
filers
tation

set of
bina-

ently

used
uted
Para-

rogram
running

rough
about
ll-path
n can

ed [10].
to this
sive to
e pro-

ticular
d func-
r variety
tal call-
al path

tion,
or a C

ore Na-
ding any
Incremental Call-Path Profiling1

Abstract
Call-path profiling attributes execution cost to the path taken to reach a function. Previous call-path pro

tracked the call-path at all times, which requires instrumentation of the entire program. Since this instrumen
was frequently executed, they were restricted to calculating simple metrics, such as function call counts.

We present a new method for call-path profiling called incremental call-path profiling. We profile only a sub
the functions in the program, allowing the use of more complex metrics while lowering the overhead. This com
tion of call path information and more complex metrics is particularly useful for localizing bottlenecks in frequ
called functions.

We also describe the implementation and application of iPath, an incremental call-path profiler. iPath was
to profile two real-world applications: the Paradyn instrumentation daemon and the MILC su3_rmd QCD distrib
simulation. In both applications we found and removed call-path specific bottlenecks. Our modifications to the
dyn instrumentation daemon greatly increased its efficiency. The time required to instrument our benchmark p
was reduced from 296 seconds to 6.4 seconds, a 98% decrease. Our modifications to su3_rmd reduced the
time of the program from 3001 seconds to 1652 seconds, a 45% decrease.

1. Introduction

Call-path profiling is a mechanism by which the information gathered by the profiler is attributed to paths th
the call graph rather than to individual functions. Call-path profiling is able to gather more precise information
the execution of the program than a conventional profiler, but with greater cost. Previous whole-program ca
profilers added instrumentation at all function call sites, entry points and exit points [11,12]. This instrumentatio
slow the execution of the profiled program by 300-700% even when performance metrics are not being gather

Whole-program profilers require complete instrumentation to track the call-paths taken by a program. Due
requirement the performance metrics supported by many profilers are limited to metrics that are inexpen
gather. The user of the profiler is often only interested in the performance characteristics of a few functions in th
gram. In this case the information offered by a whole program profiler is both too broad and too limited.

Incremental call-path profiling is a technique that allows a programmer to examine the behavior of par
functions, rather than the whole program. This method operates by adding instrumentation only to the profile
tions. Overhead is only incurred when the profiled functions are executed. We can also make use of a greate
of performance metrics than are available from whole-program profilers. The data gathered by an incremen
path profiler require no postprocessing, and are immediately available to the programmer. Finally, increment
profiling is amenable to dynamic (run-time) instrumentation.

Call-path profiling information is useful when optimizing commonly used functions, such as a library func
that are called from many different locations. An example of such a function is an MPI communication method

Andrew R. Bernat Barton P. Miller
Computer Sciences Department

University of Wisconsin
1210 W. Dayton Street

Madison, WI 53706-1685
{bernat,bart}@cs.wisc.edu

1. This work is supported in part by Department of Energy Grants DE-FG02-93ER25176 and DE-FG02-01ER25510, and Lawrence Liverm
tional Lab grant B504964. The U.S. Government is authorized to reproduce and distribute reprints for Governmental purposes notwithstan
copyright notation thereon.
Page 1



of the

r. This
func-

tion and
trics and
ered are

ign of
all cost
ystems,
n the
tions
u3_rmd.

ram.
oaches

of data
orma-
, updat-
ling to

tion to
ion par-
limiting

n of the
ments
to use

annot
capa-
lead to

oxima-
e identi-
nd call
handle

gram’s
within a
le this
forma-

ction
of cur-
with the

present
library function. In this case, knowing only the aggregate behavior of the function is misleading if the behavior
function varies widely depending on the caller.

This paper presents the design, implementation, and application of iPath, an incremental call-path profile
tool is capable of gathering a wide variety of performance metrics for the call-path while instrumenting only the
tions of interest to the user. iPath uses a inexpensive stack walk mechanism to record the call-path to a func
uses this walk to attribute the performance data. iPath supports both counter and timer-based performance me
is capable of calculating metrics based on both hardware counters and software resources. The data gath
available in a shared memory segment for immediate examination and use.

We begin by comparing iPath to existing work in the area of call-path profiling. We then discuss the des
iPath and show that while the instrumentation used is more complex than in static call-path profilers, the over
is smaller when small groups of functions are selected. As a test of our technique, we apply iPath to two real s
the Paradyn dynamic profiler [13] and su3_rmd, a distributed quantum chromodynamics simulation built o
MILC framework [3]. In both applications, we found and removed call-path specific bottlenecks. Our modifica
resulted in an almost 98% decrease in Paradyn instrumentation time and a 45% decrease in running time of s

2. Related Work

Call-path profiling is a well-known approach for gathering detailed information about the behavior of a prog
Several projects have investigated methods of offering call-path profiling with minimal overhead. These appr
can be divided into three categories based on their mechanism for generating the call-path and their method
collection. The first category consists of profilers that approximate call-paths and provide only partial path inf
tion. The second group maintains a snapshot of the current call-path through the entire execution of a program
ing it at function call boundaries via instrumentation. The final category consists of profilers that use samp
identify call-paths and gather performance data.

The tools gprof [6] and sprof [15] are both examples of the first category. These profilers use instrumenta
accurately count function entries and exits, and use sampling to approximate CPU usage. From this informat
tial call-paths of length two are generated. Neither profiler supports the use of hardware performance metrics,
the variety of information available to the user.

The second category consists of call-graph profilers that track the current call-path throughout the executio
program. The first of these, PP, is an intraprocedural path profiler developed by Ball and Larus [2]. PP instru
transitions between basic blocks to track the execution path within individual functions. PP was extended [1]
the calling context of a function to approximate the call-path. This approximation uses a construct called aCalling
Context Tree (CCT)that represents the call-tree of a program in a more compact form. However, the CCT c
track recursive calls, collapsing all recursive calls to a particular function to a single node in the CCT. PP is also
ble of accessing the hardware counters on the SPARC platform, but only uses non-virtualized timers. This can
inaccuracies due to context switches.

Melski and Reps extended PP with a technique that could directly track interprocedural paths without appr
tion [11,10]. This approach assigned a unique identifier to every possible path through a program and used th
fier to label collected performance data. Their technique adds instrumentation to all function entries, exits, a
sites. The instrumentation manipulates a counter value that corresponds directly to the current call-path. To
recursion and function pointers, they require post-execution processing of the data.

Larus also developed a method, Whole-Program Paths (WPP) [8], to record a block-by-block trace of a pro
execution and represent it with a compact grammar. He used PP to determine and record the paths taken
function, and from this information pieced together a representation of the whole program’s execution. Whi
representation included all call-paths taken by the program, they were not associated with any performance in
tion other than function call counts.

The TAU performance tools [9] also provide call-path specific profiling data. The TAU system traces fun
entries and exits via instrumentation code inserted in the program and uses this information to maintain a stack
rently executing functions. The measurement system walks this stack to associate gathered performance data
correct call-path. Since TAU tracks function entries and exits directly, pointer-based calls and recursion do not
a problem.
Page 2



n for
na-
nt call-

rogram.
does

Solaris
current

gen-
tead of
e met-

urrent
ATCH

fers by

o deter-
menta-
precise

e

tively
g func-
nstru-
n this
ath pro-

nstru-
ation is
be less

ing the
within
r. Stack
lly, all

on 4.3,

ampled.
is exe-
d, the

er cate-
ints of
ange in
DeRose and Wolf developed CATCH [5], a tool that associates hardware metrics with call-path informatio
MPI and OpenMP applications. Like iPath, CATCH is built on the Dyninst instrumentation library [4]. CATCH a
lyzes the call-graph of the program and uses call-site instrumentation to maintain a representation of the curre
path. The user can select subtrees of the call-graph to profile rather than tracking the entire execution of the p
This allows CATCH to reduce the amount of instrumentation inserted in the program. Unfortunately, CATCH
not support profiling of programs that use dynamic calls through function pointers.

Hall developed a profiler, CPPROF, that uses sampling to collect performance data [7]. CPPROF uses the
/proc file system to gather information about a profiled process. Each sample consists of a stack walk and the
value of the performance metrics used. This information is used to generate a complete call-path profile.

Our work introduces a fourth category of call-path profilers. We differ from the first category of profilers by
erating precise call-path information instead of an approximation. We also generate the entire call-path ins
only a segment. Finally, we take advantage of a variety of performance data, including hardware performanc
rics.

PP, its extension by Melski and Reps, WPP, and TAU all depend on global instrumentation to maintain a c
call-path. These profilers all gather information that must be post-processed after the program completes. C
uses a similar approach, instrumenting all call-sites in profiled subtrees of the call-graph. Our approach dif
instrumenting only the individual functions that are being profiled and building the call-path on the fly.

CPPROF also makes its profile data available at run-time, and both CPPROF and iPath use a stack walk t
mine the current call path. However, the sampling approach used by CPPROF differs greatly from our instru
tion approach. Sampling gathers information about the entire process, with low overhead, but cannot provide
information about particular functions.

We also present the concept ofincrementalpath profiling, in which it is possible to target specific functions to b
profiled instead of tracing the entire program. Previous profilers do not target particular functions.

3. Design

Incremental path profiling has four key characteristics. First, only the entries and exits of the functions ac
being profiled are instrumented. Second, we determine the current call-path via a stack walk instead of trackin
tion call sites. Third, profile data is accessible at run-time with no further post-processing required. Finally, i
mentation can be added to or removed from particular functions without instrumenting other functions. I
section, we elaborate on these four points, and then describe iPath, our implementation of an incremental p
filer.

Incremental path profiling operates by adding instrumentation only to the functions that are profiled. This i
mentation determines the current call-path and collects desired performance information. Since instrument
executed at only the entry and exits of profiled functions, the overhead of an incremental path profiler should
than a whole-program path profiler even when more expensive metrics are used.

Our instrumentation determines the current call-path by taking a inexpensive stack walk. Since we are walk
actual stack, we detect recursion and calls through function pointers. In addition, calls from different call-sites
the same function will have different return addresses on the stack and can be distinguished from one anothe
walking is one of our fundamental mechanisms, so it is important that it is as efficient as possible. Conceptua
that is required is to follow the frame pointer down the stack until the base is reached. As we discuss in Secti
several optimizations make stack walking more complicated.

Once the stack has been walked to determine the current call-path, the desired performance metrics are s
We divide metrics into two categories, counters and timers. Counters, such as the number of times a function
cuted on a particular call-path, require only a single point of instrumentation. Once the call-path is determine
counter associated with that path is incremented at function entry; no exit instrumentation is required. The oth
gory of metrics, timers, measure the change in a metric over the execution of a function and require two po
instrumentation. The value of the metric is recorded at the entry of the function and is used to calculate the ch
the metric at the end of the function.
Page 3



a list of
viewed

done at

instru-
g pro-
and

y con-
in a

e cur-
d.

. Once
e ini-
be read

rm the
hin the
ersions

ide of a

r. Since
ut paus-
d dis-
e, and
call-path
The profile data is stored as a collection of call-path data structures. Each call-path structure consists of
addresses that identify the call-path and the profiling information associated with that path. This data can be
by the user at any time. This makes it possible to profileincrementally, continually refining the instrumentation
inserted based on the profile data returned. If a dynamic instrumentation library is used, this refinement can be
run-time.

4. Implementation

We implemented the technique described above in iPath using the DyninstAPI instrumentation library to
ment the profiled program. Dyninst provides an interface that allows us to attach to and instrument a runnin
gram. iPath is implemented on POWER/AIX and IA-32/Linux and is capable of using a variety of hardware
software metrics.

iPath consists of two parts: (1) a Dyninst mutator that instruments the application and (2) a run-time librar
taining the stack walk and profiling logic, which is injected into the application. The profile results are stored
shared memory segment. iPath provides a command-line interface to identify the functions to be profiled. W
rently do not take advantage of Dyninst’s ability to modify instrumentation while the program is being execute

4.1. Mutator

The iPath mutator is responsible for starting the application or attaching to a previously running application
we have created or attached to the application we inject our run-time library into the program and initialize it. Th
tialization process creates a shared memory segment that is used to store profile data. This allows the data to
at runtime without pausing the application.

We insert calls to our library at the entry and exit of all functions requested by the user. These calls perfo
stack walk and collect performance data. If a single requested function name matches multiple functions wit
program, each of these functions is instrumented and the performance information is kept separate. Multiple v
of a function can occur in the demangled names in C++ or in local functions whose names are not visible outs
module.

Once the instrumentation has been inserted, the program is run with no further manipulation by the mutato
a shared memory segment is used to store the profile data, it is possible to sample this from the mutator witho
ing the program. The mutator periodically prints out a summary of the profile data while the program runs an
plays a final version when the program completes. This summary includes function counts, total CPU usag
average CPU usage for each call-path. iPath also calculates the percentage of the entire execution each
takes, which is useful to determine call-path specific bottlenecks.

Figure 1: Representation of call-path profiles

main

f1

f2

f1

f3

foo

mainmain main

foo

foo

foo

f1

path 1 path 2 path 3 path n

foo

. . .

perf.
data

perf.
data

perf.
data

perf.
data
Page 4



a gath-
ck walk

rofiled
for that
to the

tually
ethods
file by
. If no

. Timers,
tion call
ticular
exit

n, we
found
ers are

erence.

tly we

hese
never a

ntation
stead of

ths. If
ming

is reason

entify
at mod-
when
g the

zation
ere are
nately,

opti-
our

, rely-
iPath

have
stack
4.2. Run-Time Library

The iPath run-time library is responsible for performing the call-path-based sampling and recording the dat
ered. The run-time library consists of three major segments: the data structures that store profiling data, the sta
logic, and the entry and exit instrumentation.

iPath stores detected call-paths and their associated profiling information as shown in Figure 1. Each p
function has its own copy of these structures. Each call-path is associated with the performance data collected
call-path. If a profiled function is entered recursively, there will be separate call-path for each unique call-path
function.

Our entry instrumentation walks the stack to determine the current call-path. While a stack walk is concep
simple, in practice it can be difficult due to compiler optimizations. We discuss these optimizations and our m
for handling them in the next section. The stack walk acquired is used to look up the appropriate call-path pro
searching the table of previously seen call-paths to the profiled function and looking for a matching stack walk
match is found, then a new call-path profiling structure is initialized and added to the table.

Once the appropriate profile structure has been determined the desired performance metrics are gathered
such as CPU time, are started by storing the current timer value as a starting value. Counters, such as func
counts, are simply incremented. Finally, the current call-path is added to a stack of active timers for that par
function. Thisactive stackis used by the exit instrumentation to short-cut the call-path lookup process at function
and is described below.

The exit instrumentation is responsible for stopping any active timers. First, as with entry instrumentatio
determine the active call-path with a stack walk and a table lookup. Unlike entry instrumentation, if no match is
no actions are performed. We do this for safety reasons. Once the active call-path has been determined, tim
stopped by again sampling the current timer value, subtracting the starting value, and accumulating the diff
Finally, the top of the active stack (corresponding to this exit) is removed.

To make our instrumentation as efficient as possible we have included a few optimizations. Most importan
match function exits to entries through a mechanism we call theactive stack, which is unique for each profiled func-
tion. Normally, the call-path to a function will not change between the entry to this function and its exit. In t
cases, the call-path determined by the entry instrumentation can be reused by the exit instrumentation. Whe
function is entered we push a the current call-path onto the active stack. When we perform our exit instrume
we compare the call-path to the top of the active stack before searching in the table of paths. We use a stack in
a single element to handle recursive entry of the instrumented function, which will result in multiple active pa
the profiled function is never entered recursively, this stack will have a maximum height of 1. Certain program
constructs, such as signals and setjmp/longjmp, can cause a program to enter a function but not leave. For th
we always ensure the cached path is correct. Finally, the path at the top of the stack is removed.

4.3. Stack Walks

While a stack walk is conceptually simple, several optimizations can make the process more difficult. We id
three categories of optimizations that effect stack walks: functions that do not create stack frames, functions th
ify their stack frame during execution, and functions that do not record a pointer to the previous stack frame
creating a new frame. We avoid the complexities of walking partially constructed stack frames by only walkin
stack at the entry and exit of a function.

The first category of optimizations consists of functions that do not create stack frames. This type of optimi
will cause a function to not appear in a stack walk and therefore the call-path derived from the stack walk. Th
two common examples of frameless functions, leaf functions without stack frames and inlined functions. Fortu
a leaf function will never occur in the middle of a stack walk as it makes no calls. Since we only have to handle
mizations in the caller of the profiled function, any leaf optimizations in the profiled function will not impede
stack walking. Inlined functions are another matter. We do not distinguish inlined functions in our stack walks
ing on other information (such as the symbol table) to reconstruct the original form of the function. Currently
presents the call-path without the inlined function.

The second group of optimizations consists of functions that modify their stack frame during execution. We
seen this optimization in several functions in the AIX math library. These functions normally execute without a
Page 5



k walks
by the

revious
echa-
e stack
nction,

ointer
he stack
er than

_rmd
the run-
-opti-
radyn
ization
instru-
e execu-

gh the
was
e of
ent.
analy-
due to
multi-

nt (PC),
tation
nt deter-

to trig-
entation

Further

multi-
frame. If an error is detected they create a stack frame before handling the error. We can take accurate stac
even in the presence of this type of optimization as long as the modifications to the stack frame are completed
time a call is made. This is true for every case of this optimization of which we are aware.

Our final category consists of optimizations that create stack frames that do not contain a pointer to the p
frame. This makes it impossible to identify the previous stack frame without knowing, through some other m
nism, the size of the current stack frame. We have seen this optimization on IA-32. It uses two registers, th
pointer and the frame pointer, to track the stack. The stack pointer moves throughout the execution of each fu

while the frame pointer is static and contains the pointer to the previous frame. It is possible to omit the frame p
so the register can be reused, making it impossible to find the previous frame. We detect this case and abort t
walk. We are investigating how often it is feasible to determine the size of the stack through code analysis rath
relying on the frame pointer.

5. Results

We applied our profiler to two different applications, the Paradyn instrumentation daemon and the MILC su3
QCD simulation code. In both cases we were able to use call-path profile data to make large improvements in
ning time of the programs. We were able to identify a utility function in the Paradyn daemon that was not well
mized for its most frequent caller. Optimizing this function resulted in an almost 98% decrease in Pa
instrumentation time. We also examined the use of the MPI library by su3_rmd and identified several synchron
bottlenecks. By fixing these bottlenecks we were able to reduce the running time overall program by 45%. Our
mentation added less than 1% overhead to the execution time of the Paradyn daemon and 8% overhead to th
tion time of su3_rmd.

5.1. Paradyn Daemon

iPath was used to identify and remove a major bottleneck in the Paradyn instrumentation daemon. Throu
use of path profiling, we were able to locate a utility function that was being called frequently. This function
incorrectly optimized, by reimplementing the function, we significantly reduced the overall instrumentation tim
the daemon. This reduction in instrumentation time also resulted in a visible user-level performance improvem

We noted that Paradyn’s automated analysis of a multi-threaded program was significantly slower than the
sis of a similar single-threaded program. We investigated this behavior and determined that the slowdown was
the instrumentation section of the daemon. Requests for instrumentation were taking significantly longer on a
threaded program than they were for a single-threaded program.

To evaluate Paradyn’s performance, we ran Paradyn’s automated search tool, the Performance Consulta
on a multi-threaded program while profiling the daemon with iPath. The daemon received 107 instrumen
requests from the PC, and spent 48.5 seconds inserting instrumentation. Of this time, 45 seconds were spe
mining whether to manually trigger instrumentation in a function calleddoCatchupInstrumentation .

We examined this function and its callees, which perform three steps to determine which instrumentation
ger. First, a stack walk is taken of each thread. Second, each frame on each stack is compared to the instrum
request to determine whether to trigger the instrumentation. Third, instrumentation is started if necessary.

Unoptimized
(min:sec)

Optimized
(min:sec)

Single-threaded 4:30 3:50

5 threads 4:30 3:55

10 threads 5:45 4:10

20 threads 8:00 4:25

Table 1: Performance Consultant Analysis
Time required to complete a full automated analysis of the tested programs. The same program was used for all three 

threaded tests.
Page 6



to a

of
frame

ap
s a hash
body of

needed

rmed
ups. The
speedup

ajority
sults

it
ina-

lted in

MILC
file of
ottle-
valent

e of
these

s. The
cation

ithm
tion,
arame-
mation
results
profiling led us to narrow down the problem to a function,triggeredInStackFrame , that performed the compari-
son of frames with instrumentation requests.

We iteratively instrumented this function and its callees with iPath, finally narrowing down the bottleneck
utility function calledfindFuncByAddr . iPath’s profile offindFuncByAddr showed that 81% of the calls to this
function were fromtriggeredInStackFrame , consuming 41.5 seconds of CPU time. Out of 48.5 seconds
instrumentation time, 85% was being spent in this utility function. Worse yet, this function was called for each
in each stack walk. As the number of threads or the stack sizes increased, so did the number of calls.

We examinedfindFuncByAddr and pinpointed the location of the bottleneck. This function was used to m
from an address to the function that contained the address. The data structure that stored this mapping wa
table keyed by a single value, the entry address of the function. This caused look-ups of an address within the

a function, such as an address in a stack walk, to be much slower than looking up using the entry address. We
a structure that could map from a range instead of a single value.

We reimplementedfindFuncByAddr , using a balanced tree instead of a hash table. This tree structure perfo
range lookups much faster than the hashtable. In addition, we cached recent results instead of repeating look
results were impressive. When we re-ran our benchmark, instrumentation time was reduced to 1.2 seconds, a
of over 40. We timed the old version against the new, with the results in Tables 1 and 2.

In summary, we were able to use iPath to determine two things. First, we were able to determine that the m
of calls tofindFuncByAddr came from a single source. This led us to reduce the number of calls by reusing re
where possible. Second, we determined thatfindFuncByAddr was not optimized for the common call-path. Often
is difficult to determine the most common call-path to a utility function with a standard profiler or through exam
tion of source code, but a call-path profiler is able to determine this information. These two modifications resu
a substantial performance improvement.

5.2. MILC

We used iPath to investigate su3_rmd, a distributed quantum chromodynamics simulation built on the
framework. Our aim was to find synchronization bottlenecks within the program. We gathered a call-path pro
each of the blocking MPI calls used by su3_rmd. Two of these functions, MPI_Allreduce and MPI_Wait, were b
necks. We were able to remove the MPI_Allreduce bottleneck by replacing calls to that function by an equi
asynchronous operation.

The MILC project provides a framework for performing QCD simulations. The framework defines a lattic
data and mechanisms for accessing individual points on the lattice. Applications written with the framework use
mechanisms, which allow the applications to run on single machines or clusters without code modification
framework also provides several different mechanisms for determining how the lattice is distributed if the appli
is run on a cluster.

One of the simulations distributed with the MILC framework is su3_rmd, an implementation of the R algor
for QCD simulation. The majority of the execution time of su3_rmd is contained within a single func
ks_congrad . This function consists of a loop that executes until a result value is less than a given threshold p
ter. Each iteration through the loop consists of an interleaved set of three types of operations: gathering infor
about lattice points from neighboring nodes, performing vector operations on the lattice, and summing the
across all computing nodes.

Unoptimized
(seconds)

Optimized
(seconds)

Single-threaded 1.5 0.1

5 threads 48.5 1.2

10 threads 126.9 3.0

20 threads 296.1 6.4

Table 2: Instrumentation Time
Time spent by the daemon performing instrumentation during the Performance Consultant analysis.
Page 7



tions
through
cov-

ate
rk

n
-

s
this

ck was
us
n a
ing

opera-

tely,
esulted
in

lation.
r opera-

d from

ll-path
ofilers

gram.

o iso-
trumen-
iPath to

ronous
e opti-
We ran the su3_rmd simulation on four nodes of an IBM SP. We used iPath to profile all blocking MPI func
called by the simulation. We examined the resulting call-path profile and focused on the paths that passed
ks_congrad . This allowed us to unwind the communication abstraction used by the MILC framework. We dis
ered four synchronization bottlenecks inks_congrad , two gather operations that made several calls toMPI_Wait

and two calls toMPI_Allreduce .
We began by investigating the bottlenecks inMPI_Wait . These bottlenecks were caused by the lattice upd

operations. Each iteration through the loop inks_congrad executes four gather operations. The MILC framewo
implements a gather as a series of messages finalized with calls toMPI_Wait . The two gathers executed in
ks_congrad resulted in sixteen distinct call-paths toMPI_Wait . Our profiling showed that 50% of the executio
time of ks_congrad was spent in calls toMPI_Wait , making it a prime candidate for optimization. In total, the sim
ulation executed for 3001 seconds, as shown in line 1 of Table 3.

Our call-path analysis showed that the first call toMPI_Wait in each gather operation took up to twenty time
longer to complete than the second call. Path profiling significantly simplified finding the particular call. Using
information, we traced the cause of this difference back to the initial send and receive operations. The bottlene
due to the use of a synchronous send operation (MPI_Issend ). We modified the send operation to be asynchrono
(to useMPI_Isend ) and reordered the calls toMPI_Wait to hide the transfer latency. These changes resulted i
75% reduction in time consumed byMPI_Wait in gather operations and a decrease of 38.6% in the overall runn
time, as shown in line 2 of Table 3.

We then investigated theMPI_Allreduce bottlenecks. This function is used byks_congrad to sum a single
floating point value across all nodes executing the simulation. Our profile showed that this was not an efficient
tion, with 22% of the total execution time ofks_congrad spent in calls toMPI_Allreduce . We replaced the calls to
MPI_Allreduce with non-blocking equivalents that we interleaved into the other loop operations. Unfortuna
data dependencies in the loop prevented us from hiding all of the communication latency. This replacement r
in a 30% decrease in time spent blocked inMPI_Allreduce , and a 6.4% decrease in total running time, as shown
line 3 of Table 3.

In summary, we used call-path analysis to discover four synchronization bottlenecks in the su3_rmd simu
In all cases we were able to replace blocking or synchronous calls with asynchronous equivalents and reorde
tions to hide the message passing latency. These optimizations combined reduced the running time of su3_rm
3001 seconds to 1652 seconds, a 45% decrease.

6. Summary

Call-path profiling is a valuable tool for performance analysis. We have presented a method of gathering ca
profile data for particular functions. This approach avoids the overhead incurred by whole-program call-path pr
by instrumenting only the functions of interest instead of all function entries, exits, and call sites within a pro
We allow the use of more expensive metrics while reducing the total overhead.

We implemented this method in a tool, iPath, built on the Dyninst instrumentation library. iPath was used t
late and correct a bottleneck in Paradyn’s instrumentation path. This fix resulted in both a 98% decrease in ins
tation time and a corresponding speedup of Paradyn’s automated performance analysis tool. We also used
locate synchronization bottlenecks in the MILC su3_rmd simulation. We replaced several blocking and synch
MPI calls with asynchronous equivalents, resulting in a 45% decrease in running time of su3_rmd. Both of thes

Version Time (seconds) Change

1. Original 3001

2. Gather operation optimization 1843 -38.6%

3. MPI_Allreduce optimization 2810 -6.4%

4. Both optimizations 1652 -45.0%

Table 3: su3_rmd Running Time
Time spent in ks_congrad and synchronization bottlenecks before and after optimizations were made.
Page 8



ecific

arks

 for

n

,

 T.
mizations were directed by call-path specific profiling data. This information allowed us to focus on only sp
call-paths that caused bottlenecks.

7. References

[1] G. Ammons, T. Ball, and J. R. Larus, “Exploiting Hardware Performance Counters with Flow and Context Sensitive
Profiling,” SIGPLAN ‘97 Conference on Programming Language Design and Implementation (PLDI).Las Vegas, June 1997,
pp. 85-96.

[2] T. Ball and J. R. Larus, “Efficient Path Profiling,”29th Annual IEEE/ACM International Symposium on Microarchitecture,
Paris, December 1996, pp. 46-57.

[3] C. Bernard, M.C. Ogilvie, T.A. DeGrand, C. DeTar, S. Gottlieb, A. Kransitz, R.L. Siugar, and D. Toussaint, “Studying Qu
and Gluons on MIMD Parallel Computers”,International Journal of Supercomputer Applications5, 61, 1991.

[4] B. Buck and J. K. Hollingsworth, “An API for Runtime Code Patching”,The International Journal of High Performance
Computing Applications14, 4, Winter 2000, pp. 317-329.

[5] L. DeRose and F. Wolf, “CATCH: A Call-Graph Based Automatic Tool for Capture of Hardware Performance Metrics
MPI and OpenMP Applications”,8th International Euro-Par Conference, Paderborn, Germany, 2002.

[6] S. Graham, P. Kessler, and M. McKusick, “gprof: a Call Graph Execution Profiler”,SIGPLAN Symposium on Compiler
Construction, Boston, June 1982, pp. 120-126.

[7] R. J. Hall, “Call Path Refinement Profiles”,IEEE Transactions on Software Engineering21, 6, June 1995.
[8] J. R. Larus, “Whole Program Paths”,SIGPLAN ‘99 Conference on Programming Languages Design and Implementatio.

Atlanta, May 1999.
[9] A. D. Malony, S. Shende, R. Bell, K. Li, L. Li, and N. Trebon, “Advances in the TAU Performance System”,Performance

Analysis and Distributed Computing,Kluwer, Norwell, MA, 2003.
[10] D. Melski, “Interprocedural path profiling and the interprocedural express-lane transformation”Ph.D. dissertation, University

of Wisconsin, Madison, 2002.
[11] D. Melski and T. Reps, “Interprocedural Path Profiling,” Technical Report TR-1382, Computer Sciences Department

University of Wisconsin, Madison, September 1998.
[12] D. Melski and T. Reps, “Interprocedural Path Profiling”,CC ‘99: 8th International Conference on Compiler Construction.

Amsterdam, March 1999.
[13] B. P. Miller, M. D. Callaghan, J. M. Cargille, J. K. Hollingsworth, R. B. Irvin, K. L. Karavanic, K. Kunchithapadam and

Newhall. “The Paradyn Parallel Performance Measurement Tools”,IEEE Computer28, 11, November 1995, pp. 37-46.
[14] PMAPI home page, http://www.alphaworks.ibm.com/tech/pmapi, February 2004.
[15] SPROF, Linux utility.
Page 9


	Incremental Call-Path Profiling
	Andrew R. Bernat
	Barton P. Miller
	Computer Sciences Department
	University of Wisconsin 1210 W. Dayton Street
	Madison, WI �53706-1685
	{bernat,bart}@cs.wisc.edu
	Abstract
	1. Introduction
	2. Related Work
	3. Design
	Figure 1: Representation of call-path profiles

	4. Implementation
	4.1. Mutator
	4.2. Run-Time Library
	4.3. Stack Walks

	Unoptimized (min:sec)
	Optimized (min:sec)
	Single-threaded
	4:30
	3:50
	5 threads
	4:30
	3:55
	10 threads
	5:45
	4:10
	20 threads
	8:00
	4:25
	Table 1: Performance Consultant Analysis
	5. Results
	5.1. Paradyn Daemon


	Unoptimized
	(seconds)
	Optimized
	(seconds)
	Single-threaded
	1.5
	0.1
	5 threads
	48.5
	1.2
	10 threads
	126.9
	3.0
	20 threads
	296.1
	6.4
	Table 2: Instrumentation Time
	5.2. MILC
	Table 3: su3_rmd Running Time

	6. Summary
	7. References
	[1] G. Ammons, T. Ball, and J. R. Larus, “Exploiting Hardware Performance Counters with Flow and ...
	[2] T. Ball and J. R. Larus, “Efficient Path Profiling,” 29th Annual IEEE/ACM International Sympo...
	[3] C. Bernard, M.C. Ogilvie, T.A. DeGrand, C. DeTar, S. Gottlieb, A. Kransitz, R.L. Siugar, and ...
	[4] B. Buck and J. K. Hollingsworth, “An API for Runtime Code Patching”, The International Journa...
	[5] L. DeRose and F. Wolf, “CATCH: A Call-Graph Based Automatic Tool for Capture of Hardware Perf...
	[6] S. Graham, P. Kessler, and M. McKusick, “gprof: a Call Graph Execution Profiler”, SIGPLAN Sym...
	[7] R. J. Hall, “Call Path Refinement Profiles”, IEEE Transactions on Software Engineering 21, 6,...
	[8] J. R. Larus, “Whole Program Paths”, SIGPLAN ‘99 Conference on Programming Languages Design an...
	[9] A. D. Malony, S. Shende, R. Bell, K. Li, L. Li, and N. Trebon, “Advances in the TAU Performan...
	[10] D. Melski, “Interprocedural path profiling and the interprocedural express-lane transformati...
	[11] D. Melski and T. Reps, “Interprocedural Path Profiling,” Technical Report TR-1382, Computer ...
	[12] D. Melski and T. Reps, “Interprocedural Path Profiling”, CC ‘99: 8th International Conferenc...
	[13] B. P. Miller, M. D. Callaghan, J. M. Cargille, J. K. Hollingsworth, R. B. Irvin, K. L. Karav...
	[14] PMAPI home page, http://www.alphaworks.ibm.com/tech/pmapi, February 2004.
	[15] SPROF, Linux utility.





