To Appear in The Journal of Supercomputing

Optimal Tracing and Replay for Debugging Message-Passing
Parallel Programs

Robert H. B. Netzer Barton Miiller
Dept. of Computer Science Computer Sciences Dept.
Brown University University of Wisconsin—Madison
Box 1910 1210 WDayton St.
Providence, RI02912 MadisonWI 53706
rn@cs.brown.edu bart@cs.wisc.edu
Abstract

A common debugging strategy involves re-executing a program (on a given input) over and
over, each time gaining more information about budgduch techniques can fail on message-
passing parallel program&ecause of nondeterminadjfferent runs on the given input may pro-
duce different results. This non-repeatability is a serious debugging problem, since an execution
cannot always be reproduced to track down bugs. This paper presents a technique for tracing and
replaying message-passing programs. By tracing the order in which messages are delivered, a
reexecution can be forced to deliver messages in their original mgerducing the original exe-
cution. o reduce the overhead of such a scheme, we show that the delivery order of only mes-
sages involved imacesneed be traced (and not every message). Our techniqgue makes run-time
decisions to detect and trace racing messages, and is wmutathalin the sense that the minimal
number of racing messages is tracBaperiments indicate that only 1% of the messages are often
traced, gaining two orders of magnitude reduction over traditional techniques which trace every
message. Thedeaces allow an execution to be reproduced any number of times for debugging.
Our work is novel in that we adaptively decide what to trace, and trace only those messages that
introduce nondeterminacyWith our strategylarge reductions in trace size allow long-running
programs to be replayed that were previously unmanage#ébladdition, the reduced tracing
requirements alleviate tracing bottlenecks, allowing executions to be debugged with substantially
lower execution-time overhead.

Keywords: debugging, deterministic re-execution, nondeterminism, tracing, message-passing parallel programs.

This work was supported in part by National Science Foundation grants CCR-8815928 and CCR-9100968, Office of Naval Research grant
N00014-89-J-1222, and a grant from Sequent Computer Systems Inc.

1. Introduction

Message-passing parallel programs can be nondeterminigti@tions in scheduling and message latencies
can cause two executions of the same program (on the same input) to prdduest désults. Such nondetermi-
nacy may be intended, but it can cause serious problems while debugging: subsequent executions of the program
may not reproduce the original bug§or example, an execution that core dumps may not be reproducible even
after 1000 subsequent runs on the same input. This non-repeatability maKesuit thfuse traditional sequential
debugging techniques that require repeated execution. In this paper we present a mechanism for tracing the mes-
sage delivery order so an execution can be repeatedly replayed. Replay is achieved by forcing each process during
reexecution to receive messages in the same order as in the original exe&utiical cost in such a mechanism
is the cost of tracing the delivery orddio reduce this cost, our schem@aptivelymakes tracing decisions at run-
time to trace only those messages that introduce nondeterminacy (and whose deliveries must be enforced to
achieve replay), instead of tracing every messaggeriments show that only 1% of the messages are usually
traced, improving by up to two orders of magnitude earlier techniques that trace every m@dshgaich a

reduction, long-running programs can now be replayed that could not have been previously replayed.

In a trace-and-replay scheme, the order in which messages are delivered (but not their contents) is first
traced during execution. These traces are then used during re-execution to force each message to be delivered to
the same operation as during the traced execuficacing the original execution is necessary because some mes-
sages mayacewith others, introducing nondeterminacy into the executibmo messages race if they are simul-
taneously in transit and either could arrive first at some receive operation. If the original order in which racing
messages are delivered is not recorded, their order cannot always be reproduced duringoeghegy by trac-

ing the original message deliveries and then forcing them to occur during, teplagmputation and all its mes-

sages will be exactly reproducedAn eroneous execution can then be repeatedly replayed to analyze the execu-

tion more carefully and gain information about bugs.

Our main result is an adaptive tracing algorithm based on a proof that only racing messages need be traced
to support replayOur algorithm detects racing messages on-theafig isoptimalin most cases in the sense that
only one message out of each pair of racing messages is traced (if any fewer messages were traced, some race
would remain untraced, and insufficient information would exist to force a deterministic rejpistgad of trac-
ing every message (as earlier schemes propose), our technique checks each message to determine if it races with
anotheyand traces one of the racing messag&$ien a message is received, a race check is performed by analyz-
ing the execution order between the previous receive operation in the same process and the messaljeesender

ordering information necessary for this check is maintained during execution by appending vector timestamps onto

! Interactions with the external environment must also be reproduced (such as return values from systétowalls).these interac-

tions must be reproduced to replay sequential programs as well.

user messages. When a race is detected, the logical time of the message receipt iEotratéeve replaythe
traced logical times are appended onto messages during reexecution and each process is allowed to receive a mes-
sage only at a time specified by the trace. This strategfeistieé because the racing messages are exactly those

that introduce nondeterminacy into the execution.

Our work is novel in that only the racing messages are trdoetbntrast, earlier trace and replay schemes
for message-passing programs require tracing every message[6, 2, 12, 1(R&pld} was first introduced by
Curtis and \ittie in the BugNet system for debugging distributed C programs[2]. LeBlanc and Mellor
Crummey[6] also addressed replay but considered both shared-memory and message-passing parallel programs.
They trace only the order in which messages are delivered (and not their co@gresproducing only the order
of message deliveries, their contents (and hence the original computation) will also be reprbldueder both
of these schemes require emitting some type of trace for every me3sagag every message can require huge
amounts of storage for long-running programs, making them impossible to debug. In addition, as processors

become faster and parallel machines become |argeing becomes an increasing bottleneck.

2. Example

To oontrast traditional trace and replay schemes with our tracing strategyesent an example message-
passing programThis example shows that tracing every message sent during execution is sufficient to provide
replay but is not necessarinstead, tracing only the racing messages is sufficient to provide correct replay of all

messages (even those that do not race).

Figure 1a shows a three-process message-passing progracesse$; and P; sendvsgl andMsg2 to
processP,. ProcessP, issues twdRecv operations that will accept messages from any process. Figure 1b illus-
trates one possible execution of this program in wiigHirst receivedvsgl sent byP,, then receivedvsg2
from P;. However because these two messagise, they are not guaranteed to be delivered in this orihtu-
itively, two messages race if either could be received first (due to the unpredictability of schedulers and message
delays). Foexample, ifvsgl were delayed (because of variations in message laterdas), could instead be
received first byP,, as ©iown in Figure 1c. This nondeterminacy causes a problem when debugging, since re-

executing the program (on the same input) is not guaranteed to reproduce the original execution.

To replay the execution for debugging, we must first trace the order in which the messages are delivered,
and then use this trace to force a re-execution to exhibit the same message deliveries. Earlier trace and replay
schemes propose tracing the order in whiltimessages are delivered[6, 2, 12, 10, 7Hr example, they would
record thatvsg1l was delivered to the firRecv in P, and thatvsg2 was delivered to the secoRdcv. During
replay the receive operations are modified to accept only the appropriate meddagever in this example, it
suffices to trace only one of the two messages. If only the delivei @t to the firstRecv in P, is recorded,
sufficient information still exists for replayBy forcingonly this message to be delivered to the appropriate receive

(the firstRecv in P,), the other message will automatically be delivered to the correct operation — it has no

Py P P3

Send Msgl to P2 Recv X from ANY Send Msg2 to P2
Recv Y from ANY
(a)
Pq Py P3 Pq Py P3

Sendl Sent;

@® Send ® Send
9. /@@'/
@® Recv ON ®
&) Recv
Rec
Recv
(b) (©)

Figure 1. @) example message-passing program, and (b),(c) two possible executions

where else to go. One of our results is a proof that only racing messages need be traced. Non-racing messages

cannot introduce nondeterminacy and thus their deliveries need not be enforced during replay.

In Section 3 we formally define these races. In Section 4 we show how to detect and trace them on-the-fly
and provide replay from the tracedle dso prove that in the common case our strategy traces the minimal num-
ber of racing messages whose order must be reproduced for. repl8gction 5 we present experimental results

indicating that this strategy is effective in practice, even in the non-optimal case.

3. Formal Definition of Race

To formally define a race, we first present a model for reasoning about executions of a message-passing par
allel program. One part of this model is a notation to represerdctioal behavior exhibited by the execution.
The other part of the model characteripegential behavior (alternative executions that could have occurred
instead). W& then use the model to characterize what we mean by a race, and later to prove that our algorithm

traces enough information about the actual execution to ensure deterministic replay.

3.1. Repesenting the Actual Behavior

An actual program executiorepresents one execution of a message-passing program, and j9& pRir

-HB; [JwhereE is a finite set oéventsand-&> is thehappened-beferrelationdefined ovelE[5].

We assume that an execution consists of a fixed number of processes, each of which performs a sequence of
events. & dstinguish between two types of everdsmputatiorandsynchronization A computation event sim-
ply represents all computation performed in a process between synchronization operatsynshronization
event is an execution instance of a send or receive operation (we assume send and receive are the only types of
synchronization operationsyVe model message passing as occurring ¢tagical channelsand assume that each
send or receive eveetspecifies a set of logical channels (dendd&NDOe) or RECEIVEe), respectively) over
which it operates. For a send evenidentical copies of the message are sent over each chai8teNiife). For
a receive eveng, a sngle message is received over any chann®BCEIVEe) (and this channel is nondetermin-
istically chosen if more than one channel has a message availbtbput loss of generalityve assume that any
message sent over a channel is received by exactly one receive event (all messages are eventuallyMedeived).
eling message passing with logical channels is very general; any message-passing scheme (such as ports, mailbox-

es, or links) can be represented.

The happened-before relatici®> | shows the relative order in which events execute and how they poten-
tially affect one another[5]. This relation is defined as the irreflexive transitive closure of the union of two other
relations-H& = (X% 0 Ms)* The X relation shows the order in which events in the same process execute.
Thei'" event in any process (denotede, ;) dways executes before the- 1%t event.ep; X0, €pi+1- The-Y rela-
tion shows the order in which messages are deliverd#$: b means thaa sent a message tHateceived (we al-
so writea-Y> b to denote the messagesent). Aneventa is said to happen before an evbiiff a could afectb
because they belong to the same process or because a sequence of messages was @erd fodlowing event)

to b (or a preceding event).

3.2. Repesenting the Potential Behavior

Races cause nondeterminameaning that a program execution different from the actual execotiad
haveoccurred. Theecond part of our model characterizes a set of such alternative execWers! an execu-
tion of the program that had the potential of occurrifigagibleprogram execution, denot® = [E', HE', O(and
when discussing feasible executions we implicitly assume that the input is flB@ldv we define a set of feasi-

ble executions appropriate for defining what we mean by a race.

First, we consider where a race might have allowed the execution to differ from what actually octered.
point at which the actual execution could have differed is always a receive event at which either of two (or more)
messagesould havearrived (aracing receive event) As a mechanism to determine if a given evenis a acing

receive, we consider whether it is possible to constrirandéier across the actual program execut®im the fol-

lowing way A frontier divides the eventg into two sets: those before the frontier and those after the frontier
(Figure 2 shows an example frontier just above ev&ntsand c). A receive event is a racing receivefifve can

construct a frontier where
() thereceive event is just after the frontier (such as in Figure 2),

(2) two send events are just after the frontier (e.g., eveatsdc in Figure 2) and they each send over at least

one channel iRECEIVHr), and

3) allreceive events before the frontier also have their senders before the frontier:

for all receive eventy before the frontierx >y 0 x is also before the frontier.

If such a frontier exists, thencould have accepted either of the messages in condition (2). Condition (2) states
that the senders must send on a channel over which the receive is accepting m&ssatigsn (3) is required

for the frontier to be aonsistent cyil], which means that it represents a state at which all processes could have si-
multaneously arrivedBeing able to draw a frontier means that the send eventd haveexecuted at the same

time (thus sending messages that are simultaneously in the network), and that the unpredictability of message la-
tencies could have allowed either message to arrivdist. Forexample, the frontier in Figure 2 means that the
messages sent layandc could have been in flight simultaneoysly he message sent lbycould have arrived at

r first (Figure 2b).

Next, we define a sét of feasible executions by considering all the frontiers that exist in the actual program
executionP. For each possible frontief, a program executiorP’; is in this set if it is identical t& up to the
frontier, and then executes the send and receive events just after the frimtlading all such executions in the
set shows all the possible ways in whicHadi#nt messages could have been delivered to the receive event just af-
ter each frontier Intuitively, this set shows us where i nondeterminacy is introduced, and which alternative

message deliveries could have occurred at those points.

l Identical L
Q/ ./
........................ Frontier’ f ---...,__... e Lenmnenn
a. *:c a‘ y . c
Qr ®
Different r

il

(a): actual execution, P (b): feasible execution,fP’

Figure 2. @) a frontier f in actual program execution, and (b) a feasible executioR;' in F.

They are identical up to the frontier, beyond which each delivers a different message to

Definition 3.1
Let P = (E, 1B [be the actual program executiobet f be any frontier that can be drawn acrsas de-
scribed above, and letbe the receive event, arab be the send events, just after the fronti€hen

P’ =E, & [is a program execution where

(1) P'; represents an execution the program could actually perform (i.e., a feasible execution),
(2) P'; is identical toP up to the frontierf :
(a) eachprocess irP'; performs the same events as the corresponding procBdseiore the frontier,
(b) P'; exhibits the same message deliverieP aégfore the frontier:

for all a, b O E' wherea andb are before the frontiea > b ~ a-Yb, and

(3) afterthe frontierP'; contains onlya, b, andr; andr receives the message sent by either b.

We cefineF to be the set of all such feasible executiBhsfor all possible frontierd .

Figure 2b illustrates an exam®; that belongs té-. Note that the message sentaig not received by an event

included inP'; (since the only events we include after the frontieraare and c); P'; is only meant to show that

the message sent bycould have been received by

3.3. Definitionof Race

If we look at a particular frontiewe will find a receive event that, during the actual execupoould have
received any of several messages. It is these messages that we wish to define as racing, and we say that they are
involved in afrontier race By considering all the possible frontiers, we define a binary relation over the messages

in P to denote all the frontier races that exisPin

Definition 3.2
Let P be the actual program executiowe sy thata-*>r RacesWith ¢*>d iff a program execution

P/ =E, & [exists inF such thag, c,r OE andcM>r (c # a).

We ae interested in frontier races because they show the messages that must be traced to provide a deter
ministic replay that reproducés If we trace enough information about the frontier raceB go that during a re-
play P' we can force these races to be resolved in the same orddp,akémP’ will be a deterministic execution,

and therefore must be identicalRqsince determinacy meai®s has no way to differ fron®).

Theorem 1 (Replay Theorem)

A program execution that has no frontier races is deterministic.

Proofs of theorems appear in the appendix.

4. Messagdr acing Using On-the-fly Race Detection

We row present our trace and replay strate@ur approach is to locate the frontier races on-the-fly and to
trace the second message involved in each detected race, instead of tracing every message. In this section we first
show how the frontier races can be detected and traced on-the-fly (we discuss an implementation in the next sec-
tion), and then discuss how to provide replay from the tradfesdso prove that our algorithm is optimal in most

cases in the sense that it traces only one message in each race.

4.1. On-the-flyRace Detection and Tracing

We dktect frontier races on-the-fly by performing a race check after each reBgiamalyzing the execu-
tion order between the sender and a previous receive in the same process, we can determine whether the received
message races with anothard trace only a racing messadeor simplicity we asume that the receiving ends of
logical channels are associated withirgle process; e.g., messages to ports (but not mailboX@g). messages
can then race only if they are received by the same process, simplifying the tracing algorithm. Below we discuss

handling more general (mailbox) communication.

ReceiveMsgfrom Channels

1 Send= event that senbsg;
2 PrevRec\w= previous event (in the same process) suchREECEIVEPrevRecy contains
the channel over whicklsgwas sent;

3: PrevSend:= event that sent a messageRevRecy
4: if (PrevRecvHB- Send
5: [* frontier race detected */
6: trace that a message was delivered fRendto Recv
7 /* else no frontier race yet detected */
@)
P1 P2 P3 P1 P2 P3

PrevSend $\ PrevSend ¢\
® PrevRecv PrevRecv

\I
Send Send
Recv [O]‘/ ? Recv [0]‘/

(b) Frontier race (shaded message traced) (c) No frontier race (no messages traced)
(PrevRecvB- Send (PrevRecv®> Send

Figure 3. @) tracing algorithm, (b),(c) example race checks performed at boxed receive

Figure 3a shows our on-the-fly race detection and tracing algorithm, which is invoked after each receive.
Recall that a race exists when either of two messages could have arrived first at some receive. After a message is
received, this algorithm determines whether the message could have instead been received by a previous event in
the same processlo identify these situations, an earlier receive event is located (line 2) that specified a logical
channel over which the current message was fwih the message accepted by this earlier receive and the cur
rent message are race candidates. As shown in FigureReviRec\wdid not happen before the sender of the cur
rent messageSgnd, then a frontier race exists — a frontier can be drawn just bi@eSend Send and Pre-

VRecv Both the previous and current messages could have been simultaneously in transit and either could have
arrived first atPrevRecyv In this case the algorithm traces the second racing mesHagstead PrevRecvhap-

pened befor&end(as shown in Figure 3c), then no race exists: no frontier can be drawn as above (the two mes-
sages could not have been simultaneously in transit), and the algorithm emits ndVegreve in the appendix

(Theorem 2) that this algorithm tracsleastone message in each frontier race.

The traces only need identify the sending and receiving events of the traced message. These events can be
identified by maintaining in each process a local counter (incremented after every synchronization operation) that
is used to assign serial numbers to events[6]. ficgsfto trace the event serial numbers of the sender and receiv-
er and the process number of the sentfasne trace file is maintained for each process in the program execution,

the process number of the receiver is implicit and need not be recorded.

Because we assume that the receiving end of each logical channel is associated with a single process, to find
races it suffices (in line 2) to locate the previous event isahgeprocess that could have accepted the incoming
message. lmailbox communication, a mailbox might have multiple simultaneous owners in different processes.
Two messages (to the same mailbox) can race even if they are received by different processes. Detecting these
races requires locating earlier events in any process that could have accepted the incoming message sent to the
mailbox. Suchevents can be located by modifying the mailbox mechanism to store the last event in each process
that received a message from the mailbbixie 4 of the tracing algorithm can be modified to check the execution

order of each of these events against the sender.

4.2. Replay

During replay each frontier race must be resolved in the same way as during the original ex@&beten.
rem 1 proved that a replay free of frontier races is deterministicchieve a deterministic replagnly the deliv-
ery of the traced messages need be specially enforced; untraced messages will automatically arrive at the correct
receive event and need no special treatmeé/g.rovide replay by tagging and lbefing the racing messages so
they can be accepted by receive events in the proper dfaercessarythe traced messages can be forced (at ad-
ditional cost) to also arrive in their original orddfeviating the need for buffering and ensuring that nddsuf

overflows occur during replay.

To dfect replaythe trace files must first be collated; a racing message is traced during execution when it is
received but tagging the message during replay requires a special action wheerit i3o produce the collated
trace file for procesp, dl traces of messages sent frggmmust be collected (from the uncollated trace files) into a
single file and sorted by sender serial numlirring replay as in he original execution, serial numbers must be
assigned to events by maintaining a local counter that is incremented after every synchronization ophstion.
counter is used to ensure that racing messages are accepted by the intended receive. Before each send, the serial
number of the next racing message (read from the trace file) is compared to the current value of the local counter
Because the trace file is sorted, these numbers will match if the message about to be sent was originally involved
in a race. If the message to be sent originally raced, it is tagged with the serial number of its intendedfreceive.
the message did not race, it is not specially tag@Eteives are modified to accept tagged messages only if their
serial numbers match those on the tagged messdggged messages with serial numbers that do not match are
buffered so they can be accepted by later receives. Such buffering is often normally performed by message-

passing systems that accept asynchronous messages. Untagged messages are accepted as usual.

The above strategy ensures that each messageeigedby the correct event, but does not guarantee that
messagearrive at a process in the same order as during the original execution. Racing messages can still arrive in
any orderand must be buffered so that they can be received in the correct Budaring is normally not a prob-
lem unless buffer space is limite@uffer overflows may occur during replay that did not originally accir
guarantee that no overflows occue @an reproduce the original message arrival order by introdwgingol
messages during replayvhen a message > b races with a message™> d, a mntrol message from a new
send (added by the replay system) just dfter a new receive just befoceensures that M- d is not sent untik

M5 b has been received. Figure 4 shows an examgfx(y is the control message).

The control messages can be passed over any logical channel that exists between the two froegsses.
introduce orderings that remove all frontier races between user (i.e., non-control) meAsagessult, user mes-
sages will be delivered to each process in exactly the same order as during the original eXacatidition, at
most one user message will ever be in transit over a cRasaahch channel only need buffer at most one user
message. Theontrol messages may race among themselves, but such races are benign since control message
have no content and can be received in any oldeaddition, channels need not be FIFO for this strategy to work,

as the control messages effectively force FIFO delivery (since at most one message is ever in transit over a chan-

Figure 4. @) a race betweera Y5> b and ¢ ™ d, and (b) the control message« M- y added for replay

2 A simple argument shows this: For a contradiction, assume that two meésél.’jefsl andb ¥ I, are both simultaneously in transit
over some channel. The control messages that prevent these messages from racing ca’qse%iiher ro M, a. But this means that one

of the messages is receivieeforethe other is sent. Therefore they cannot be simultaneously in transit.

10

nel). Thusat most one control message can ever be in transit from a process at any time, and thuB atilmost
control messages (whekeis the number of processes) will ever need to béeted over any channel. If enough
buffer space is reserved for this many control messages (which are small), buffer overflows will never eccur dur
ing replay However because control messages introduce additional orderings that were not present during the
original execution, they can reduce the amount of parallelism achievable during aeglakould only be used if

buffer overflow is otherwise a problem.

4.3. Optimal Message Tracing

We row show one common case where our tracing algorithoptimal Since something must be traced
about each racing message, we consider an optimal trace to be on@rniere message in each race is traced
(if any fewer messages were traced, there would be some untraced race that would cause replay to be nondetermin-
istic). We dharacterize when the traces are optimal and present example executions for which optimal and non-

optimal traces are generated. As shown J&em when non-optimal traces are recorded, they are usually small.

Our tracing algorithm traces only one message of each race if each message is either involved in only one
race, or if messages participate in multiple races and the radesrsitive Transitive races often occur when re-
ceive operations specify either a single channel over which to accept a mesaligdammnels, instead of a subset
of channels.Theorem 4 (in the appendix) proves that on executions for whicRabesWithrelation is transitive
(see Definition 3.2), our tracing algorithm is optimal. Figure 5a illustrates such an exe@edaause all three re-
ceive events could have accepted messages from any channel, all three mas¥ades; M5 d, ande ™ f,
race with each otheiThe optimal trace consists of recording any two of the three messages (such as the two shad-
ed messages): without tracing these messages, replay cannot ensure that all three messages are delivered to the cor-

rect event. In this case, our algorithm traces the last two messages, which is an optimal trace.

Figure 5b shows an execution with non-transitive races; the first receive can accept messages only from pro-
cesses 1 and 3, the second receive from processes 3 and 4, and the last receive from process 4. Because the second
message could have been accepted by the first receive, the first two messagssnitandy, because the third
message could have been accepted by the second receive, the last two messagewsexee.because the last
message could not have been received by the first receive (it only accepts messages from processes 1 and 3), the
first and last messages dotrace. Theoptimal trace thus consists of recordomgy the second message: if replay
ensures that the second message is delivered to the second receive operation, the other two messages will automat-
ically arrive at the correct events (no other receives will accept them). Our tracing algorithm would trace the last

two messages, which is not optimal.

5. Implementation and Experimental Results

We row discuss experiences with our trace and replay straidgyfirst discuss an implementation of our

tracing algorithm based on appendiregtor timestampgnto user messages. These timestamps provide informa-

11

Py P, Ps P, Py P, P3 P4

a ‘ a ‘
b b
\ORecv (ANY) \ORecv 1,3)

d ®° q ocC
Recv (ANY) ‘/ / | 2 Recv (3,4)‘/ / ®°
f f
Recv (ANY) Q/ Recv (4)0/

(a): Transitive races (b): Non-transitive races
each message races with all others first and second messages race

second and third messages race
first and third messages do not race
Figure 5. @) Transitive races, (b) non-transitive races: shaded messages show the optimal trace

(tracing algorithm would trace the last two messages)

tion about thet> relation needed to perform on-the-fly race cheals. hen discuss experiments performed on a
collection of message-passing programs on a 64-node Thinking Machines CM-5 and a 32-node Intel iPSC/2 hy-
percube. Thesexperiments show that only-019% of the messages in these programs were traced, and in all but
one case the optimal trace was generatadaddition, the small traces completely alleviated tracing bottlenecks
that plague traditional schemes which trace every mesddgese results suggest that our trace and replay tech-
nigque is very effective in practice, producing small traces with low execution-time overhead, providing a new
technique to debug even long-running prograkVe. end by discussing how tracing overhead can perturb the exe-

cution, possibly causing behavior different than an untraced execution.

5.1. Implementation

The tracing algorithm presented in Section 4 detects races by determinifif-thelation between the
sender of a message and a previous recedugr. implementation of this algorithm uses a standard method of
maintaining the™&> relation during execution by keepingector timestamjn each processA vector timestamp
is a vector of lengtip (the number of processes) containing event serial numberEfigke timestamps are main-
tained by appending them onto user messages and updating them after each receive offeatiacing algo-
rithm detects races by comparing timestamp values and event serial numbers to determine whether the previous re-

ceive happened before the sender of the current message.

12

In our implementation, each process maintains both a local virtual cidogk, and a vector timestamp,
Timestamp The local clock is used to assign serial numbers to events: events are numbered sequentially within a
process beginning with the number 1, and the clock is incremented after each operation. The timestamps are
maintained so that at any point during execution,ithelot of the vector timestamp for procesgi.e., Times-
tam]i]) equals the serial number of the last event in proct#sst happened before the most recent event in pro-
cessp. By definition, thep™ slot equals the current value p local clock. To maintain these timestamps, each
process appends the current value of its timestamp onto the end of each messagelpsendsceiving a mes-
sage, it updates its timestamp by computing the component-wise maximum with the timestamp appended to the in-
coming messageUsing vector timestamps to track 4> relation has the advantage that they work even if

channels are not FIFO, and they do not require processes to synchronize their clocks[11].

The race check in line 4 of our tracing algorithm (Figure 4) is performed easily using the timestamps.
senders imestamp (which is appended to the incoming message) is compared to the serial number of the previous
receive to determine if the receive happened before the séfttewalue of thep" slot of the sendés timestamp
equals the serial number of the most recent event in prpdisd happened before the sendéithe serial num-
ber of the previous receive is greater than this value, then the previous receive did not happen before,the sender

and a frontier race exists.

5.2. ExperimentalResults

We implemented our tracing algorithm on two message-passing parallel machines: a 64-node Thinking Ma-
chines CM-5 and a 32-node Intel iPSC/2 hypercube. On each machine, two instrumented versions of the message-
passing library were created. One version uses the traditional approach of tracing every message sent during exe-
cution, and the other version uses our tracing algorithm to trace only racing mes88agaalyzed a collection of
message-passing programs obtained from colleagues and measured two quantities. First, the percentage of mes-
sages that race was recorddthis percentage shows the trace size reduction obtained by our race-based tracing
strategy Second, the increase in execution time of both the traditional approach of tracing every message and our
approach of tracing only racing messages was measilitese overheads show whether the cost of performing
race checks outweighs the time savings obtained by not tracing non-racing meSgadesnd that often only
0-2% of the total messages were traced, and in cases where the execution-time overhead of tracing every mes-

sage is high, race-based tracing is an order of magnitude faster.

Table 1 shows the results of our experiments on six progra@scomputes the determinant of a matrix,
and was run on a randomly generatedxl@@ matrix. line computes the intersections of a collection of line seg-
ments, and was run on 1000 randomly generated segnmeeshicomputes finite differences over a grid to solve a
differential equation, and was run on a 8800 grid. mult multiplies two matrices, and was run on two randomly

generated 106100 matrices.sysuses Gaussian elimination to solve a linear system of equations, and was run on a

13

Program Messages Messages %of Optimal Run-time Overhead
Sent Traced Trace for tracing for tracing
all msgs racing msgs
dett 4713 63 (1%) optimal 568% 8%
lineft 31 0 (0%) optimal 0.3% 8%
mesh¥ 10210 1392 (14%) optimal 28% 14%
multt 120 0 (0%) optimal 15% 0.1%
syst 9424 332 (2%) optimal 561% 14%
tychot 1791 412 (19%) within - -

46%

T 64-node Thinking Machines CM-5
1 32-node Intel iPSC/2

Table 1. Results of message tracing

system of 300 randomly generated (linearly independent) equatimi®is a cache simulatpand was run on a

10 MByte address trace.

Our first experimental result pertains to trace sizes: In two progiehandsy9y, only 1-2% of the mes-
sages were traced — a two order of magnitude reduction over tracing every message. In two pliagrams (
mult), noneof the messages raced, and no traces at all were gendeatsmlitions of these programs (on the given
input) are guaranteed to be reproduced automatically; nothing special need be done duringrréplaypro-
grams fneshtychg, 14— 19% of the messages were tracddhese cases represent programs that were designed
to be highly internally nondeterministic (although their final results are deterministic); they use some form of a
first-come first-served worker paradigm. Even in such cases, the number of racing messages was. réther low

five of the six programs the optimal trace was generated (because the races were transitive, as discussed in Section

4.3). Inthe other programtycho), the trace size was within 46% (or less) of optindhese results suggest that

our tracing strategy is effective, tracing as few a2@ of the messages, and no more than 19% of the messages

% We cerived this quantity by computing a lower bound on the optimal trace size. As shown in the proof of Theorem 3 (in Appendix A),
computing an optimal trace is equivalent to computing a minimal vertex cover of a gapétermine how the recorded trace size compares
to the optimal trace, we used graph matching to estimate the optimal size to within a factor éittyehq the recorded trace size was
morethan 46% larger than optimal. Determining whether it was actually optimal would require computing a minimal vertevhativées an

intractable problem in general.

14

even in programs that are highly nondeterministicaddition, our tracing algorithm generated optimal traces for

most of the test programs, and even when non-optimal traces were generated, they were small.

Our second result pertains to the execution-time overhead incurred by our tracing.sffateggess this
overhead, we analyzed three versions of each program: the original (uninstrumented) program, an instrumented
version that traces every message, and an instrumented version that traces only racing messages. Each version of

every program was executed 10 times and the average execution times were coftputadt two columns of

Table 1 show the execution-time overhead incurred by tracing all messages and tracing only racing‘messages

Two programs @et and sy9 suffered substantial slowdown (almost 600%) when using the traditional ap-
proach of tracing every message. These programs exhibited a high frequency of message ofeeaiiogshis
high traffic introduced a bottleneck, since many trace records needed to be written in a shomt¢onérast, our
strategy of tracing only the racing messages reduced the tracing requirements to the point where the bottleneck
was completely alleviated (resulting in a slowdown of only189%). Inthe programs that had no racing mes-
sagesline, mulf), the overhead of race-based tracing indicates the inherent cost of performing the on-the-fly race
checks. Thisoverhead shows that the cost of maintaining the vector timestamps and checking for races is low
(0.1-8%). Becauskne had low message-passing traffic, tracing every message was cheaper than maintaining the
timestamps. IMmult, longer messages were passed between nodes, making the incremental cost of appending
timestamps low In both programs, tracing every message did not introduce a bottleneck, and both tracing strate-

gies had reasonable overheads.

5.3. PerturbationsCaused by Tracing

Although the overhead of our tracing strategy is, ldvis non-zero. Ifthe execution is nondeterministic
(contains races), this overhead can potentially perturb the actual execution enough for it to exhibit befleavior dif
ent than it would without tracingSuchprobe effects a drawback shared among all schemes that trace or monitor
nondeterministic programs. In the worst case it appears impossible to completely eliminate anyfgubb® af
test programs were very sensitive to variations in timing as they exhibited a different execution almost every time
they were run, even when not instrumented. For such programs, the probe effect is probably great, although it is
unclear if executions result that arempletelydifferent than what would otherwise normally occur practice,
keeping the tracing overhead as low as possible can reduce the chance that such a perturbation \@lroccur
adaptive tracing strategy contributes to this gdaladdition, current work is exploring additional analyses that

can detect where in the execution the instrumentation may have changed the b&wealing with the probe ef-

4 Because our CM-5 had not yet been equipped with 1/0O processors, overhead measurements for this machine were nGureported.
implementation performed trace 1/0 by sending messages over the diagnostic network. The unusually high cost of this I/O makes the overhead

of tracing all messages several orders of magnitude higher than race-based tracing, making comparisons unrealistic.

15

fect in nondeterministic systems remains an issue of current research[9, 8].

6. Conclusions

In this paper we presented a trace and replay strategy for message-passing parallel programs that substantial-
ly reduces tracing overhead over past schemes. The small traces and low overhead produced allow even long-
running programs to be replayed that previously could not have been replayed in pradsosork provides a
new foundation on which fient parallel-program debugging techniques can be blié.achieve these benefits
by making tracing decisions at run-time, instead of tracing every message (as earlier work proposes). Race checks
are performed after each receive operation to locate and trace those messages that introduce nondétdgminacy
prove that our tracing strategy is optimal (in the sense that a minimal number of racing messages is traced) for
many programs which exhibit simple message patterns. Even when non-optimal traces are generated, experiments

show that the traces are kept small, and are one to two orders of magnitude smaller than traces of every message.

Although the primary applicaton of this work is repltne on-the-fly tracing algorithm is also useful for di-
recting the programmer to the locations of races. When the programmer intends the execution to be completely
deterministic, but non-empty traces are generated, the traces can be perused to determine which messages (erro-
neously) racedThe traces can then be used to effect a replay where more detailed information about the races can

be collected.

Future work includes a more precise characterization of when our algorithm is optimal (e.g., transitive races
are sufficient for an optimal trace but not necessary). Better tracing strategies may be possible. By buffering more
information about recent messages, more informed tracing decisions might trace fewer races. By employing opti-
mizations for maintaining timestamps, the overhead of passing timestamps and performing race checks might also

be reduced.

References

[1] OzalpBabaoglu and Keith Marzullo'Consistent Global States of Distributed Systems: Fundamental Con-
cepts and MechanismsTechnical Report UBLCS-93; University of Bologna, (January 1993).

[2] R. Curtis and L. Wittie,'BugNet: A Debugging System for Parallel Programming Environméemmt. of
the 3d Intl. Conf. on Dist. Computing Systenpp. 394-399 (1982).

[3] C. J. Fidge, “Partial Orders for Parallel DebuggihglGPLAN/SIGOPS &vkshop on Parallel and Dis-
tributed Debugging pp. 183-194 Madison, WI, (May 1988). Also appearsSiGPLAN Notice®4(1)
(January 1989).

[4] Arthur P. Goldbeg, Ajei Gopal, Andy Lowryand Rob Strom, “Restoring Consistent Global States of Dis-
tributed Computations,ACM/ONR Workshop on Parallel and Distributed Debuggipg. 144-154 Santa
Cruz, CA, (May 1991).

[5] Leslie Lamport, ‘Time, Clocks, and the Ordering of Events in a Distributed Syst&@ACM 21(7) pp.
558-565 (July 1978).

16

[6] ThomasJ. LeBlanc and John M. Mell@€rummey “Debugging Parallel Programs with Instant Replay
IEEE Trans. on Computef3-36(4) pp. 471-482 (April 1987).

[7] Eric Leu, Andre Schiperand Abdelwahab Zramdini;Efficient Execution Replayékchnique for Distribut-
ed Memory Architectures,’2nd European Distributed Memory Computing Coafiee LNCS 487,
Springer-Verlag, Munich, (1991).

[8] JamesE. Lumpp, Jr, Julie A. Gannon, Mark S. Andersland, and Thomas L. Casavant, “A Technique for
Recovering from Software Instrumentation Intrusion in Message-Passing Sysienis)ical Report TR-
ECE-920817University of lowa Department of Electrical and Computer Engineering, (August 1992).

[9] Allen D. Malony and Daniel A. ReedModels for Performance Perturbation Analysi$,CM/ONR Wrk-
shop on Parallel and Distributed Debuggingp. 15-25 Santa Cruz, CA, (May 1991).

[10] BartonP. Miller and Jong-Deok Choi, “A Mechanism forfieient Debugging of Parallel Programs51G-
PLAN Conf. on Rygramming Language Design and Implementatipp. 135-144 Atlanta, GA, (June
1988).

[11] ReinhardSchwarz and Friedemann Mattern, “Detecting Causal Relationships in Distributed Computations:
In Search of the Holy Grail,Technical Report SFB124-15/92, Dept. of Computer Science, tfrifaiser-
slautern, Kaiserslautern, Germanfpecember 1992).

[12] Kuo-ChungTa and Sanjiv Ahuja, “Reproducible Testing of Communication SoftwatEEE COMPSAC
'87, pp. 331-337 (1987).

Appendix. Proofs of Theorems

Theorem 1 (Replay Theorem).

A program execution that has no frontier races is deterministic.
Proof. To establish a contradiction, assume that some program exedutidit, 12> Ois nondeterministic but
free of frontier racesSinceP is nondeterministic, another execution of the program on the same input could pro-
duce a different executio®” = [E', H8> [J P and P’ exhibit the same events and message deliveries up to some
point after which they diér. Letr be a receive event where they firsfefif That is,x 18>y < x HE, y for all
eventsx, y wherex 185 r andy 185 r. Also lets,; ands, be operations that send messagesitoP andP': s,
M ¢ ands, Mt The messages sent byands, in P must race becaud® meets the conditions in Definition
3.1 and thus belongs 6. The eventx andy are all the events before the frontiand s, s,, and r are after the
frontier. But P containing a frontier race contradictions the assumptidrus, P' cannot be different thaR, im-

plying thatP is deterministic. QED

Theorem 2 (Tracing Theorem).

The tracing algorithm (Figure 3) tracasleastone message in each frontier race.

Proof. We prove below that a message is traced by the algorithm when some predicate is true (Lemma 1), and
then prove that this predicate is true when a frontier race exists (Lemma 2). At least one message in each frontier

race is thus traced. QED

17

Lemma 1.
If two messagesSend-*> Recvand PSend™> PRecy exist such thatPRecv-8> Send 0 PRecv*<»

Recv 0 SENOSend n RECEIVEPRecy # [, then the tracing algorithm tracéend™> Recv

Proof. To establish a contradiction, assume that the above conditions hold but the algorithm does 1B#ndace
M, Recv This message is not traced onIy if the algorithm finds that the previous rdestv®ecv(located in
line 2), happened before the sendenrevRecv®> Send We nust also havé®Recv*S> PrevRecvotherW|se the
algorithm would findPRecvas the prewous receive. These orderings imply BiRecv"2> Send which contra-
dicts the assumption thRRecvH8>Send QED

Lemma 2.
If PSend ¥ PRecv RacesWith Send M Recy then PRecv H8 Send O PRecv X%
Recv 0O SENOSend n RECEIVEPRecy £ .
Proof. BecausePSend™s PRecv RacesWitisendY> Recy there exists &' = [E', M85 00 F such thatSend
M, PRecv (by Definition 3.2). We mnsider each term in the conjuneRecv-8> Send O PRecv*%
Recv 0 SENOSend n RECEIVEPRecy # [.

() To establish a contradiction, assume tR&ecv--> Send In addition, by the definition of (part (3) of
Definition 3.1), Send™> PReCVImphes thatdx O E, x ™8> Send = x-"8% Send Thus, if PRecvHE>

Send we nrust havePRecvHE> Send which contradicts the assumption tisend Y PRecv

(2) To establish a contradiction, assume tRacv--=> PRecv Then,P' cannot belong td, snce by its defi-
nition Recv*2> PRecvimplies thatRecvis before the frontier and thi@end-Y> Recv(since Send*>

Recy, which contradicts the assumption tBand™> PRecv

3) SinceSend™~ PRecy we dearly haveSENO0Send n RECEIVEPRecy # 0. QED

Theorem 3 (Tracing Complexity Theorem).
Given a program executioR,= [E, —> [] determining whether replay can be implemented by trakiog

fewer messages is an NP-hard problem.

Proof. We wse a reduction from the vertex cover problem, known to be NP-complete: given an undirected graph,
G =(V, E), doesG have a vertex cover withor fewer vertices?A vertex cover is a subset of the vertices such

that every edge is connected to some verteX'inGiven a graphG, we reduce the problem of determining
whether it has a vertex cover withor fewer vertices to the problem of determining whether a program execution,

P, can be replayed from a tracelobr fewer messages.

From the grapl® we construcP as follows. P contains two processes between which a message is sent for

each of then vertices inG. Process 1 inP containsn send operations, and process 2 containsceive opera-

tions. Thei!" send operation sends a null message over logical chgramel thei™ receive operation specifies

18

that it will receive over logical channel Additional channels are specified by the receive operations so that two
messages race #n edge connects their corresponding node&inFor an edge from verteixto vertexj, theit
receive operation also specifies that it will receive over logical chgnrigé¢cause messages sent from process 1

may be delivered out of ordehei™ and j messages i race if an elge exists from verteixto vertexj in G.

G has a vertex cover withor fewer vertices ffP can be replayed from a tracekobr fewer message#s-
sume thaG has a vertex cover' with k vertices. Eaclvertex inV' corresponds to one of the messages sent by
P. P can be replayed from a trace of exactly these mess&jese two messages rackah alge connects their
corresponding vertices, a vertex cover ensures that at least one message in each racely thec&kplay The-
orem (Theorem 2), a trace of these messages suffices for. r€olayerselyassume thaP can be replayed from a
traceT of k messagesT must contain at least one message in each frontier race, or else replay will not be fron-
tier-race-free. Sincewvo messages race Riff an edge connects the corresponding verticeGithe vertices cer

responding to the messagediare a vertex covelQED

Theorem 4 (Optimality Theorem).
For any program executio®,= [E, -H& [for which theRacesWittrelation is transitive, the tracing algo-

rithm (Figure 3) traces a minimal number of racing messages required to implement replay.

Proof. As in Theorem 3, we can view the tracing problem as equivalent to computing a vertex cover of a graph.
The program executioR defines a grapl®: the messages iR define its vertices, and when two messages race an
edge is drawn between the corresponding vertidssdiscussed in Theorem 3, any trace sufficient for replay must
cover the vertices 06. When theRacesWitlrelation is transitiveG becomes a forest of completely connected
graphs. Inthis case, a minimal vertex cover is easily computear. each completely connected component of
vertices, a minimal vertex cover consists of anyl vertices. Wherraces are transitive, our tracing algorithm

traces all but one of the mutually racing messages (the first racing message is not traced), which corresponds to

such a minimal vertex coveilhus, the minimal number of racing message is traced. QED

19

