Multi-Application Support in a Parallel Program Performance Tool

R. Bruce Irvin Barton RMiller
rbi@cs.wisc.edu bart@cs.wisc.edu

Computer Sciences Department
University of Wisconsin-Madison
1210 W Dayton Street
Madison, Wisconsin 53706

Abstract

Program performance measurement toolgehmoven to be seful for tuning single, isolated applica-
tions. Havever, lamge-scale parallel machines and heterogeneous networks often do moisallated
execution, much less isolated measuremérd.enable and encourage the study of parallel applications in
comple environments, we hae devdoped techniques to support multiple applications in our IPS-2 parallel
program measurement tool. The multi-application extensions include multi-application Critical Path analy-
sis, and integrated tables and visualizations thawalisplay and analysis of performance data fronfedif
ent applications or multiple runs of a single applicative demonstrate the memulti-application support
with three @amples. Br each example, the multi-application support allowed quick analysis with concrete
visual and numeric comparison&iven the conceptual simplicity of multi-application support and its use-
fulness, we belie any rw performance tool that is to be used with applications that run in carepie
ronments should support this facility.

Keywords: Parallel Programming, Performance Monitoring, IPS-2

1. Introduction

During performance debugging, a programmer usually studies an isolated program. Isolation elimi-
nates much of the complicated background interference that canmagkam performance characteristics
irreproducible. Huwvever, programs are actually run in more compkrvironments. Lage-scale parallel
systems are often timeshared amongpakivad of application programs; in heterogeneous distributeid en
ronments, individual applications communicate with eesvand contend with other clients for smsrv
access. Schedulirand contention can significantly affect the performance of individual application pro-
grams, it a programmer often cannot determine whether a progrpenformance is affected by such

interactions or to what extent.

We haveimplemented a e mechanism for analyzing multiple application programs using the IPS-2
parallel program performance tools [.ipsZTo support multiple applications we Y& dcevdoped nev tech-
nigues that extend our data presentation and analyses, \hdped two new extensions to Critical &h

Analysis [.cpa.]. Intra-Application Critical Path isolates the performance of a single application while

© 1993 R. Bruce Irvin and Barton Hiller

This work was supported in part by National Scienoerfation grants ASC-9015462 and CCR-9100968,
Office of Naval Research grant N00014-89-J-1222, and grants from Sequent Computer Systems and Sun
Microsystems.

Inter-Application Critical Path allows the user to falldhe critical path as it flows between applicatioAs.
compelling use of the Inter-Application Criticahth is the measurement of a database server (in itself, a
parallel program) and seral client applicationsInter-Application Critical Path allows the programmer to
profile those activities in the server that were caused by that slggmtfies (more details of this technique

are gven Sections 4.3.2 and 5.3).

Multi-application support in the IPS-2 system has enabled the study of application programs running
in complex environments, and has opened the door to a wide rangenofme@surement possibilitiesChis
paper discusses\s®al uses of multi-application support, describes our implementation, and demonstrates
the nev feature with threexamples. Thdirst example gplores the problem of imprecise clocks in mea-
surement systems, the second measures feetebf barrier synchronizations in timesharedrkioads,
and the third examines the performance of a cliengsatatabase system. In addition to the examples pre-
sented in this papewe haveused the multi-application feature for studying susterde problems as ovk-
load scheduling strategies, the effects of heavy system loads on programs, operating systems, ame¢ hardw
the performance of programs on competing operating systems and hardware platforms, and the perfor
mance effects of best case varst case application input sets. The examplew shat multi-application
support provides easy and intudi acess to performance results that would otherwise be difficult and

labor-intensie t obtain.

From our experiences with multiple application analysis in IPS-2, we conclude that program perfor
mance tools should support complest emironments. Multi-applicationPS-2 allows programmers to
run and analyze multiple programs simultanequsigbles comparison studies, and supports the study of
workloads. Programmerare able to combine the performance displays and metrics of multiple applica-
tions or multiple versions of the same application to directly compare performance reguddy, perfor-
mance analysis techniques enable the study of interactions between cooperating programs or the contention

of competing programs.

Section 2 lists manuses of multi-application performance monitoring toofection 3 gies an
overview of the IPS-2 system and ptides context for Section 4, which describes the changes to IPS-2 for
multiple application support. Section 5 demonstrates the use of multi-application IPS-2 withxdmee e

ples, and Section 6 draws conclusions from our experiences.

2. Usesf Multiple Application Support

Although multi-application support is a simple feature, its importance becomes apparent when you
consider its manuses. V¢ havebeen surprised at the wide range of performance problems for which this
feature has been usethis section describes the use of multi-application measurement for the analysis of
multiple cooperating applications, multiple competing applications, multiple versions of the same applica-

tion, and the operating system and networks underlying these applications.

IPS-2 with multiple application support allows users to study the performance of a group of applica-
tions running as a erkload. Usergan study the agggete behavior of a workload, the interactions among
the applications, or the performance of individual applications in the presence of other applicEtiens.
user can also study the effect of the workload on various parts of the system. IPS-2 includes a simple, open
interface for the incorporation of external data from hardware, av&twor operating system monitors
[.edcu.]. Ifthe computing environment already includes such performance monitors then their output can
be directed into IPS-2 through the external data iaterf Datayathered by external monitors may be used
in the same displays and analyses as data gathered with IPS-2 program tracing, and the user can correlate
system performance with workload performanEer example, procedure-lel CPU metrics can be plotted

alongside bus utilization, paging rates, and network traffic.

If the applications in a wrkload communicate using messages, semaphores, or other methods, then
IPS-2 can be used to analyze indual applications and interactions between the applicati@ngical
Pah Analysis, which analyzes process interactions, may be applied to applications in isolation, to a single

application and the applications with which it interacts, or to an entire workload.

Playback of old measurement sessions is a standard feature in most performan&¥itbataultiple
application support, IPS-2 allows multiple old sessions to be replayed in the same session, or an old session
replay may be combined with amexctive ession. Thicomparison feature has nyauases including the
study of the eolution of a program through geral versions, the changes in an application when running
on nev hardware platforms or operating systems, the performance of a server amers\client loads, or

the comparison of an algorithm running with best case vs. worst case input sets.

A user can also compare the measured performance of a program with simulations or analytical pre-
dictions. Ifan external simulation or analysis tool can produce IPS-2 style traces or ustethal elata

interface, then its results can be incorporated into a session for comparison.

3. Owerview of IPS-2

IPS-2 is an interacté, trace-based, post mortem performance measurement system that operates in
parallel and heterogeneous distributediemments. CurrentlyilPS-2 is supported for CrayMP, Sequent
Symmetry Sun workstations and multiprocessors, DECstations, and heterogeneousksetiv aty of
these machineslPS-2 has been successfully used faeisd performance studies of parallel and distrib-

uted applications.

We changed none of the basic structure of IPS-2 to support multiple applications in a single session.
However, we modified the user interface to handle thevmaultiple application model, we added a mode to
allow the comparison of old measurements wittv meeasurements, and we extended CriticthPAnaly-
sis to enable analysis of individual programs within largerkioads. Thisection provides arnverview of

the basic structure of IPS-2 and provides context for readers who are not familiar with the system.

Figure 1 shows the system structure of IPSRS-2 consists of an instrumentation library that col-
lects traces from application programs, an external data collection interface that is used by external perfor
mance monitors, Sle Analysts that collect and process trace data and external performance data, and a
Master Analyst that provides a graphical interface to the useddition, IPS-2 provides an open int&cé
for external visualization system3o instrument applications for use with IPS-2, a user specifies an addi-
tional switch during program compilation. The compiler switch causes instrumentation code to be inserted

automatically into the program and causes an instrumentation library to be linked wikedirzlele.

Structural Overvier of the IPS-2 System
Figure 1

After compilation is complete, an IPS-2 user runs the Master Analyst and describes what application
processes and external data collectors to run, where to run them, and what command lines to use to run
them. Ifusers wish to replay old traces, thenyth@y give the process identifier in place of the command
line. After describing the processes, the user asks the Master to run the processes or replay the old traces.
The Master then starts S8t Analysts on all of the machines used by the application, and tells tres Sla
which processes to run and which old traces to replfg particular Slae nust run processes, then it
waits for them to complete before processing tradesting trace processing, each &aeduces the traces

to performance metrics and reports the metrics back to the Master for display.

The IPS-2 graphical representation of parallel and distributed application programs is a tree, and the
IPS-2 program tree is used both for describing the application to be run and for querying about performance
information. Thefour levels of the tree include the program, machine, process, and procedds le

Users select nodes in the tree to obtain performance information about a particular node. Figure 2 shows a

sample program tree beforgeeution. Thetriangular node at the progranvékrepresents the entire appli-
cation. Therectangular node at the machingderepresents a single machine. Elliptical and octagonal
nodes at the process/ékrepresent application processes and external data collectors negpeioce-
dures are represented with rectangular nodes, bytaipear in the tree only after the application traces

have keen processed.

Logical Piogram Tree
Figure 2

IPS-2 provides seral analysis techniques, each of which can be appliedytoade or leel of the
program tree.Critical path profiles display the elements (machines, processes, and procedures) that deter
mine the elapsed time of a parallel or disitéddl program [.cpa.]. Metric tables display performance met-
rics for individual tree nodes, and profile tables display a metric for each nodevah degd of the pro-
gram tree. NPT profiles display a process time metric that is normalized by the number of concurrently
executing processes [.quartz.izprof tables display process and procedure performance data in the style of
the Unix utility gprof [.gprof.]. IPS-2allows the user to define time periods, calddsesand ary of the

metrics and analyses may be constrained ygphase of gecution.

The primary method of program visualization in IPS-2 is the time histogram, which plots- perfor
mance metrics\@r the duration of a programexecution. Time histograms are used for displaying perfor
mance curves, for defining program phases, and for guiding trace browsing displays, which prewide a v
low levd view of program @ents. Thesystem also prdades a visualization interface, which allowdernal

graphical display tools to use IPS-2 performance data.

4. Modificationsto IPS-2 for the Support of Multiple Applications

The support of multiple application programs in a performance tool is a simple Ad&ml need
only allow the user to open multiple views of performance information and incorporate data from a collec-
tion of measured applications. Users of traditional, single program tools can approximatéethti®yef

simply running multiple analysis sessions at the same time.

However, just as you cannot easily use a performance tool designed for single process programs to
analyze a parallel program, you cannot easily use a single program performance tool to analyze multiple
programs. Without specific support for multiple application programs, a tool cannot help the user mak
direct comparisons between applications or understand the causefeats ef contention for shared
resources. Runningultiple versions of a single program tool also increases demand didistation

resources such as screen space and memory.

-6-

This section eplains hav we haveenhanced the IPS-2 performance tools to support multiple appli-
cations. Thenodifications include an expanded user irtegf a comparison mode of operation, axtdre

sions to Critical Path Analysis.

4.1. Multiple Applications in the IPS-2 User Interface

We havechanged the IPS-2 user interface towaltbe user to create multiple program tre&ach
tree created by the usealled alogical tree, contains one applicatioitach logical tree is a distinct wie
into the performance of aatkload, and nodes may be selected to obtain performance information for the

corresponding application.

The IPS-2 Master automatically creates one additional treepithsicaltree. Thephysical tree
duplicates all nodes in the logical trees and groups them according to thsizgbtayout (all processes
from all applications that use avgh machine are grouped under the same machine node). Ws&eah
tree is used primarily for selecting performance information about the emitdoad. or example, a pro-
cedure-lgel profile of I1/O operations using the ydical tree profiles all procedures in all of the trees
whereas the same analysis performed in a logical tree only profiles procedures in that logicdheie
physical tree is also used to isolate the performance of a particular machine. Figure 3 shramEe e

physical tree.

Physical Tee
Figure 3

4.2. ComparisonMode

Previous versions of IPS-2 kia dlowed two modes of operation: one that agty runs the applica-
tions and one that replays old tracé¥e haveadded a ne feature, calledomparison modethat allaws
old traces to be replayed and compared with eithertreces or other old traces. The IPS-2 user selects
comparison mode for one or more of the application trees, and then selects eiber aeplay mode for
the other treesAny trace that is replayed in comparison mode willéhits time base shifted to match the

time base of the ag a replay mode programs.

Because most of the IPS-2 analyses depend onveeliatiestamps, the shift in time reference is
unnoticeable to the useHoweve, the diference is apparent in time based visualization displays such as
time histograms (See section 5.1) where it appears as though the comparison mode applications ran at the

same time as the aati and replay mode applications.

4.3. Multiple Application Critical Path Analysis

Critical Path is an analysis technique that guides the user to the sections of code in a parallel program
that caused the program to run slowly [ACP Interactionshetween processes (e.g. messages, semaphores,
barriers, and locks) form a set of dependences between the processes. Critical path analysis constructs a
directed acyclic graph, called the Program Activity Graph AG Pof these dependences (see Figure 4).

Each arc in the AG is assigned a weight proportional to the amount of time consumed betweenothe tw
points on the arcFor CPU time arcs, the length of the arc is the process time consufoethessage arcs

it is the time required to send the message between procéssasiproductve ime such as spin time at
barriers, the weight is zero. The longest time-weighted path throug@éskhe critical path.A Critical

Pah Profile is a profile of the procedures, processes, and machines along the critical path. Atekiach le

the program tree, IPS-2 can profile the items that form the critical path by sorting the items by their cumu-

lative contributions to the critical path.

An application running as part of sovkload is difficult to analyze with traditional critical path anal-
ysis because orkload runtime is often dominated by other long running applications such &ssserv
Therefore, we hae exended critical path analysis to alldhe user to concentrate analysis oy angle
application within a workload of applicationsdulti-application critical path allows us to shift our wie
from one application to another while using measurements from a single run (see demonstration in Section

5.3).

This section describes Wwowe have extended critical path analysis to support multiple application
programs in a single measurement session. In partissadscuss Intra-Application Critical Path, which
allows the user toxamine the critical path of one application in isolation, and Inter-Application Critical
Pah, which allows the user tox@mine a single application and its interactions with other prograins.
third type of critical path analysis, Global CriticatR, computes the critical path of all of the application
programs combined. The Global CriticadtR is simply the Intra-Application Critical Path for theyBikal

Tree, and it will not be discussed further in this section.

Sample RG showing three types of critical path
Figure 4

4.3.1. Intra-Application Critical Path

The Intra-Application Critical Path is the longest time-weighted path throughAtBeoPa sngle
application. Allinter-process dependence arcs in the applicaiBhG are used in calculating the critical
path, but dependence arcs that lead to or from other applications are not condid¢hezinay, a sngle

application can be analyzed in isolatiaereif it was run with other applications. Figure 4 show#\& ef

-8-

three programs. The Intra-Application CriticahtR of Program A crosses process boundaries, g ne

crosses the application boundary.

Our implementation takes advantage of the isolation characteristics of the Intra-Application Critical
Pah. Sinceonly one application is examined, we only construct the part ofvdr@lbPAG that includes
the selected application. If the entirAd has already beenuiit for Inter-Application or Global Critical

Pah, then Intra-Application Critical Path simply ignores existing inter-application arcs.

4.3.2. InterApplication Critical Path

The Inter-Application Critical &h is the longest time weighted path that begins and ends in a patrtic-
ular application. PAG arcs that lead to other applications may be includaty if they lead to RG arcs
that return to the selected applicationhe Inter-Application Critical Path allows the user to determine if
other applications ha& limited the performance of the selected applicatiba. example, in a client/seer
programming model, the Inter-Application CriticahtR of the client will indicate elements in both the
client and the server that limit the performance of the client. If thees&on the clien$' Inter-Applica-

tion Critical Path, then we can study the procedures in the servex#oaterl on the cliers’behalf.

Our implementation of Inter-Application Critical Path is a modifiedsion of the original critical
path algorithm.In the original algorithm, eachA& node other than the initial and terminal nodes consists
of either one or tw inbound arcs and one ordvoutbound arcs. The initial node mayveaseveal out-
bound arcs and the terminal node mayehgeveal inbound arcs. The algorithm starts a forward pass from
the initial node by sending a zero path length message to each of its outbound sucéédssoesr a PAG
node has recedd path length messages from each of its predecessors, it records the longest such path
length, and then sendsw@ath lengths to each of its successors. Each path length sent to a successor is
the sum of the longest inbound path length and the arc length from the current node to the sudaessor
forward diffusionpass continues until the terminal node has vedainessages from each of its predeces-
sors. Afterthe forward pass is complete, eadiGPnode has recorded the length of the longest path to
itself from the initial node and the predecessor that is the immediate neighbor along that path. The critical
path is the longest path from the initial node to the terminal ndte.actual nodes and arcs of the critical
path are found by tva@rsing from the terminal node backvd through the &G, aways taking the prede-

cessor arc with the greatest total path length.

The algorithm for the Inter-Application Critical Path starto ttypes of diffusion from the initial
node: a primary difision which starts in the application of interest and a secondary diffusion which starts

in all other applications. The primary diffusion reaches all nodes and arcs AG¢h& are on a path

-9-

from the root node of the application of intere¥he secondary diffusion reaches all remaining nodes and
arcs and is included only to insure that the distributed critical path algorithm compleerefore, all arcs
reached by the secondary diffusion are redriith zero length, and the primary diffusionvays domi-

nates the secondary diffusion when the tweet. Een though the primary diffusion may reach exit nodes

of processes that are not in the application of interest, the backwassalarom the terminal node will

only begin with an exit node from a process in the application of interest. In all other respects, the back-

ward traversal is the same as in the original critical path algorithm.

Figure 4 shows the Inter-Application Critical Path of progranM®& @n see that part of program B

is on program & aitical path, but that program A is not.

5. Experience

This section presents thregamples that demonstrate the multi-application features of IPSe2-
tion 5.1 presents a comparison mode analysis of a single application that was measured with process time
clocks of varying precision, Section 5.2 presents an analysis of a shared-memory sydteradywand
Section 5.3 presents an analysis of clients andegein a client/server data storage manadie have
included actual IPS-2 displays used during the analysis of the applications so that the reader can see some

of the actual performance displays provided by the tool.

5.1. ThekEffect of Clock Precision on Performance Analysis

Precise measurement of time is crucial to the successof-lgased performance analysis. If time
measurements are not precise, therers¢ events may hae identical timestamps andient analysis can
only approximate the relat csts of the activities that caused thergs. If such approximations are ade-
guate, then there is no reason to require systems to support high resolution clocks, but if we find that impre-
cise clocks yield errors in our analysis then we must fiagswo impree aur measurements. Thixam-
ple uses comparison mode to whiasow imprecise clocks affect time histogram displays and critical path

analysis.

Providing precise clockshould notbe a problem since computers are generally synchroneicede
controlled by system clocks running at very high frequencies [.mathd.system clock defines the high-
est frequeng at which esents can occuyrand therefore it should be possible to provide a register that is
incremented each time the system clock tiddswever, most systems do not provide such high resolution

clocks, and thgamost neer use precise clocks for process time measurements (virtual time for a process

-10-

that only advances while the process is running). Process time clocks typicalhcadt frequencies that

are three or more orders of magnitude slower than the system clock.

Sequent Symmetry systems support microsecond precision clocks for wall time measuraments, b
only 10 millisecond precision clocks for process time measureméfédaveenhanced our Sequent Sym-
metry’s Dynix Operating System kernel to use microsecond precision counters for process time measure-
ments. D gudy the eflect of this enhancement on IPS-2 analyses, we usedwhmulé-application com-
parison mode to analyze measurements of a shared memory database join appiMatompared mea-
surements made before and after the change to the process clock by displaying time histogram curves in a

single display and by making numerical comparisons between critical path tables.

Figure 5 displays a comparison mode time histogram display of total CPU time for each run of the
application. Thidisplay praides a concrete visual illustration of the effects of clock precidimmrecise
clocks introduce roundbhoise into the cures that mad detailed features of the curves difficult to identify
The gross features of thedweurves are roughly the same, and if gross features are sufficient for analysis,
then imprecise clocks may be adequattowever, if the details are important then precise clocks are
required. Otherwisewe cannot determine whether a feature appears because of a program behavior or

because of measurement error.

Comparison Mode Time Histogram Display
Figure 5

Imprecise clocks also affect analysis methods such as critical path that are designed specifically for
parallel programs. Figures 6 and 7 whprocedure-lgel intra-application critical path profiles for the
shared memory join application, one for each run of the applicatfon.the run with the millisecond
clock, the critical path profile shows procedy@r ti ti on as the most important procedure, while the
critical path profile for the run with the microsecond clock lists procedfifeect j oi n at the top and
procedurgparti ti on as second. The qualitedi results in this comparison study are reproducible, so we

can conclude that the clock resolution is the source of the different rEsuIts.

This error in critical path analysis can occur when the process time clogkcadvat a frequepnthat
is less than the rate of application synchronization operations, such as spinHackstime the process
time clock advances, IPS-2 attributes the entire preceding time period to the curremdypactdure.
Since the Sequent Dynix operating system is symmetric with independent kernels on each ptheessor
process time counter on each processorasws#t in comparison to the other processdfewever, if syn-

chronizations occur more frequently than process time updates, it is likely that critical path wihk@nd P

T In a dfferent studywe \erified that proceduref f ect _j oi n is actually more important to the runtime
of the application [.validation.].

-11 -

dependences between processors so that all of the cloakcadvin all of the processors appear to be on

the critical path. The result is a critical path that is much longer than the actual runtime of the program.
Furthermore, since critical path finds the longest measured path, it is likely to find the most inaccurate path
through phases that Ve hgh rates of synchronization. Independent IPS-2 analysis (natdhevealed
thatpartiti on executed during a time phase in which the application locked and unlocked approxi-
mately 4000 spin locksvery second while the process time clock advanced at a rate of only 100 times per
second. Througbareful manual analysis of the IPS-2 trace files, we were able to determine that the infre-
guently advancing process clock atted the critical path algorithm to find a path through this phase that

inaccurately assigned too much weighpér titi on.

Researchers ka long requested more precise clocks by making theoretic or anecdnpiateants.
With multi-application IPS-2 we ke nade the value of precise clocks clear with a direct, concrete com-
parison. Thistype of comparison can also be used for studying applications across hardware platforms,

operating systems, or input sets.

Figure 6 Figure 7.
Critical Path with 10 msec clock. Critical Path with 1 usec clock.

5.2. SchedulingSynchronization Policies, and Workload Performance

This example, shows fhomulti-application IPS-2 can be used to study prograankieads. Vé
examine a widely studied application [.thakkar.] thatsvpreviously tuned in isolation using IPS-2 [.edcu.].
The application, calleghsim smulates an indireck-ary, n-cube processor-memory interconnection net-
work. Ower the course of a simulationveeal memory request paets are issued from each simulated cpu.
The packets tral over the request half of the network, are serviced by the memories, and then carry results
over the result half of the network back to the issuing cpu. The simulator computes the state of each net-
work device (processpswitch, or memory) in parallel for one clock cycle and then performs a barrier syn-

chronization before beginning the next clock cycle.

The psim program statically assigns processes to compute the states of network elements and
achieves rearly linear speedup for up to about 10 processbhe greatest cost of parallelization is the time
spent at barriers after each simulated clopilec Thisbarrier waiting cost is highest at thegb@ing of
the simulation when the first request packets are filling the simulatedrkeawd at the end when the last
result packets are draining from the netlv Thesimulator uses spin locks to enforce mutual exclusion on

gueues at each simulatedvide, but these locks are accessed by at mastptacesses and are held for

-12 -

very short periods of time. Therefore, lock waiting is not a significant factor in the performance of psim.
The first column of the Metric Table in Figure 8 shows a summary of the performance of a single psim run-

ning in isolation.

To gudy the performance of psim outside of an isolatedremment we used the wamulti-applica-
tion facility of IPS-2 to run tw four-process copies of the psim application concurrently on a four proces-
sor Sequent SymmetryThe second cgpof the application was gén the same input values as the first and
the two ran concurrentlycompeting for shared resourcelgleally, the elapsed times of the dveompeting
applications should be about twice as long as the elapsed timva shthe first column of Figure 8 while
the barrier wait time, CPU time, and spin times should remain the same as the times shown in the first col-

umn of the figure.

The second and third columns of the Metric Table in Figure 8 summarize the performance of the tw
psims running concurrentlyThe columns she that the elapsed time of thedwoncurrent psims is more

than thirty times greater than the elapsed time for the run of one psim on the same achine.

The increase in elapsed time is best explained by the difference in barrier synchronization between
the isolated psim and the awoncurrent psims. Thevarage time per barrier is approximately 40 times
greater when psim is run with other competing proces$ls. enormous increase is caused by the imple-
mentation of the barriers — each process spins until all other processes reach the Ibaarieorkload
ervironment, there is only a small probability that all of the processes in a particular application are sched-
uled at the same time, and a process that is busy waiting will use its entire time quantum before releasing its

processar Therefore, other processes remain blocked until the end of the time quantum before running.

A Multi-Application Metric Table
Figure 8

The problems with this type @llways-spirbarrier hae been predicted with analysis and simulation
[.zahorjan.], and seral solutions hee been proposed to fix them. One solution is to use barriers that block
after only a small amount of spinning [.bershad.], and another is to co-schedule the processes of each appli-
cation [.leutengger]. We implemented the latter alternati and the results are summarized in the fourth

and fifth columns of the Metric Table in Figure 8.

The multi-application table shows that elapsed time of the competing applications &pproxi-
mately twice the elapsed time of a single application running albhe.tables data also confirm the pre-

diction [.zahorjan.] that waiting time at spin locks is not significantly affected by competing proTcesses.

T The slowdown was sow&e that we initially suspected a bug in the program or a crash of the system.

T Small changes in values for CPU time, Elapsed Time, Barrier time, and Spin Time due to variations in
machine load are not considered significant.

-13-

Our co-scheduler is a simple server thatvedilprocesses to register themselves with an application
identifier The server then uses UNIX signals to schedule all processes with identical application identifiers
at regular interals. Figure9 shows a Time Histogram display with CPU utilization curves o {@gims
co-scheduled at intervals of one second. The alternating periods of high CPU utilization indicate that
excessve harrier synchronization is no longer a significant factor in the performance of theotweur-

rently running applications.

This example has confirmed analytical predictions about synchronization methods, workload sched-
uling in shared-memory gmonments. Moreémportantly we have shovn hav multi-application perfor
mance tools can be used to present side-by-side performance data from edtleglds and to test appli-
cations that hae been tuned in isolation.

Two Psims Running With a Co-Scheduler
Figure 9

5.3. Client/Sewner Database Storage Manager

Our third example demonstrateswhowlti-application critical path can be used to study clients and
seners in a distributed applicationMe wse Intra-Application Critical &h to isolate particular clients in a
distributed database system and Inter-Application Critical Path to measurdahete which the database
sener affects the performance of clients. Multi-application IPS-2 allowed us to partition our analysis logi-

cally (clients vs. server) as well as physically.

The EXODUS Storage Manager supports the storage of persistent objects, files, and indices for use
by database systems [.exodus vidb,exodus addison.]. EXODUS uses a client/server modekimaHo
taneous access to objects by multiple applications in a distributérenent. Thesener is the main
repository for objects and prioles support for lock management, transaction logging, page allocation and
deallocation, and rewery/rollback. Thesener uses a single multi-threaded process to handle requests
from multiple clients and uses separate disk processes to perform asynchroncusliédt library that is
linked with each application communicates with the eseperforms data and indemanipulation, and
manages a memonryfier pool for the client applicationApplication programs are either written in the E

programming language [.persistence.] or call client library routines directly.

For our experiment, we used multi-application IPS-2 to analyze the EXODUS server and a set of
sample client applicationsThe client applications produce and consume objects in a datalvesman a
single producer and consumer pair concurrently unty tieel each handled 100 4-kilobyte data objects.

The serer and the consumer ran on a single DECstation 3100, and the producer ran on a separate

-14 -

DECstation 3100 (see Figure 3)he server used geral threads and spawned 2 disk processes, one for the

transaction log volume, and one for the data volume used by the client applications.

Figure 10. Figure 11.
Critical Path of Server Gprof Profile of Top Server Thread
Figure 12. Figure 13.

Critical Path of Producer Client Critical Path of Consumer Client

We kegan our analysis by examining thev@all performance of the EXODUS senv The process-
level Intra-Application Critical Path profile in Figure 10 shows the cumudatine that each thread con-
tributed to the isolated critical path of the sarvThe profile indicates that threaan server[2] was
responsible for wer 30% of the sersr’s aitical path with the remainder divided among the other threads,

each accounting for a small percent.

After the critical path profile identifieem ser ver [2] as an important thread, we refined our anal-
ysis to the procedureve. IPS-2gprof profiles oganize the procedures of a particular process or thread
into a hierarchical dynamic call graph formatle wsed IPS-2 gprof to analyzam server [2] from the
main procedure down to the procedures that accounted for most of thedl@@ldtime. IPS-2 gprof also
lists the total CPU time for a thread, and in this case, the tlsriesal CPU time was equal to the thresad’
contribtution to the Intra-Application Critical@@h. Thereforeall of the thread CPU activity was on the
servers aitical path. Figure 11 shows the gprof entry éggenLogDi sk, the descendant ofai n whose
CPU time (along with its descendants’ CPU time) accountedvier 8% of sm server[2]'s CPU
time. TheopenLogDi sk procedure is an initialization routine that normally accounts for only a small
amount of time, but since our experiment was run on a uninitialized EXODU&,sesgnificant amount
of processing is spentgenerating the transaction log. This cost is listed in Figure 11 as CPU time for the

procedure egenlLog.

Given the initial understanding of the sens performance, it is useful to understand the clienwacti
ity that caused this performanc®/ith multi-application IPS-2 we can shift our wi¢o other parts of the
system. Inparticular we can examine the client applications and their interactions with thersdfigure
12 shows a processvig | nterApplication Critical Rith profile of the producer client. The profile siso
that the producer is responsible for only about one third of its own critical path, with the remainder distrib-
uted among the consumer client, server threads, and message @skyghough the producer and con-

sumer do not communicate with each other direttlgy still can appear on each othethter-Application

-15 -

Critical Path because server threads doing work on behalf of clients miti$bmone another inside of the

server The profile also lists the time spent forking the disk process that handled the client data volume.

It is interesting to see that message delays from the producer client to the server are responsible for a
noticeable portion of the producernterApplication Critical Path, but that message delays back to the
producer are not listed. The imbalance appears because a single serverstwead ¢er [2]) handled
all message recess from the producerwhile replies to the producer were performed by yndmeads.

Critical Path Analysis considers inter-thread queuing dependences while calculating the critical path, so if
one thread receés a lequest from a client and assigns another thread to service the request, the critical path
may follow this dependence. Therefore, the critical path time for messageeeemncentrated in one
thread while the time for reply arcs is spread amongrakthreads, and no single thread has enough to
reach the top of the profildNe \erified this analysis with a machinevékInterApplication Critical Rith

profile of the producer (not shm). Thecritical path profile at the machinevkt lists message delays from

the produces machine to the seer’'s machine that are equal to the message delays from ther'serv

machine to the producerimachine.

The consumer clierg’InterApplication Critical Path profile, sken in Figure 13, was similar to that
of the producer Agan, the consumer itself was responsible for only about one third ofiitscatical path.
The profile also shows that message delays from the producer to teewserg significant, indicating that
the consumes' performance was limited by the performance of the produthis is consistent with obser
vations made duringxecution: e/en though the consumer started later than the proditceventually
caught up and waited for the producer to produee aeta objects. The consumgiritical path does not
include the fork of ay disk processes because the consumer accessed the same data volume as the pro-

ducer and only one disk process is forked per open volume.

Process-ieel analysis has gen us a $ructured viev of the relationships between the client applica-
tions and the seer. To continue our study of the system we could refine ouwaéspecific threads and
processes with procedures critical path and profile analyse®rocedure-teel analyses identify specific
procedures to be tuned andvlded to performance impvements during past studies [.ed@ligiation.].
However, for the present study we were primarily interested in identifying which applications affected each

other and process-kd analysis was sufficient.

The EXODUS example demonstratesvha nulti-application performance measurement tool can
isolate individual processes or sets of processes in a distributed system, and track probleynioas the
through different application program#nalyses of this type are simply not possible without multi-appli-

cation support.

-16 -

6. Summary

The support of multiple applications in a parallel program performance tool is a simple idea, and it
can significantly simplify mantypes of performance studies. Multi-application support can alsadaro
information that cannot be reasonably obtained by other means; for example, Inter-Application Critical
Pah tracks the critical path as it fis across application boundaried/e haveused multi-application sup-
port in a wide variety of situations, andvieaeported on three dérse uses.Given the conceptual simplic-
ity of multi-application support and its usefulness, we beligny rw performance tool that is to be used

with applications that run in compl@nvironments should provide this facility.

The most interesting changes to the IPS-2 tool were theettensions to critical path analysis.
Intra-Application Critical Path allows the user to isolate the performance of a single application, and Inter
Application Critical Path alls the user to study a single application and other applications that reay ha

limited its performance.

We havealso extended IPS-2 with logical andypltal program vies. Logicalviews isolate analy-
sis to particular applications while the physicalwikcalizes analysis based on physical locati@his
organization is well suited to the analyses supported in IPS-2 and other tools that encourage a hierarchical

top-down performance analysis methodology.

Our experiences with multi-application IPS-Z/ballowed us to mad seveal observations of paral-
lel and distributed programs. In our first example, comparison modeeallas to demonstrate that impre-
cise clocks can lead to noisy visualizations as well as misleading performance ankilyses.second
example, we used logical views to analyz® twarallel programs competing for CPU resources. The study
shaved that co-scheduling canvgean enormous effect on the performance of competing parallel programs
that perform barrier synchronizations. In our thirdunple, we used Intra-Application Critical Path Analy-
sis to isolate a seev's performance in a client/server database storage man®égethen used InteAppli-
cation Critical Rth Analysis to demonstratevaelient applications can affect each other and the server in
the database systerm each case, the ability to analyze multiple applications in a single session allowed us

to examine the applications in ways that were not previously possible.

When measuring programs in complenvironments, there are other importargy& to siccess
besides supporting multiple applications in a single measurement seBsiosxample, the applications
measured in our studies used compeogramming facilities such as signals, threads, shared file descrip-
tors, asynchronous I/O, dedicated I/O processes, and connectionless inter-process commu@imation.
rectly handling such facilities isawth the effort if we can measure interesting applications and learn more

about the true nature of parallel and distributed program performance.

-17 -

7. Acknowledgements

We thank Mike Zwilling and Nang Hall for their help with the Exodus Storage Managleann
Ordille for authoring the shared memory database join application, and Eugene Brooks for authoring the
psim simulatar We dso thank Jon Cargille, Jefiollingsworth, Krishna Kunchithapadam, and Christopher

Maguire for their comments and suggestions on improving this paper.

