents an unchanging file name space to a

moving application, while dynamically changing the location of files and binding of file

names to fit the current context of the application. A major challenge in designing such a

system is maintaining access to the various file systems used by the application and the

policies for switching and copying among them as the application context changes.

Our system is centered around a new name space composition language, called flac (file

access), that we designed to manage these issues. The goal of flac is to represent the dynamic

80

behavior of an application’s name space with simple, concise expressions. Flac has a

descriptive role: it allows us to describe and compare different file name space semantics. We

have identified a small set of basic composition operators that concisely capture the semantics

of a broad variety of new and old file name space semantics. It also has a prescriptive role: it

allows us to automatically generate implementations of new name space semantics via a

system that translates flac specifications into code.

Flac is based on the following concepts (see Figure 5.2):

• File systems are abstractly represented as services. Primitive service types represent

methods for accessing file systems, and are instantiated to represent a way to access a

specific file system.

• Operators called name space combinators operate on services, yielding new ones. We

define four types of combinators, each designed to capture an essential form of dynamic

name space behavior. For example, the transfer operator expresses file copying between

Figure 5.1: File access methods change with application context.
The application (1) starts on the host serving its files, and accesses them directly from the local disk, (2) migrates
to a nearby host, and switches to local area network file system, (3) moves with its host outside the local network,
and switches to a remote I/O protocol through a tunnel to the file server, and (4) is disconnected from the network,

and switches to a local cache of recently accessed files.

Application

Internet
Private Network

Host
Disconnection

1. 4.

Local File System

Application Application ApplicationProcess
Migration

Host
Movement

LAN
File Sharing

Firewall

Remote I/O
Protocol

3.2.
Desktop Laptop Laptop Laptop

Local File System

81

two services, and the select operator expresses the dynamic selection of a service based

on the context of the application.

• A particular set of file name space semantics is expressed in a flac specification, which has

the form of an expression containing name space combinators and primitive service

instances.

We have implemented a prototype flac run-time to gain experience with the language and

to provide file access service to mobile applications. The job of a flac run-time is to

implement the name space prescribed by a flac specification for an application. The run-time

binds instances of primitive services to actual file systems in the user’s environment,

intercepts file I/O operations performed by the application, interprets them according to the

flac specification, and passes the resulting operations to the real file systems identified by

instances of primitive services in the specification. We use our prototype to provide file access

for ordinary applications that is uninterrupted across host mobility, process movement, and

disconnection. This is a more comprehensive range of mobility than has been shown by any

previous system. Unlike previous systems, our prototype is implemented entirely at user level,

transparent to application, and does not require privileged access or cooperation from the

administrator of file systems or host machines.

Figure 5.2: Flac abstractions.

Primitive Services Service Combinations

local smb rpc

Network File Systems

combinator()

 Service Operands Result

82

The remainder of this chapter presents an overview of the flac language (Section 5.1), a

series of examples demonstrating its descriptive power (Section 5.2), and a discussion

(Section 5.3) and evaluation (Section 5.4) of the prototype flac run-time.

5.1 The Language

We describe, through a series of examples, services, specifications, and each of the flac

combinators.

5.1.1 Services and Specification

A service represents a tree of file names, a mapping from these names to files, and a set of

operations upon the files such as read, write, create, and remove. Perhaps the simplest

example of a service is the local file system of the machine on which an application is

running. This name space is described in flac as:

The root keyword, which occurs exactly once in every flac specification, declares that the

service expression to its right is the name space described by the specification. In this case, the

service expression is an instance of the local service, a primitive service that we pre-defined

to be the local file system of the current machine.

Flac can be extended to support different types of primitive file services. For our examples

we use two other primitive services types: the smb service, which provides access to the

Windows local network file system [45], and the rpc service, a remote I/O service similar to

the Condor remote I/O protocol that provides remote access to a file system over the

Internet [40].

root local()

83

Primitive services are instantiated by listing a set of attribute-value pairs that describe the

attributes of the service instance. Some services, such as local, are instantiated with no

attributes. The smb service has one attribute, share, that names a file server on the local

network and one of its exported file systems. The rpc service has one attribute, host, that

names the host name of the machine serving a file system accessible by the rpc protocol. The

number and names of attributes and the syntax of their values are determined by the

implementor of each primitive service type.

The following specification describes a name space comprised of the Windows share

named root served by the host desktop. It could be used to describe the name space of the

application in Step 2 of Figure 5.1.

Flac supports the binding of identifiers to service expressions to make flac specifications

easier to read and write. In the example above, the identifier L is bound to the smb instance

that follows it. The reference to L has the same meaning as substituting the smb instance

expression in the first line.

5.1.2 Path operations

Flac uses Unix-like path syntax in which path components are separated by slashes. Three

flac operators combine a service and a path into a new service (see Figure 5.3). The subtree

operator yields a service representing the sub-tree of its service operand rooted at the path.

The cuttree operator complements subtree by yielding its service operand minus the sub-

tree selected by subtree. The extendtree operator prefixes each name in a service with the

path operand. The following sections contain examples of the use of these operators.

L = smb(share=”\\desktop\root”)
root L

84

5.1.3 Overlay combinator

The overlay combinator combines two services into a single service in which names

from both services are visible. Conceptually, the first service is layered over the second

service. Names that occur in one service but not the other are visible in the resulting service. If

a name occurs in both services, the occurrence in the first occuldes the occurrence in the

second.

The overlay combinator completes the functionality of the path operators by establishing

the identity relationship shown in Figure 5.4. One feature of this relationship is that the

overlay and path operators together form a basis for describing conventional operating system

name space operators. For example, the mount operator in Unix-based operating systems

attaches a new file service at the end of a path, called a mount point, in the current file name

space. The operator can be expressed in flac as:

Figure 5.3: Path operators.

Service

Path

subtree(Service,Path)cuttree(Service,Path)

ServicePath

extendtree(Service,Path)

85

where S is the name space before the mount, P is the path to the mount point, N is the name

space to be mounted, and T is the resulting name space.

Several systems, including some variants of BSD Unix [53] and the 3-D file system [38],

have a union mount operator, a variant of the mount operator that lays the mounted name

space over (or under) the name space at the mount point, instead of replacing it. This operator

can be expressed as a mount operator that does not cut out the existing part of the tree at the

mount point. This expression lays the new service over the existing name space

while, with the operands transposed, this expression lays the new service under the existing

name space

These union operator semantics provide a deep union, in which name spaces are overlayed

at all levels from their root to leaves. In contrast, Plan 9 provides a union operator that has

shallow union semantics, in which only first level names below the root are overlayed. It is

not possible to emulate these semantics generally in flac, although they can be reproduced for

specific paths by applying the cuttree operator. Although we would like to be able to

describe the semantics of all existing name space operators, Plan 9 architects have commented

that a mount and deep union operator should be sufficient, and that there is no application that

depends on shallow semantics [62].

5.1.4 Select Combinator

The select combinator combines two or more services into a single service in which

operations are forwarded to one selected service based on the context of the application at the

T = overlay(extendtree(N,P),cuttree(S,P))

T = overlay(extendtree(N,P),S)

T = overlay(S,extendtree(N,P)).

86

time it issues the operation. For example, this specification supports the movement of the

application in Figure 5.1 back and forth between Step 1, where is uses the local service, and

Step 2, where it uses the smb service:

Figure 5.4: Identity relationship of overlay and path operators.
The order of the operands give to overlay does not matter, since the operands do not have any names in

common.

L = local()
P = smb(share=”\\desktop\root”))
root select(location,desktop:L,else:P)

Service

Path
subtree(Service,Path)

cuttree(Service,Path)

overlay(cuttree(Service,Path),extendtree(subtree(Service,Path),Path)

extendtree(subtree(Service,Path),Path)cuttree(Service,Path)

87

The first operand to select identifies the type of context information that we use to

select. We define three types: location, which looks at the current location of the application

process; operation, which looks at the operation that the application process is currently

performing; and env, which looks at values of the environment variables in the application

process. Selection on a combination of context types is expressed by nested select

expressions.

The remaining operands are two or more pattern:service pairs. Starting with the first and

proceeding in order, each pattern in this list is compared to the context of the application. The

operation is forwarded to the first service whose pattern matches. If no patterns match, the

operation fails. A special optional pattern, else, matches when no other pattern matches.

The syntax and meaning of patterns depends on the context type. Patterns for the

location type are strings that are compared with the name(s) of the machine on which the

application is running. They can be DNS host names or textual IP addresses and can contain

wildcards to match a set of host names (such as *.cs.wisc.edu to match any host in our

department) or set of IP addresses (such as 192.168.0.0/16 to match any IP address

beginning with 192.168). For example, the following specification extends the previous

example to support the application’s movement to and from Step 3 of Figure 5.1 (where it uses

the rpc service):

Patterns for the operation type match abstract descriptions of the file operation that the

application is currently performing: read matches when the application is opening a file for

L = local()
P = smb(share=”\\desktop\root”))
R = rpc(host=”desktop.my.net”)
root select(location,desktop:L,192.168.0.0/16:P,else:R)

88

reading; write matches opens for writing; readwrite matches opens for reading and writing;

create matches file creation; and remove matches file removal.

Patterns for the env type have the form VAR=VAL, and match when the environment

variable named VAR has the value VAL in the application context.

5.1.5 Transfer Combinators

Strategies for maintaining access to remote files during periods of disconnection and for

improving access performance over slow links often involve copying files to a closer

filesystem. The transfer combinator is used to describe file transfer semantics between two

services: a reliable one called the primary (such as the local file system), and a possibly

unreliable one called the secondary (such as a remote file system).

The transfer combinator ties open or close operations on files in the primary service to file

transfer operations from or to the secondary service. It supports copying in both directions. In

pull mode, when the application opens a file, the secondary service is checked for a more

recent copy of the file and, if it is or if the primary service does not have the file, the file is

copied to the primary service. In push mode, when the application closes a file, the file is

copied to the secondary service if it does not exist on the secondary or if it has been updated.

In both modes, directories to contain the copied file are created on the destination service as

necessary.

We want the application to be able to perform operations on files on the primary service

even when the secondary service is inaccessible. We define three modifiers to the push and

pull modes: FAIL causes the operation to fail if the secondary service is not available, BLOCK

blocks the operation until the secondary service is available; and IGNORE causes the operation

89

to proceed. In pull mode, IGNORE allows the copy of the file in the primary to be opened

without checking for a more recent version in the secondary service. In push mode, the file

close operation completes with any updates written to the primary service, and the transfer of

any updates is deferred. There is no guarantee when or if the updates will be transferred.

The IGNORE modifier creates the possibility of an application seeing inconsistent views of

a file that it is exclusively updating. For example, an application running on a disconnected

laptop may update a local copy of a file provided by the transfer combinator in IGNORE

mode, and then be checkpointed in anticipation of being moved. If it next accesses the file

directly from the secondary service, it is not guaranteed to see its previous updates. We solve

this problem in our flac run-time implementation by enforcing an ordering property on

process movement: a process may not be moved to a new context until its deferred updates are

processed.

The primary and secondary services can also become inconsistent when the primary or

secondary service is accessed by another program. We do not provide additional consistency

semantics in the language to resolve this issue. Such features would require services to

provide mechanisms for consistency such as locks or callbacks that we cannot assume are

universally available. Specification writers can add stronger consistency to their specification

by adding instances of services that provide consistency functionality. We have not

experimented with these strategies, but two models are feasible. They can use existing file

systems, such as Coda [37] or Ficus [51], that manage consistency between distributed caches

or replicas of a file system. In this case, a single primitive service representing these file

system replaces the use of the transfer combinator. Alternately, they can interpose a service

between the transfer combinator and either or both the primary and secondary services that

90

intercepts file operations and triggers a separate consistency mechanism (such as the Unison

file synchronizer [5]).

The syntax of the transfer combinator is

where primary and secondary are the services, mode is push, pull, or pushpull (to specify

both modes), pullmod is the modifier for the pull mode or NONE if the pull mode is not

specified, and pushmod is the same for the push mode.

The transfer combinator can be used to maintain an off-line cache of file contents similar

to that collected in Coda hoards [37] or the off-line file mechanisms provided by OS X [3] and

MS Windows [45]. For example, the following specification extends our specification of

Figure 5.1 to support the disconnected operation of Step 4.

When the application is running on the laptop, copies of the files it accesses are stored in a

directory on the local file system, and any updates the application makes to these files are

copied back to the file system on the desktop host. The application can continue to access

these files if the laptop becomes disconnected, since IGNORE permits read and write access to

the local copy during disconnection.

5.2 Additional Examples

The previous section showed that flac can be used to specify functionality that is similar to

mount and union name space operators in existing operating systems, remote file access

strategies such as those used in Condor [40], and off-line file access provided by research

transfer(primary,secondary,mode,pullmod,pushmod)

SRC = select(location,
192.168.0.0/16:smb(share=”\\desktop\root”),else:rpc(host=”desktop”))

CACHE = subtree(local(),/cache)
XFER = transfer(CACHE,SRC,pushpull,IGNORE,IGNORE)
root select(location,desktop:local(),else:XFER)

91

systems such as Coda [37] and commodity operating systems such as MS Windows [45] and

OS X [3]. We give additional examples of flac descriptions of file access functionality. These

examples demonstrate that flac can concisely describe, in a standard form, a variety of file

name space semantics.

5.2.1 Replica selection

Several systems (such as Ficus [51], Fluid Replication [36], and Bayou [56]) provide file

access for mobile clients using distributed file system replicas. Clients of these systems access

files from the replica server closest to their current location. The system manages consistency

among replicas on behalf of applications.

A flac specification for such location-based for replica selection can be written as:

where L1,L2,L3 represent different locations and R1,R2,R3 represent different replica

servers. Structurally, this specification is no different from the ones we use in Section 5.1.4 for

choosing among different methods for accessing the same file system. The difference is that

the services here represent different replicas of a file system rather than different ways to

access the same file system. When consistency is maintained by the file system, the difference

is irrelevant.

Some users maintain consistency of replicated file systems manually. For example, a user

may keep copies of music files on their home and office computers for fast access from either

location. As the user adds files from each location but forgets to copy them, each replica may

have copies of files that are not in the other replica. Here is a flac specification describing an

R1 = rpc(host=”replica1”)
R2 = rpc(host=”replica2”)
R3 = rpc(host=”replica3”)
root select(location,(L1:R1 L2:R2 L3:R3))

92

alternative in which a flac run-time automatically manages the separate name spaces for the

user by merging the file systems into a single name space:

The user can add new music files to either their home or office computer. These files will

be transparently copied to the other computer the first time they are accessed from it.

5.2.2 Importing Environments

Name space operators have other uses beside mobility. One typical use of the union

operator by Plan 9 users is to substitute different versions of libraries or compilers when

building software [57]. The operator changes the objects to which names are mapped, not the

names, so no other modifications (such as changing pathnames in build scripts) are needed to

build the software with the alternate files. This functionality can be described with

specifications such as

In a similar problem, different vendors of the nominally same operating system sometimes

release different versions of compilers and libraries (this is common among Linux

distributions, for example). Developers should test their software on each vendor’s version to

detect potential version-dependent bugs. This process can be time-consuming and tedious:

developers must maintain separate machines for each operating system version, and arrange

HERE = subtree(local(),/music)
THERE = subtree(select(location,office:rpc(host=”home”)

home:rpc(host=”office”))
/music)

UNIFIED = transfer(HERE,THERE,pull,IGNORE,NONE)
root overlay(extendtree(UNIFIED,/music),local())

BIN = extendtree(overlay(subtree(local(),/home/user/bin),subtree(local(),/bin)),
/bin)

LIB = extendtree(overlay(subtree(local(),/home/user/lib),subtree(local(),/lib)),
/lib)

root overlay(BIN,overlay(LIB,local()))

93

for the software source tree to be copied to each machine and for modifications to be merged

back into the master copy.

Flac could help by importing the source tree on each test machine from a remote server

(see Figure 5.5, left), an arrangement that entails less configuration and maintenance than

conventional alternatives such as a distributed file system on each machine or version control

software. However, we suggest the inverse approach of importing the local file system of a

test machine to the developer’s workstation (see Figure 5.5, right). One advantage of this

arrangement is that developers can build and run tests on their local machines, not test

machines; this enables older, slower machines to be recycled into test platforms.

Two extensions to the semantics in Figure 5.5 can provide other advantages. First, we can

extend it to support any number of test platforms. A single script can control the testing on

multiple platforms from the same machine. Selection of the test machine can be implemented

by the environ context type (see Figure 5.6).

Test Machine Name Space Developer Machine Name Space
RH = extendtree(subtree(rpc(host=”A”),

/home)),
/home

LH = extendtree(subtree(local(),
/home)),

/home)
root overlay(RH,local()) RM = rpc(host=”B”)

root overlay(LH,RM)

Figure 5.5: Two ways to test software.
A is the developer’s machine; B is a host running version B of the operating system. On the left, developer home

directories, where software to be tested is stored, are imported. On the right, the home directories are layered
over B’s imported file system.

LH = extendtree(subtree(local(),
/home)),

/home)

VERSIONS = B C D
foreach v in $VERSIONS

setenv VER $v
echo ’version: ’ $v
make all test clean

endfor

root overlay(LH, select(env,VER=B:rpc(host=B),
VER=C:rpc(host=C),

VER=D:rpc(host=D)))

Figure 5.6: Testing on several operating system versions.
The flac specification on the left selects a version based on the value of the environment variable VER. The shell

script on the right, when in the name space of the specification, builds and tests the software on each version.

94

Second, the application of transfer combinators may reduce dependence on test machines.

The specification in Figure 5.7 generates a local copy of precisely the slice of the file system

of the test machine that is needed for testing. Assuming that future versions of the software

being tested do not introduce new dependencies, the test machine is no longer needed. In

cases where changes create new dependencies, the use of IGNORE will cause the operations to

fail, and the developer can bring a new test environment and copy the missing files. This use

of copying also reduces the overhead of remote access to frequently accessed files such as

header files and compiler executables.

5.2.3 Copy-on-write unions

The union operators in the 3-D filesystem [38] and BSD Unix [53] have additional copy-

on-write semantics that we did not describe in Section 5.1.3. This feature is used to provide

the illusion of having write access to a read-only sub-tree of the name space. A writable file

system is union mounted over the read-only sub-tree. Applications can open a file in this

union for writing, but instead of modifying the original version of the file, the file is copied to

the writable file system and the update is applied to that copy. Subsequent opens of the same

file return the updated version, since the writable file system is layered over the read-only sub-

tree. A typical application of this functionality is to experiment with modifications to a source

code tree without making permanent changes to it.

LH = extendtree(subtree(local(),/home)),/home)
Z = subtree(local(),/os-menagerie)
RM = select(env,VER=B:transfer(subtree(Z,/B),rpc(host=”B”),pull,IGNORE,NONE)

VER=C:transfer(subtree(Z,/C),rpc(host=”C”),pull,IGNORE,NONE)
VER=D:transfer(subtree(Z,/D),rpc(host=”D”),pull,IGNORE,NONE))

root overlay(LH,RM)

Figure 5.7: Collecting operating system versions.
A local collection of the files needed to build the software on each version of the operating system is

automatically maintained in /os-menagerie.

95

We can describe this type of union mount in flac as follows.

where S is the name space before the mount, P is the path to the read-only sub-tree, W is the

writable name space to overlay, and T is the resulting name space.

5.3 Flac Run-Time Implementation

We give an overview of the architecture of our prototype for implementing flac, then

discuss the major issues in its design and implementation. These issues include context

tracking, responses to location changes, implementation of transfer combinators, process

migration, and interception of application operations.

The prototype, written for Linux, has three components (see Figure 5.8). An application

process is linked with the flac run-time library, which traps the application’s I/O operations

and forwards them to the flac daemon, a separate process running on the same host as the

application process. The flac daemon implements the flac specification. It sends file

operations to primitive service processes, which communicate with the file systems

represented by service instances. One service process exists for each primitive service

instance in the flac specification. It also receives updates about the location of the host on

which the application is currently running from the location monitor, a separate daemon that

runs on every host that the application visits.

The prototype is started for an application program by invoking a command launcher

called flac that executes the application program re-linked with the run-time library. During

its initialization, the run-time library opens the file containing the flac specification (named in

R = subtree(S,P)
U = select(operation,write:W,

readwrite:transfer(W,R,pull,BLOCK,NONE),
else:overlay(W,R))

T = overlay(extendtree(U,P),S)

96

an environment variable or command-line argument to flac), starts the flac daemon, and

passes to it the flac specification and a description of the initial context of the application

process. The flac daemon parses the specification, locates a shared library for each primitive

service type that occurs in the specification, and calls, for each instance of the service, the

library’s start function, passing the attribute-value pairs of the instance. The start function

creates the service process, which connects to the service.

The run-time library intercepts calls by application code to functions that implement I/O

operations (system call stubs in the C library), and forwards them as I/O request messages to

the daemon. Inside the daemon, each request is interpreted by traversing the relevant nodes in

Figure 5.8: Architecture of prototype flac run-time.

Application

Run-time

I/O Operations

Flac Daemon

 library

Host

Local Service

Remote Service Remote Service

I/O Operations

Service
Process

Service
Process

Service
Process

Location
Monitor

97

the combinator expression tree. At each combinator node a message dispatch function

implements the semantics of the combinator, typically by re-writing the message or generating

new messages. At the primitive instance nodes, the request is forwarded to the associated

service processes. The service processes invokes the corresponding I/O operations on the file

system they represent, converts the results to a response message, and returns the response to

the daemon. The daemon collects responses along the reverse path taken by the original

request, and sends a response to the run-time library, where it is converted to an I/O operation

return value or error that is returned to the application code.

Most of the message dispatch functions in the daemon have straightforward

implementations. For example, the dispatch function for the subtree operator looks for

requests that involve file names (such as open). It re-writes these messages by prepending its

path operand to the file name argument, and passes them to the underlying service. Other

messages are passed unmodified.

5.3.1 Tracking Context

Each context type (location, env, and operation) is tracked by a separate mechanism.

For location, we identify changes to network interfaces as the application’s location

changes. The location monitor on each host monitors the status of network interfaces on the

host and asynchronously notifies the flac daemon when a network device is added, removed,

or re-configured (such as when a wireless device comes in or out of range of a network).

When the application moves to a different host, it creates a new flac daemon (initialized to

restore the previous I/O state, as described in Section 5.3.4), and contacts the location daemon

on the host.

98

The application’s environment is sent to the daemon during initialization of the run-time

library. Updates to the environment could be tracked by interposing code on the function

(setenv) that the application calls to change its environment, but we have not needed this

functionality.

For the operation type, the flac daemon infers the operation that the application is

performing from the last I/O request it received from the run-time library.

5.3.2 Responding to Location Changes

Location changes may provoke three types of responses: service re-starting, open file re-

opening, and deferred update flushing.

First, services need to be re-started when the application moves to a new host or when

movement enables access to a previously unavailable service. Each primitive service’s shared

library can register a callback to be notified of location changes; some primitive services, such

as local, use this callback to determine when to start a new instance process. Primitive

services for remote TCP-based services (such as rpc) can use rocks to avoid special restart

procedures.

Second, files need to be re-opened whenever the service for that file changes or is re-

started. Each time a location change occurs, the daemon examines each open file, determines

whether the change affects the file and, if so, invokes the re-open operation. The re-open

operation regenerates the state of the file from a record that the daemon maintains for each

open file. For all types of files, this record contains the name of the file and the I/O mode for

which it was opened. The daemon re-opens the file by opening the same file name in the

(possibly different) service in the same mode. If the file cannot be re-opened on the new

99

service, the daemon does not raise an error until the application attempts to access it. The error

reporting is deferred because the location may change favorably before the next access.

The record of an open file contains additional information that depends on the type of file.

For ordinary files, it contains the current file pointer. During re-opening, the file pointer is set

to the old position. For device files (such as audio devices and terminals), the daemon

maintains a log of all file control operations (such as ioctl or fcntl) that the application

performs on the file. They are re-played when the file is re-opened to restore the state of the

device (such as volume level or sample rate) to its previous setting. These logs tend to be

short, comprising device initialization operations that were performed when the file was

opened., However, if they become too long we could apply optimizations, similar to the log

optimizations performed by Coda [37], to discard redundant or superseded operands. Other

types of open files, such as named pipes, are not supported in the prototype.

Third, location changes that occur while there are pending transfer combinator updates

are a hint that it may be possible to flush the updates. Each location change events triggers the

flac daemon to identify and flush pending updates that can be sent from the new location.

5.3.3 Transfer Combinator

The message dispatch function for the transfer combinator requires two mechanisms.

First, it requires a way to determine whether the secondary service is available. Each primitive

service shared library provides an isavailable function that the transfer combinator can call to

determine whether the service is currently available.

Second, it requires a way to compare file versions to decide when to copy a file from the

secondary service instead of using a copy in the primary service. We use the file’s last

100

modification time attribute as a version number, which is simple and file-system independent

but forces us to assume that the clocks on the file servers are closely synchronized.

5.3.4 Process Migration

The decision to use a separate process for the flac daemon, rather than putting its

functionality in the run-time library, was motivated by the complexities we faced with the

design of the rocks library (see Section 3.3.2). In particular, a separate process simplifies the

implementation of the daemon’s asynchronous operations. Migration of the application

process, however, is more complicated with this design, because the state of an additional

process must be captured, moved, and regenerated.

The flac daemon exports an I/O session, analogous to a window session (see Chapter 4),

that is a representation of the name space of the application and the names and state of files

that the application has opened. Before being checkpointed for migration, the run-time library

(in a callback invoked by our checkpoint library) requests the I/O session from the flac

daemon, and then causes the flac daemon to exit. When restarting from its checkpoint on a

new host, the run-time library (in another callback) starts a new flac daemon and passes to it

the saved I/O session. The new daemon initializes itself to serve the name space and open files

represented in the I/O session. Compared to the window sessions we capture in Chapter 4, I/O

sessions are much simpler since we designed the flac daemon to export precisely what we

want.

To preserve the consistency of transfer combinator services (exclusively) accessed by the

application, the run-time library takes responsibility for flushing pending updates before

migration, as discussed in Section 5.1.5. In the callback for process checkpointing, the run-

101

time library tells the flac daemon to flush its pending updates, and blocks the checkpoint

operation until the daemon replies that it has successfully flushed.

5.3.5 Intercepting I/O operations

The run-time library intercepts I/O operations at library calls, using the same user-level,

application-transparent interposition mechanism as the rocks library (see Section 3.3). New

issues that are specific to implementing flac include exec calls, mmap calls, and multiplexed

I/O.

5.3.5.1 Calls to exec

The exec system call replaces the address space of the calling process with the contents of

an executable file. Under flac, this file may be located on a remote file system, but of course

the exec call cannot be remotely executed in the flac daemon or a service process, since the

purpose is to change the calling process. When the run-time library intercepts an exec call, it

opens the requested executable through the flac daemon, copies its contents to a temporary

file in the local file system, and then invokes the exec system call, substituting the name of

the local copy for the original argument.

5.3.5.2 Calls to mmap

The mmap system call maps a part of the contents of an open file to the address space of the

calling process. The operating system does not provide a mechanism to map virtual memory

to remote files, so mmap requires special handling. Our approach is similar to our handling of

exec calls: when the run-time library intercepts an mmap call, it copies the portion of the file to

be mapped to a temporary file in local file system, opens the file, and invokes the mmap system

call on the resulting file descriptor.

102

There are two issues. First, although mmap is typically used for read-only access to a file

(such as shared library loading), it can optionally copy writes to the mapped memory back to

the file. The prototype does not support this option, but it could be easily implemented as a

deferred write-back of the temporary file that is triggered when the application unmaps the

memory, invokes the msync system call to flush updates, or exits. Since the POSIX definition

of mmap only guarantees that writes are copied back to the file when one of these events

occurs [23], the consistency semantics of this implementation model should not violate those

expected by any application that uses mmap to write files.

Second, sometimes a process calls mmap to map into its address space the data represented

by a device file, such as the kernel memory device (/dev/kmem), which cannot be copied like

ordinary files. Mapping devices is an uncommon operation, so the flac prototype does not

support it but for one exception: /dev/zero, the device that many programs map to allocate

zero-filed pages. The run-time library directs mmap calls on this device to the local

/dev/zero; since zeroes are zeroes, remotely accessing this device would be senseless.

Support for the mapping of other devices files would require a mechanism to map virtual

memory to remote files, which we believe is difficult to implement efficiently from user

space. We will revisit this issue if we find examples of applications that would benefit from its

resolution.

5.3.5.3 Multiplexed I/O

Multiplexed I/O occurs when an application wants to perform I/O on two or more files. It

is supported by system calls such as poll and select that return an indication of which

members of a set of files can be read or written without blocking. The run-time library cannot

103

directly invoke these calls, since open files are managed by service processes. When the

library intercepts a call to poll or select, it sends a series of isready messages to the flac

daemon, one for each open file in the call’s arguments, and then blocks waiting for a response.

The daemon batches and forwards these messages to the corresponding service processes for

the open files. The service processes respond when files are ready. The daemon passes the

first response it gets to the run-time library, which returns to the application code the

indication that the corresponding open file is ready.

5.4 Evaluation

The flac prototype is sufficiently operational to demonstrate the degree of mobility that the

flac language can enable. We have used it to provide an unmodified text editor (GNU

Emacs [73]) with uninterrupted access to the file systems of our home and office

workstations. The editor can migrate across hosts, move with a host across networks, and

operate while disconnected. Its file access mechanisms run as unprivileged user software that

requires no unusual support from the operating system (such as a special file system driver) or

cooperation from administrators. Most importantly, its operational behavior is derived from a

concise description of name space semantics, which users can extend to accommodate new

file system and execution locations.

Our environment (with names changed for clarity) is illustrated in Figure 5.9. In our home

network, the workstation home serves its file system to its private local network as an smb

service and across a NAT device (at public address my.host.net) to the internet as an rpc

service. At work, our office workstation serves its file system to the internet as an rpc

service. In addition, of course, the file systems are locally accessible to programs running on

104

these hosts. We also have a laptop that moves between the home network and public internet.

The laptop sometimes operates disconnected. Our editor can perform any sequence of host

and process movements around this environment. We use guievict, as described in Chapter 4,

to move its graphical user interface among hosts.

The flac specification in Figure 5.10 completely describes the semantics of the name

space for our mobile editor. The name space, for all locations, looks like the office file

system with the home file system mounted at /n/home. The most interesting aspects of the

specification are the two uses of the transfer combinator. First, when the application runs on

laptop, the files it accesses are copied from the home and office file systems to its local file

system. Like the transfer combinator example in Section 5.1.5, the push and pull modifiers

are set to IGNORE so that files are accessible while laptop is disconnected. Second, when

running on office, files from the home file system are cached in the local file system,

because data transfers in the upload direction from the home network are slow. However it

Figure 5.9: Environment of our flac experience.
The mobile application moves among the home, office, and laptop hosts. Laptop itself moves between the

home network and public internet, and sometimes operates disconnected.

local

Home Network 192.168.0.0/16

my.home.net

Firewall/NAT rpc

smb
local

office.cs.wisc.edu

rpc

laptophome laptop

Mobile Application

Mobile Host

Public Internet

105

uses more strict push and pull modifiers than those used on laptop, forcing I/O operations to

block during rare periods of disconnection with the home network to avoid inconsistencies.

Overall, the system delivers the functionality we envisioned: an application follows our

movement, enjoying transparent uninterrupted access to its files without modification or

special infrastructure. The main weakness is that we have no consistency guarantees for files

that, as discussed in Section 5.1.5, we update with Emacs running on the disconnected laptop

while they are simultaneously updated by other programs on home or office. Since we are

usually the only user of the files that we access with Emacs and we only update them with the

Figure 5.10: Flac specification for Emacs.

access from home workstation
HOME-FROM-HOME = local()
OFFICE-FROM-HOME = rpc(host=”cumin.cs.wisc.edu”)

access from office workstation
OCACHE = subtree(local(),/u/z/a/zandy/cache)
HOME-FROM-OFFICE = transfer(subtree(OCACHE,/home),
 rpc(host="my.home.net"),
 pushpull, BLOCK, BLOCK)
OFFICE-FROM-OFFICE = local()

access from laptop
LCACHE = subtree(local(),/cache)
HOME-FROM-LAPTOP = transfer(subtree(LCACHE,/home),
 select(location,
 192.168.0.0/16:smb(share="\\home\root"),
 else:rpc(host="my.home.net")),
 pushpull, IGNORE, IGNORE)
OFFICE-FROM-LAPTOP = transfer(subtree(LCACHE,/office),
 rpc(host="cumin.cs.wisc.edu"),
 pushpull, IGNORE, IGNORE)

root composition:
the application sees the office file system
with the home file system mounted on /n/home
HOME = select(location,
 home:HOME-FROM-HOME,
 office:HOME-FROM-OFFICE,
 laptop:HOME-FROM-LAPTOP)
OFFICE = select(location,
 home:OFFICE-FROM-HOME,
 office:OFFICE-FROM-OFFICE,
 laptop:OFFICE-FROM-LAPTOP)
root overlay(extendtree(HOME,/n/home), OFFICE)

106

same instance of Emacs, this weakness is not a problem for this application. However, we will

need to investigate the consistency options we suggested in Section 5.1.5 to support other

types of file access patterns.

Another minor weakness is that this specification suffers (like other examples in this

chapter) from redundant subexpressions that reduce its readability. These redundancies could

be eliminated with a language feature for defining a macro or function; we expect to

experiment with such a feature as we gain further experience with flac.

107

108

Chapter 6

Conclusion

Our goal has been to enable running applications to seamlessly follow their users. We

have identified the barriers to application mobility that are unaddressed by previous work in

process migration and mobile computing, and we have developed new techniques that

overcome these barriers without requiring users to modify their applications or environments.

This final chapter reviews our contributions and offers perspectives on the results.

6.1 Contributions

Our research enables running applications to follow their users as they move from

machine to machine and as they move with their machines to different locations. We have

shown that functionality for application mobility can satisfy three major technical goals:

• Transparent to applications: ordinary applications can be made mobile without re-

programming the application source code or even re-linking the application binaries.

• Independent movement: users can move only the applications that they can and want to

move.

• No modification to infrastructure: application mobility can be deployed entirely at the

convenience of its users.

109

Achieving these goals allows us to provide application mobility service that is flexible and

convenient for users of existing applications who work in environments with limited

administrative support for mobility.

Our challenge was to overcome the absence of user-level process migration techniques

that can handle the requirements of application mobility. These requirements include support

for movement of resources external to the process abstraction — network connections,

graphical user interfaces, and access to files — and tolerance of the conditions of their

movement, such as moving to different administrative domains and being disconnected from

remote resources for extended periods of time.

We addressed this challenge by defining three abstractions that, when taken together,

complete the process migration functionality necessary for application mobility:

• Reliable Network Connections: Network connections that automatically detect failures

caused by movement, and that recover from these failures transparently to the applications

that use them. Our new enhancement detection protocol enables the use of this abstraction

to spread incrementally in the Internet without affecting compatibility with applications

that do not yet support it. This protocol is a general-purpose solution to the problem of

safely detecting, at user-level, the presence in a remote support for any type of network

communication enhancement such as compression or encryption.

• Window Sessions: A transportable representation of the state of an application’s graphical

user interface that allows the user interface of a running application to be moved, either

with or independently of the application process, from one display to another. This

abstraction is sufficiently general to support the additional functionality of replicating user

interfaces across multiple displays.

• Mobile File Access: Applications access files through a name space that appears static,

but which changes its file access strategies as a process moves. Our flac language is a

descriptive and prescriptive language for managing such strategies. Flac enables the

110

concise description of file access strategies in terms of the various services that provide

access to name spaces, and name space composition operators that capture mobile file

access semantics such as context-dependent selection of a file service. These same

descriptions can be used to prescribe the run-time behavior of an application’s file name

space by handing them to a system, such as our prototype flac run-time, that implements

the semantics of flac.

We have implemented systems supporting these abstractions. Our implementations

demonstrate that these abstractions can be built entirely from user-level code with no

application modifications and with generally imperceptible overhead. We have shown that

these abstractions support the mobility of ordinary programs across administrative boundaries

and over extended periods of disconnection.

6.2 Perspectives

We see several directions for further inquiry and development from our work. These

directions include eliminating the remaining premeditative steps from our techniques,

introducing judiciously selected support for mobility into existing infrastructure, and

designing user interfaces for controlling application mobility functionality.

First, in each of our systems we attempted to avoid the need for premeditative user action

related to mobility. We were most successful with GUI mobility: guievict users take no

explicit actions until the moment they decide to move their interface to a new display. We

previously achieved similar success with process hijacking [88], allowing users to checkpoint

and migrate running programs (only those that do not use network connections or graphical

user interfaces, and that have restricted types of file access) with no premeditative steps.

However, our systems for both reliable network connections and mobile file access are

designed to be started when the application process is started, and cannot be initialized once

111

the application has started to access network or file resources. We would like to investigate if

this limitation could be overcome. The result would be an application mobility service that

could be operated without requiring users to start their applications in special ways.

Second, one advantage of knowing how to solve application mobility problems at user

level is that it provides insight into what essential functionality future operating systems,

libraries, and window systems could provide to support this functionality. With our new

insight, we can look for opportunities to add minimal, general-purpose functionality to our

infrastructure that would reduce or eliminate the parts of user-level application mobility

systems that are difficult to implement correctly, hard to maintain, or redundant. Our

experience reinforces the arguments for some previously proposed functionality, including the

ability to read the kernel-level buffers used by network protocols [4,52,84,89], and systems

for code interposition [79] that hide the unportable aspects of interposition and that allow

multiple interposed libraries to operate independently in the same application process.

An example of possible new functionality is the ability to inventory the instances of each

type of system resource that have been allocated for an application. Such an interface should

provide the identifier for each instance and a description of the state of the instance. The

description of the state should be sufficiently rich to allow the creation of a copy of the

instance that is indistinguishable, from the application’s perspective, from the original.

Third, we have developed the essential mechanisms for application mobility, but we do

not have an entirely frictionless system. The major missing piece is a better interface for users

to select the applications, or the parts of applications, they want to move and to specify their

destination. Today, users of our system face command-line tools whose arguments include

process identifiers to identify programs and IP or DNS addresses to identify locations; while

112

these are natural for technical-minded users, they are probably too arcane for other users. A

related interface problem is conveying the status of mobile applications that are blocked

when, because of movement, needed resources are unavailable. Although our systems safely

prevent applications from failing in these conditions, they do not offer simple explanations

about the current problem or its possible remedies. It is not clear how easy it is to translate the

technical conditions into simple explanations.

113

References

[1] H.M. Abdel-Wahab and M.A. Feit. XTV: A Framework for Sharing X Window Clients
in Remote Synchronous Collaboration. IEEE TriCom ‘91: Communications for
Distributed Applications and Systems. Chapel Hill, NC, USA, April 1991, pp. 159-167.

[2] H. Abdel-Wahab and K. Jeffay. Issues, Problems and Solutions in Sharing X Clients on
Multiple Displays. Internetworking – Research and Practice 5, 1, March 1994, pp. 1-
15.

[3] Apple Computer, Inc. OS X Manual. February 2003.

[4] A. Bakre and B.R. Badrinath. I-TCP: Indirect TCP for Mobile Hosts. 15th International
Conference on Distributed Computing Systems (ICDCS ‘95), Vancouver, British
Columbia, Canada, May 1995.

[5] S. Balasubramaniam and B. C. Pierce. What is a File Synchronizer? 4th ACM/IEEE
International Conference on Mobile Computing and Networking (MobiCom '98),
Dallas, TX, October 1998.

[6] J.E. Baldeschwieler, T. Gutekunst, B. Plattner. A Survey of X Protocol Multiplexors.
ACM SIGCOMM Computer Communication Review 23, 2, April 1993.

[7] D.A. Bandel. A NATural Progression. Linux Journal 98, June 2002.

[8] J. Bazik. XMX – An X Protocol Multiplexor. http://www.cs.brown.edu/software/xmx.

[9] C. Bormann and G. Hoffmann. Xmc and Xy – Scalable Window Sharing and Mobility.
8th Annual X Technical Conference, January 1994.

[10] R.T. Braden. Requirements for Internet Hosts – Applications and Support. Internet
Request for Comments RFC 1122, October 1989.

[11] D.R. Brownbridge, L.F. Marshall, and B. Randell. The Newcastle Connection, or,
UNIXes of the World Unite! Software Practice and Experience 12, 12, December 1982,
pp. 1147-1162.

[12] B. Buck and J.K. Hollingsworth. An API for Runtime Code Patching. Journal of High
Performance Computing Applications 14, 4 , Winter 2000, pp. 317-329.

114

[13] J. Casas, D.L. Clark, R. Konuru, S.W. Otto, R.M. Prouty, and J. Walpole. MPVM: A
Migration Transparent Version of PVM. Computing Systems 8, 2, Spring 1995.

[14] K.M. Chandy and L. Lamport. Distributed Snapshots: Determining Global State of
Distributed Systems. ACM Transactions on Computer Systems 3, 1, February 1985.

[15] Y. Chen, J.S. Plank, and K. Li. CLIP: A Checkpointing Library for Intel Paragon.
SuperComputing ‘97, San Jose, CA, 1997.

[16] P. Chen and B. Noble. When Virtual is Better Than Real. 8th Workshop on Hot Topics in
Operating Systems (HotOS-VIII), Elmau/Oberbayern, Germany, May 2001.

[17] A Cobbs. Divert(4). FreeBSD 4.7 Kernel Interfaces Manual, June 1996.

[18] M. Crispin. Internet Message Access Protocol: Version 4rev1. Internet Request for
Comments RFC 2060, December 1996.

[19] F. Douglis and J. Ousterhout. Transparent Process Migration: Design Alternatives and
the Sprite Implementation. Software Practice and Experience 21, 8, August 1991, pp.
757-785.

[20] R. Droms. Dynamic Host Configuration Protocol. Internet Request for Comments RFC
2131, March 1997.

[21] K. Egevang and P. Francis. The IP Network Address Translator (NAT). Internet Request
for Comments RFC 1631, May 1994.

[22] P. Ferguson and D. Senie. Network Ingress Filtering. Internet Request for Comments
RFC 2267, May 2000.

[23] B.O. Gallmeister. POSIX.4: Programming for the Real World. O'Reilly and
Associates, Sebastopol, CA 1995.

[24] S. Garfinkel and G. Spafford. Practical UNIX & Internet Security, 2nd Edition.
O’Reilly and Associates, Sebastopol, CA, April 1996.

[25] D. Garfinkel, B.C. Welti, T.W. Yip. HP SharedX: A Tool for Real-Time Collaboration.
Hewlett-Packard Journal 45, 2, April 1994, pp. 23-36.

[26] A. Geitz, A. Beguelin, J. Dongarra, W. Jiang, R. Manchek, V. Sunderam. PVM: Parallel
Virtual Machine: A Users’ Guide and Tutorial for Networked Parallel Computing. MIT
Press, Cambridge, Massachusetts, 1994.

[27] J. Gettys. Private communication. June 2003.

115

[28] J. Gettys. The Future is Coming: Where the X Window System Should Go. 2002 Usenix
Annual Technical Conference (Freenix Track), Monterey, CA, June 2002, pp. 63-69.

[29] J. Gettys and K. Packard. The X Resize and Rotate Extension —RandR. 2001 Usenix
Annual Technical Conference (Freenix Track), Boston, MA, June 2001.

[30] W. Gropp, E. Lusk, N. Doss, and A. Skjellum. A High-Performance, Portable
Implementation of the MPI Message Passing Interface Standard. Parallel Computing
22, 6, September 1996.

[31] T. Gutekunst, D. Bauer, G. Caronni, Hasan, and B. Plattner. A Distributed and Policy-
Free General-Purpose Shared Window System. IEEE/ACM Transactions on Networking
3, 1, Februrary 1995.

[32] D. Hendricks. A Filesystem For Software Development. 1990 Summer Usenix Technical
Conference, Anaheim, CA, June 1990, pp. 333-340.

[33] J.H. Howard, M.L. Kazar, S.G. Menees, D.A. Nichols, M. Satyanarayanan,
R.N. Sidebotham, and M.J. West. Scale and Performance in a Distributed File System.
ACM Transactions on Computer Systems 6, 1, February 1988, pp. 51-81.

[34] O. Jones. Multidisplay Software in X: A Survey of Architectures. The X Resource, Issue
6, O’Reilly & Associates, Jan 1993, pp. 97-113.

[35] S. Kent and R. Atkinson. Security Architecture for the Internet Protocol. Internet
Request for Comments RFC 2401, November 1998.

[36] M. Kim, L. P. Cox, and B. D. Noble. Safety, visibility, and performance in a wide-area
file system. USENIX Conference on File and Storage Technologies (FAST ’02), January
2002, Monterey, CA.

[37] J.J. Kistler and M. Satyanarayanan. Disconnected Operation in the Coda File System.
ACM Transactions on Computer Systems 10, 1, February 1992, pp. 3-25.

[38] D.G. Korn and E. Krell. A New Dimension for the Unix File System. Software Practice
and Experience 20, S1, June 1990, pp. 19-34.

[39] M. Kozuch and M. Satyanarayanan. Internet Suspend/Resume. 4th IEEE Workshop on
Mobile Computing Systems and Applications (WMCSA 2002), Callicoon, NY, June
2002, pp. 40-46.

[40] M. Litzkow, T. Tannenbaum, J. Basney, and M. Livny. Checkpoint and Migration of
UNIX Processes in the Condor Distributed Processing System. Technical Report #1346,
Computer Sciences Department, University of Wisconsin, April 1997.

116

[41] D.A. Maltz and P. Bhagwat. MSOCKS: An Architecture for Transport Layer Mobility.
INFOCOM ‘98, San Francisco, CA, April 1998.

[42] S. McCanne and V. Jacobson. The BSD Packet Filter: A New Architecture for User-
level Packet Capture. 1993 Winter Usenix Conference, San Diego, CA, 1993.

[43] A.J. Menezes, P.C. Van Oorschot, and S.A. Vanstone (Editor). Handbook of Applied
Cryptography. CRC Press, 1996.

[44] Message Passing Interface Forum. MPI: A Message Passing Interface Standard. May,
1994.

[45] Microsoft Windows Team. Microsoft Windows XP Professional Resource Kit. 2nd
Edition. Microsoft Press, 2003.

[46] D.S. Milojicic, F. Douglis, Y. Paindaveine, R. Wheeler, and S. Zhou. Process Migration.
ACM Computing Surveys 32, 3, September 2000, pp. 241-299.

[47] J.C. Mogul. Efficient Use of Workstations for Passive Monitoring of Local Area
Networks. ACM Symposium on Communications Architectures and Protocols
(SIGCOMM ‘90), Philadelphia, PA, 1990.

[48] J.C. Mogul, R.F. Rashid, and M.J. Accetta. The Packet Filter: An Efficient Mechanism
for User-level Network Code. 11th Symposium on Operating System Principles (SOSP
‘87). Austin, TX, November 1987.

[49] T. Okoshi, M. Mochizuki, Y. Tobe, and H. Tokuda. MobileSocket: Toward Continuous
Operation for Java Applications. IEEE International Conference on Computer
Communications and Networks (IC3N’99), Boston, MA, October 1999.

[50] S. Osman, D. Subhraveti, G. Su, and J. Nieh. The Design and Implementation of Zap: A
System for Migrating Computing Environments. 5th Symposium on Operating Systems
Design and Implementation (OSDI 2002), Boston, MA, December 2002.

[51] T.W. Page, R.G. Guy, J.S. Heidemann, D.H. Ratner, P.L. Reiher, A. Goel, G.H.
Kuenning, G.J. Popek. Perspectives on Optimistically Replicated, Peer-to-Peer Filing.
Software Practice and Experience 28, 2, February 1998, pp. 155-180.

[52] V. Pai, M. Aron, G. Banga, M. Svendsen, P. Druschel, W. Zwaenepoel, and E. Nahum.
Locality-Aware Request Distribution in Cluter-based Network Servers. 8th
International Conference on Architectural Support for Programming Languages and
Operating Systems (ASPLOS-VIII), San Jose, CA, USA, October 1998.

117

[53] J. Pendry and M.K. McKusick. Union Mounts in 4.4BSD-Lite. 1995 Usenix Annual
Technical Conference. New Orleans, LA, USA, January 1995.

[54] H. Pennington. GTK+/Gnome Application Development. Que, 1999.

[55] C. Perkins. IP Mobility Support. Internet Request for Comments RFC 2002, October
1996.

[56] K. Petersen, M. J. Spreitzer, D. B. Terry, M. M. Theimer, and A. J. Demers. Flexible
Update Propagation for Weakly Consistent Replication. 16th ACM Symposium on
Operating Systems Principles (SOSP-16), Saint Malo, France, October 5-8, 1997, pp.
288-301.

[57] R. Pike, D. Presotto, S. Dorward, B. Flandrena, K. Thompson, H. Trickey, and
P. Winterbottom. Plan 9 from Bell Labs. Computing Systems 8, 3, Summer 1995, pp.
221-254.

[58] J.S. Plank, M. Beck, G. Kingsley. Libckpt: Transparent Checkpointing under Unix.
USENIX Winter 1995 Technical Conference, New Orleans, LA, January 1995.

[59] J. Postel. Internet Protocol. Internet Request for Comments RFC 791, September 1981.

[60] J. Postel. Transmission Control Protocol. Internet Request for Comments RFC 793,
September 1981.

[61] M.L. Powell and B.P. Miller. Process Migration in DEMOS/MP. 9th ACM Symposium
on Operating System Principles, October 1983.

[62] D. Presotto. Private communication. August 2003.

[63] X. Qu, J.X. Yu, and R.P. Brent. A Mobile TCP Socket. Technical Report TR-CS-97-08,
Computer Sciences Laboratory, RSISE, The Australian National University, Canberra,
Australia, April 1997.

[64] X. Qu, J.X. Yu, and R.P. Brent. A Mobile TCP Socket. International Conference on
Software Engineering (SE ‘97), San Francisco, CA, USA, November 1997.

[65] T. Richardson, F. Bennett, G. Mapp, and A. Hopper. Teleporting in an X Window
System Environment. The X Resource, Issue 13, O’Reilly & Associates, Jan 1995, pp.
133-140.

[66] T. Richardson, Q. Stafford-Fraser, K.R. Wood, and A. Hopper. Virtual Network
Computing. IEEE Internet Computing 2, 1, January/February 1998, pp. 33-38.

118

[67] R.W. Scheifler and J. Gettys. The X Window System. ACM Transactions on Graphics 5,
2, April 1986, pp. 79-109.

[68] B.K. Schmidt, M.S. Lam, J.D. Northcutt. The Interactive Performance of SLIM: A
Stateless, Thin-client Architecture. 17th ACM Symposium on Operating Systems
Principles (SOSP ‘99). Kiawah Island, South Carolina, December 1999.

[69] A.C. Snoeren and H. Balakrishnan. An End-to-End Approach to Host Mobility. 6th
IEEE/ACM International Conference on Mobile Computing and Networking (Mobicom
’00). Boston, MA, August 2000.

[70] A.C. Snoeren, D.G. Anderson, and H. Balakrishnan. Fine-Grained Failover Using
Connection Migration. 3rd Usenix Symposium on Internet Technologies and Systems
(3rd USITS). San Francisco, CA, March 2001.

[71] E. Solomita. Xmove Version 2.0 Beta 2. ftp://ftp.cs.columbia.edu/pub/xmove,
November, 1997.

[72] E. Solomita, J. Kempf and D. Duchamp. Xmove: A Pseudoserver for X Window
Movement. The X Resource, Issue 11, July 1994, pp. 143-170.

[73] R.M. Stallman. GNU Emacs Manual, Fifteenth Edition. Free Software Foundation,
2002.

[74] G. Stellner. CoCheck: Checkpointing and Process Migration for MPI. 10th International
Parallel Processing Symposium, Honolulu, HI, 1996.

[75] G. Stellner and J. Pruyne. Resource Management and Checkpointing for PVM. 2nd
European PVM User Group Meeting, Lyon, France, 1995.

[76] W.R. Stevens. UNIX Network Programming, Volume 1, Second Edition:
Networking APIs: Sockets and XTI. Prentice Hall, 1998.

[77] D. Sweet. KDE 2.0 Development. SAMS, 2000.

[78] D. Thain, J. Basney, S. Son, and M. Livny. The Kangaroo Approach to Data Movement
on the Grid. 10th IEEE Symposium on High Performance Distributed Computing
(HPDC ‘01), San Francisco, California, August 2001.

[79] D. Thain and M. Livny. Bypass: A Tool for Building Split Execution Systems. 9th IEEE
Symposium on High Performance Distributed Computing (HPDC ‘00), Pittsburgh, PA,
August 2000.

119

[80] M.M. Theimer, K.A. Lantaz, and D.R. Cheriton. Preemptable Remote Execution
Facilities for the V-System. 10th ACM Symposium on Operating System Principles,
Orcas Island, WA, December 1985.

[81] B. Walker, G. Popek, R. English, C. Kline, and G. Thiel. The LOCUS Distributed
Operating System. Distributed Computing Systems: Concepts and Structures, IEEE
Computer Society Press, 1992, pp. 145-164.

[82] K. Wood, T. Richardson, F. Bennett, A. Harter, and A. Hopper. Global Teleoporting with
Java: Towards Ubiquitous Personalized Computing. Nomadics ‘96, San Jose, March
1996.

[83] D. Wright. Cheap Cycles from the Desktop to the Dedicated Cluster: Combining
Opportunistic and Dedicated Scheduling with Condor. Linux Clusters: The HPC
Revolution, Champaign-Urbana, IL, USA, June 2001.

[84] D.K.Y. Yau and S.S. Lam. Migrating Sockets -- End System Support for Networking
with Quality of Service Guarantees. IEEE/ACM Transactions on Networking, 6, 6,
December 1998, pp. 700-716.

[85] T. Ylonen, T. Kivinen, M. Saarinen, T. Rinne, and S. Lehtinen. SSH Protocol
Architecture. Internet Engineering Task Force Internet-Draft draft-ietf-secsh-
architecture-13, September 2002.

[86] F. Yuan. Windows Graphics Programming. Prentice Hall, 2001.

[87] E. Zadok and D. Duchamp. Discovery and Hot Replacement of Replicated Read-Only
File Systems, with Application to Mobile Computing. 1993 Summer Usenix Technical
Conference, Cincinnati, OH, June, 1993, pp. 69-85.

[88] V.C. Zandy, B.P. Miller, and M. Livny. Process Hijacking. Eighth International
Symposium on High Performance Distributed Computing (HPDC ‘99), Redondo
Beach, CA, August 1999, pp. 177-184.

[89] B. Zenel. A Proxy Based Filtering Mechanism for the Mobile Environment. Ph.D.
Dissertation, Computer Science Department, Columbia University, December 1998.

[90] Y. Zhang and S. Dao. A “Persistent Connection” Model for Mobile and Distributed
Systems. 4th International Conference on Computer Communications and Networks
(ICCCN). Las Vegas, NV, September 1995.

[91] E.D. Zwicky, S. Cooper, and D.B. Chapman. Building Internet Firewalls, 2nd Edition.
O’Reilly and Associates, Sebastopol, CA, June 2000.

