
To Appear in The Journal of Supercomputing

Optimal Tracing and Replay for Debugging Message-Passing
Parallel Programs

Robert H. B. Netzer Barton P. Miller
Dept. of Computer Science Computer Sciences Dept.

Brown University University of Wisconsin−Madison
Box 1910 1210 W. Dayton St.

Providence, RI02912 Madison,WI 53706
rn@cs.brown.edu bart@cs.wisc.edu

Abstract

A common debugging strategy involves re-executing a program (on a given input) over and
over, each time gaining more information about bugs.Such techniques can fail on message-
passing parallel programs.Because of nondeterminacy, dif ferent runs on the given input may pro-
duce different results. This non-repeatability is a serious debugging problem, since an execution
cannot always be reproduced to track down bugs. This paper presents a technique for tracing and
replaying message-passing programs. By tracing the order in which messages are delivered, a
reexecution can be forced to deliver messages in their original order, reproducing the original exe-
cution. To reduce the overhead of such a scheme, we show that the delivery order of only mes-
sages involved inracesneed be traced (and not every message). Our technique makes run-time
decisions to detect and trace racing messages, and is usuallyoptimal in the sense that the minimal
number of racing messages is traced.Experiments indicate that only 1% of the messages are often
traced, gaining two orders of magnitude reduction over traditional techniques which trace every
message. Thesetraces allow an execution to be reproduced any number of times for debugging.
Our work is novel in that we adaptively decide what to trace, and trace only those messages that
introduce nondeterminacy. With our strategy, large reductions in trace size allow long-running
programs to be replayed that were previously unmanageable.In addition, the reduced tracing
requirements alleviate tracing bottlenecks, allowing executions to be debugged with substantially
lower execution-time overhead.

Keywords: debugging, deterministic re-execution, nondeterminism, tracing, message-passing parallel programs.

This work was supported in part by National Science Foundation grants CCR-8815928 and CCR-9100968, Office of Naval Research grant
N00014-89-J-1222, and a grant from Sequent Computer Systems Inc.

1. Intr oduction

Message-passing parallel programs can be nondeterministic.Variations in scheduling and message latencies

can cause two executions of the same program (on the same input) to produce different results. Such nondetermi-

nacy may be intended, but it can cause serious problems while debugging: subsequent executions of the program

may not reproduce the original bug.For example, an execution that core dumps may not be reproducible even

after 1000 subsequent runs on the same input. This non-repeatability makes it difficult to use traditional sequential

debugging techniques that require repeated execution. In this paper we present a mechanism for tracing the mes-

sage delivery order so an execution can be repeatedly replayed. Replay is achieved by forcing each process during

reexecution to receive messages in the same order as in the original execution.A critical cost in such a mechanism

is the cost of tracing the delivery order. To reduce this cost, our schemeadaptivelymakes tracing decisions at run-

time to trace only those messages that introduce nondeterminacy (and whose deliveries must be enforced to

achieve replay), instead of tracing every message.Experiments show that only 1% of the messages are usually

traced, improving by up to two orders of magnitude earlier techniques that trace every message.With such a

reduction, long-running programs can now be replayed that could not have been previously replayed.

In a trace-and-replay scheme, the order in which messages are delivered (but not their contents) is first

traced during execution. These traces are then used during re-execution to force each message to be delivered to

the same operation as during the traced execution.Tracing the original execution is necessary because some mes-

sages mayracewith others, introducing nondeterminacy into the execution.Two messages race if they are simul-

taneously in transit and either could arrive first at some receive operation. If the original order in which racing

messages are delivered is not recorded, their order cannot always be reproduced during replay. However, by trac-

ing the original message deliveries and then forcing them to occur during replay, the computation and all its mes-

sages will be exactly reproduced1. An erroneous execution can then be repeatedly replayed to analyze the execu-

tion more carefully and gain information about bugs.

Our main result is an adaptive tracing algorithm based on a proof that only racing messages need be traced

to support replay. Our algorithm detects racing messages on-the-fly, and isoptimal in most cases in the sense that

only one message out of each pair of racing messages is traced (if any fewer messages were traced, some race

would remain untraced, and insufficient information would exist to force a deterministic replay).Instead of trac-

ing every message (as earlier schemes propose), our technique checks each message to determine if it races with

another, and traces one of the racing messages.When a message is received, a race check is performed by analyz-

ing the execution order between the previous receive operation in the same process and the message sender. The

ordering information necessary for this check is maintained during execution by appending vector timestamps onto

1 Interactions with the external environment must also be reproduced (such as return values from system calls).However, these interac-

tions must be reproduced to replay sequential programs as well.

user messages. When a race is detected, the logical time of the message receipt is traced.To achieve replay, the

traced logical times are appended onto messages during reexecution and each process is allowed to receive a mes-

sage only at a time specified by the trace. This strategy is effective because the racing messages are exactly those

that introduce nondeterminacy into the execution.

Our work is novel in that only the racing messages are traced.In contrast, earlier trace and replay schemes

for message-passing programs require tracing every message[6, 2, 12, 10, 7, 4].Replay was first introduced by

Curtis and Wittie in the BugNet system for debugging distributed C programs[2]. LeBlanc and Mellor-

Crummey[6] also addressed replay but considered both shared-memory and message-passing parallel programs.

They trace only the order in which messages are delivered (and not their contents).By reproducing only the order

of message deliveries, their contents (and hence the original computation) will also be reproduced.However, both

of these schemes require emitting some type of trace for every message.Tracing every message can require huge

amounts of storage for long-running programs, making them impossible to debug. In addition, as processors

become faster and parallel machines become larger, tracing becomes an increasing bottleneck.

2. Example

To contrast traditional trace and replay schemes with our tracing strategy, we present an example message-

passing program.This example shows that tracing every message sent during execution is sufficient to provide

replay but is not necessary. Instead, tracing only the racing messages is sufficient to provide correct replay of all

messages (even those that do not race).

Figure 1a shows a three-process message-passing program.ProcessesP1 and P3 sendMsg1 andMsg2 to

processP2. ProcessP2 issues twoRecv operations that will accept messages from any process. Figure 1b illus-

trates one possible execution of this program in whichP2 first receivedMsg1 sent byP1, then receivedMsg2

from P3. However, because these two messagesrace, they are not guaranteed to be delivered in this order. Intu-

itively, two messages race if either could be received first (due to the unpredictability of schedulers and message

delays). Forexample, ifMsg1 were delayed (because of variations in message latencies),Msg2 could instead be

received first byP2, as shown in Figure 1c. This nondeterminacy causes a problem when debugging, since re-

executing the program (on the same input) is not guaranteed to reproduce the original execution.

To replay the execution for debugging, we must first trace the order in which the messages are delivered,

and then use this trace to force a re-execution to exhibit the same message deliveries. Earlier trace and replay

schemes propose tracing the order in whichall messages are delivered[6, 2, 12, 10, 7, 4].For example, they would

record thatMsg1 was delivered to the firstRecv in P2 and thatMsg2 was delivered to the secondRecv. During

replay, the receive operations are modified to accept only the appropriate messages.However, in this example, it

suffices to trace only one of the two messages. If only the delivery ofMsg1 to the firstRecv in P2 is recorded,

sufficient information still exists for replay. By forcingonly this message to be delivered to the appropriate receive

(the firstRecv in P2), the other message will automatically be delivered to the correct operation — it has no

2

P1 P2 P3

Recv

Recv

Send
Send

P1 P2 P3

Recv

Recv

Send
Send

Send Msg1 to P2 Send Msg2 to P2Recv X from ANY

Recv Y from ANY

(b) (c)

(a)

P1 P2 P3

Msg1

M
sg

2
M

sg1

Msg2

Figure 1. (a) example message-passing program, and (b),(c) two possible executions

where else to go. One of our results is a proof that only racing messages need be traced. Non-racing messages

cannot introduce nondeterminacy and thus their deliveries need not be enforced during replay.

In Section 3 we formally define these races. In Section 4 we show how to detect and trace them on-the-fly

and provide replay from the traces.We also prove that in the common case our strategy traces the minimal num-

ber of racing messages whose order must be reproduced for replay. In Section 5 we present experimental results

indicating that this strategy is effective in practice, even in the non-optimal case.

3. Formal Definition of Race

To formally define a race, we first present a model for reasoning about executions of a message-passing par-

allel program. One part of this model is a notation to represent theactual behavior exhibited by the execution.

The other part of the model characterizespotential behavior (alternative executions that could have occurred

instead). We then use the model to characterize what we mean by a race, and later to prove that our algorithm

traces enough information about the actual execution to ensure deterministic replay.

3

3.1. Representing the Actual Behavior

An actual program executionrepresents one execution of a message-passing program, and is a pair, P = 〈E,

iiiiiHB 〉, whereE is a finite set ofeventsandiiiiiHB is thehappened-before relationdefined overE[5].

We assume that an execution consists of a fixed number of processes, each of which performs a sequence of

events. We distinguish between two types of events,computationandsynchronization. A computation event sim-

ply represents all computation performed in a process between synchronization operations.A synchronization

event is an execution instance of a send or receive operation (we assume send and receive are the only types of

synchronization operations).We model message passing as occurring overlogical channels, and assume that each

send or receive evente specifies a set of logical channels (denotedSEND(e) or RECEIVE(e), respectively) over

which it operates. For a send evente, identical copies of the message are sent over each channel inSEND(e). For

a receive evente, a single message is received over any channel inRECEIVE(e) (and this channel is nondetermin-

istically chosen if more than one channel has a message available).Without loss of generality, we assume that any

message sent over a channel is received by exactly one receive event (all messages are eventually received).Mod-

eling message passing with logical channels is very general; any message-passing scheme (such as ports, mailbox-

es, or links) can be represented.

The happened-before relation,iiiiiHB , shows the relative order in which events execute and how they poten-

tially affect one another[5]. This relation is defined as the irreflexive transitive closure of the union of two other

relations:iiiiiHB = (iiiiiXO ∪ iiiiiM)+. The iiiiiXO relation shows the order in which events in the same process execute.

The i th event in any processp (denotedep,i) always executes before thei + 1st event:ep,i iiiiiXO ep,i+1. TheiiiiiM rela-

tion shows the order in which messages are delivered:a iiiiiM b means thata sent a message thatb received (we al-

so writea iiiiiM b to denote the messagea sent). Aneventa is said to happen before an eventb iff a could affect b

because they belong to the same process or because a sequence of messages was sent froma (or a following event)

to b (or a preceding event).

3.2. Representing the Potential Behavior

Races cause nondeterminacy, meaning that a program execution different from the actual executioncould

haveoccurred. Thesecond part of our model characterizes a set of such alternative executions.We call an execu-

tion of the program that had the potential of occurring afeasibleprogram execution, denotedP′ = 〈E′, iiiiiHB ' 〉 (and

when discussing feasible executions we implicitly assume that the input is fixed).Below we define a set of feasi-

ble executions appropriate for defining what we mean by a race.

First, we consider where a race might have allowed the execution to differ from what actually occurred.The

point at which the actual execution could have differed is always a receive event at which either of two (or more)

messagescould havearrived (aracing receive event).As a mechanism to determine if a given event,r , is a racing

receive, we consider whether it is possible to construct afrontier across the actual program executionP in the fol-

4

lowing way. A frontier divides the eventsE into two sets: those before the frontier and those after the frontier

(Figure 2 shows an example frontier just above eventsa, r , and c). A receive eventr is a racing receive iff we can

construct a frontier where

(1) thereceive eventr is just after the frontier (such as in Figure 2),

(2) twosend events are just after the frontier (e.g., eventsa andc in Figure 2) and they each send over at least

one channel inRECEIVE(r), and

(3) all receive events before the frontier also have their senders before the frontier:

for all receive eventsy before the frontier,x iiiiiM y ⇒ x is also before the frontier.

If such a frontier exists, thenr could have accepted either of the messages in condition (2). Condition (2) states

that the senders must send on a channel over which the receive is accepting messages.Condition (3) is required

for the frontier to be aconsistent cut[1], which means that it represents a state at which all processes could have si-

multaneously arrived.Being able to draw a frontier means that the send eventscould haveexecuted at the same

time (thus sending messages that are simultaneously in the network), and that the unpredictability of message la-

tencies could have allowed either message to arrive atr first. Forexample, the frontier in Figure 2 means that the

messages sent bya andc could have been in flight simultaneously, so the message sent byc could have arrived at

r first (Figure 2b).

Next, we define a setF of feasible executions by considering all the frontiers that exist in the actual program

executionP. For each possible frontierf , a program executionP′ f is in this set if it is identical toP up to the

frontier, and then executes the send and receive events just after the frontier. Including all such executions in the

set shows all the possible ways in which different messages could have been delivered to the receive event just af-

ter each frontier. Intuitively, this set shows us where inP nondeterminacy is introduced, and which alternative

message deliveries could have occurred at those points.

5

P1 P2 P3 P1 P2 P3

a c

d

a c

(a): actual execution, P (b): feasible execution, P’

Identical

Different

f

r
r

Frontier, f

Figure 2. (a) a frontier f in actual program execution, and (b) a feasible executionP f ′ in F.

They are identical up to the frontier, beyond which each delivers a different message tor .

Definition 3.1

Let P = 〈E, iiiiiHB 〉 be the actual program execution.Let f be any frontier that can be drawn acrossP as de-

scribed above, and letr be the receive event, anda,b be the send events, just after the frontier. Then

P
f
′ = 〈E′, iiiiiHB ' 〉 is a program execution where

(1) P′ f represents an execution the program could actually perform (i.e., a feasible execution),

(2) P′ f is identical toP up to the frontierf :

(a) eachprocess inP′ f performs the same events as the corresponding process inP before the frontier,

(b) P′ f exhibits the same message deliveries asP before the frontier:

for all a, b ∈ E′ wherea andb are before the frontier,a iiiiiM ' b ⇔ a iiiiiM b, and

(3) afterthe frontierP′ f contains onlya, b, and r ; and r receives the message sent by eithera or b.

We defineF to be the set of all such feasible executionsP′ f for all possible frontiersf .

Figure 2b illustrates an exampleP′ f that belongs toF. Note that the message sent bya is not received by an event

included inP′ f (since the only events we include after the frontier area, r , and c); P′ f is only meant to show that

6

the message sent byc could have been received byr .

3.3. Definitionof Race

If we look at a particular frontier, we will find a receive event that, during the actual executionP, could have

received any of several messages. It is these messages that we wish to define as racing, and we say that they are

involved in afrontier race. By considering all the possible frontiers, we define a binary relation over the messages

in P to denote all the frontier races that exist inP.

Definition 3.2

Let P be the actual program execution.We say thata iiiiiM r RacesWith ciiiiiM d if f a program execution

P
f
′ = 〈E′, iiiiiHB ' 〉 exists inF such thata, c, r ∈ E′ andc iiiiiM ' r (c ≠ a).

We are interested in frontier races because they show the messages that must be traced to provide a deter-

ministic replay that reproducesP. If we trace enough information about the frontier races inP so that during a re-

play P′ we can force these races to be resolved in the same order as inP, thenP′ will be a deterministic execution,

and therefore must be identical toP (since determinacy meansP′ has no way to differ fromP).

Theorem 1 (Replay Theorem)

A program execution that has no frontier races is deterministic.

Proofs of theorems appear in the appendix.

4. MessageTr acing Using On-the-fly Race Detection

We now present our trace and replay strategy. Our approach is to locate the frontier races on-the-fly and to

trace the second message involved in each detected race, instead of tracing every message. In this section we first

show how the frontier races can be detected and traced on-the-fly (we discuss an implementation in the next sec-

tion), and then discuss how to provide replay from the traces.We also prove that our algorithm is optimal in most

cases in the sense that it traces only one message in each race.

4.1. On-the-flyRace Detection and Tracing

We detect frontier races on-the-fly by performing a race check after each receive.By analyzing the execu-

tion order between the sender and a previous receive in the same process, we can determine whether the received

message races with another, and trace only a racing message.For simplicity, we assume that the receiving ends of

logical channels are associated with asingleprocess; e.g., messages to ports (but not mailboxes).Two messages

can then race only if they are received by the same process, simplifying the tracing algorithm. Below we discuss

handling more general (mailbox) communication.

7

ReceiveMsg from Channels:

1: Send= event that sentMsg;
2: PrevRecv= previous event (in the same process) such thatRECEIVE(PrevRecv) contains

the channel over whichMsgwas sent;
3: PrevSend= event that sent a message toPrevRecv;
4: if (PrevRecviiiiiiHB Send)
5: /* frontier race detected */
6: trace that a message was delivered fromSendto Recv;
7: /* else no frontier race yet detected */

(a)

P1 P2 P3

Send

PrevRecv

Recv

PrevSend

P1 P2 P3

Send

PrevRecv

Recv

PrevSend

(b) Frontier race (shaded message traced) (c) No frontier race (no messages traced)
(PrevRecviiiiiiHB Send) (PrevRecviiiiiHB Send)

Figure 3. (a) tracing algorithm, (b),(c) example race checks performed at boxed receive

Figure 3a shows our on-the-fly race detection and tracing algorithm, which is invoked after each receive.

Recall that a race exists when either of two messages could have arrived first at some receive. After a message is

received, this algorithm determines whether the message could have instead been received by a previous event in

the same process.To identify these situations, an earlier receive event is located (line 2) that specified a logical

channel over which the current message was sent.Both the message accepted by this earlier receive and the cur-

rent message are race candidates. As shown in Figure 3b, ifPrevRecvdid not happen before the sender of the cur-

rent message (Send), then a frontier race exists — a frontier can be drawn just beforePrevSend, Send, and Pre-

vRecv. Both the previous and current messages could have been simultaneously in transit and either could have

arrived first atPrevRecv. In this case the algorithm traces the second racing message.If insteadPrevRecvhap-

pened beforeSend(as shown in Figure 3c), then no race exists: no frontier can be drawn as above (the two mes-

sages could not have been simultaneously in transit), and the algorithm emits no trace.We prove in the appendix

(Theorem 2) that this algorithm tracesat leastone message in each frontier race.

8

The traces only need identify the sending and receiving events of the traced message. These events can be

identified by maintaining in each process a local counter (incremented after every synchronization operation) that

is used to assign serial numbers to events[6]. It suffices to trace the event serial numbers of the sender and receiv-

er and the process number of the sender. If one trace file is maintained for each process in the program execution,

the process number of the receiver is implicit and need not be recorded.

Because we assume that the receiving end of each logical channel is associated with a single process, to find

races it suffices (in line 2) to locate the previous event in thesameprocess that could have accepted the incoming

message. Inmailbox communication, a mailbox might have multiple simultaneous owners in different processes.

Two messages (to the same mailbox) can race even if they are received by different processes. Detecting these

races requires locating earlier events in any process that could have accepted the incoming message sent to the

mailbox. Suchevents can be located by modifying the mailbox mechanism to store the last event in each process

that received a message from the mailbox.Line 4 of the tracing algorithm can be modified to check the execution

order of each of these events against the sender.

4.2. Replay

During replay each frontier race must be resolved in the same way as during the original execution.Theo-

rem 1 proved that a replay free of frontier races is deterministic.To achieve a deterministic replay, only the deliv-

ery of the traced messages need be specially enforced; untraced messages will automatically arrive at the correct

receive event and need no special treatment.We provide replay by tagging and buffering the racing messages so

they can be accepted by receive events in the proper order. If necessary, the traced messages can be forced (at ad-

ditional cost) to also arrive in their original order, alleviating the need for buffering and ensuring that no buffer

overflows occur during replay.

To effect replay, the trace files must first be collated; a racing message is traced during execution when it is

received, but tagging the message during replay requires a special action when it issent. To produce the collated

trace file for processp, all traces of messages sent fromp must be collected (from the uncollated trace files) into a

single file and sorted by sender serial number. During replay, as in the original execution, serial numbers must be

assigned to events by maintaining a local counter that is incremented after every synchronization operation.This

counter is used to ensure that racing messages are accepted by the intended receive. Before each send, the serial

number of the next racing message (read from the trace file) is compared to the current value of the local counter.

Because the trace file is sorted, these numbers will match if the message about to be sent was originally involved

in a race. If the message to be sent originally raced, it is tagged with the serial number of its intended receive.If

the message did not race, it is not specially tagged.Receives are modified to accept tagged messages only if their

serial numbers match those on the tagged messages.Tagged messages with serial numbers that do not match are

buffered so they can be accepted by later receives. Such buffering is often normally performed by message-

passing systems that accept asynchronous messages. Untagged messages are accepted as usual.

9

The above strategy ensures that each message isreceivedby the correct event, but does not guarantee that

messagesarrive at a process in the same order as during the original execution. Racing messages can still arrive in

any order, and must be buffered so that they can be received in the correct order. Buffering is normally not a prob-

lem unless buffer space is limited.Buffer overflows may occur during replay that did not originally occur. To

guarantee that no overflows occur, we can reproduce the original message arrival order by introducingcontrol

messages during replay. When a messagea iiiiiM b races with a messagec iiiiiM d, a control message from a new

send (added by the replay system) just afterb to a new receive just beforec ensures thatc iiiiiM d is not sent untila

iiiiiM b has been received. Figure 4 shows an example (x iiiiiM y is the control message).

The control messages can be passed over any logical channel that exists between the two processes.They

introduce orderings that remove all frontier races between user (i.e., non-control) messages.As a result, user mes-

sages will be delivered to each process in exactly the same order as during the original execution.In addition, at

most one user message will ever be in transit over a channel2, so each channel only need buffer at most one user

message. Thecontrol messages may race among themselves, but such races are benign since control message

have no content and can be received in any order. In addition, channels need not be FIFO for this strategy to work,

as the control messages effectively force FIFO delivery (since at most one message is ever in transit over a chan-

P1 P2 P3 P1 P2 P3

a

b

c

d d

b

c

a

x

y

Figure 4. (a) a race betweena iiiiiM b and c iiiiiM d, and (b) the control messagex iiiiiM y added for replay

2 A simple argument shows this: For a contradiction, assume that two messagesa iiiiiM r1 andb iiiiiM r2 are both simultaneously in transit

over some channel. The control messages that prevent these messages from racing cause eitherr1 iiiiiM b or r2 iiiiiM a. But this means that one

of the messages is receivedbeforethe other is sent. Therefore they cannot be simultaneously in transit.

10

nel). Thus,at most one control message can ever be in transit from a process at any time, and thus at mostP − 1

control messages (whereP is the number of processes) will ever need to be buffered over any channel. If enough

buffer space is reserved for this many control messages (which are small), buffer overflows will never occur dur-

ing replay. However, because control messages introduce additional orderings that were not present during the

original execution, they can reduce the amount of parallelism achievable during replay, and should only be used if

buffer overflow is otherwise a problem.

4.3. Optimal Message Tracing

We now show one common case where our tracing algorithm isoptimal. Since something must be traced

about each racing message, we consider an optimal trace to be one whereonly one message in each race is traced

(if any fewer messages were traced, there would be some untraced race that would cause replay to be nondetermin-

istic). We characterize when the traces are optimal and present example executions for which optimal and non-

optimal traces are generated. As shown later, even when non-optimal traces are recorded, they are usually small.

Our tracing algorithm traces only one message of each race if each message is either involved in only one

race, or if messages participate in multiple races and the races aretransitive. Transitive races often occur when re-

ceive operations specify either a single channel over which to accept a message, orall channels, instead of a subset

of channels.Theorem 4 (in the appendix) proves that on executions for which theRacesWithrelation is transitive

(see Definition 3.2), our tracing algorithm is optimal. Figure 5a illustrates such an execution.Because all three re-

ceive events could have accepted messages from any channel, all three messages,a iiiiiM b, c iiiiiM d, and e iiiiiM f ,

race with each other. The optimal trace consists of recording any two of the three messages (such as the two shad-

ed messages): without tracing these messages, replay cannot ensure that all three messages are delivered to the cor-

rect event. In this case, our algorithm traces the last two messages, which is an optimal trace.

Figure 5b shows an execution with non-transitive races; the first receive can accept messages only from pro-

cesses 1 and 3, the second receive from processes 3 and 4, and the last receive from process 4. Because the second

message could have been accepted by the first receive, the first two messages race.Similarly, because the third

message could have been accepted by the second receive, the last two messages race.However, because the last

message could not have been received by the first receive (it only accepts messages from processes 1 and 3), the

first and last messages donot race. Theoptimal trace thus consists of recordingonly the second message: if replay

ensures that the second message is delivered to the second receive operation, the other two messages will automat-

ically arrive at the correct events (no other receives will accept them). Our tracing algorithm would trace the last

two messages, which is not optimal.

5. Implementationand Experimental Results

We now discuss experiences with our trace and replay strategy. We first discuss an implementation of our

tracing algorithm based on appendingvector timestampsonto user messages. These timestamps provide informa-

11

P1 P2 P3 P4

Recv (ANY)

Recv (ANY)

Recv (ANY)

a
b

d

f

c

e

P1 P2 P3 P4

Recv (1,3)

Recv (3,4)

Recv (4)

a
b

c

e
d

f

each message races with all others
(a): Transitive races (b): Non−transitive races

first and second messages race

second and third messages race

first and third messages do not race

Figure 5. (a) Transitive races, (b) non-transitive races: shaded messages show the optimal trace

(tracing algorithm would trace the last two messages)

tion about theiiiiiHB relation needed to perform on-the-fly race checks.We then discuss experiments performed on a

collection of message-passing programs on a 64-node Thinking Machines CM-5 and a 32-node Intel iPSC/2 hy-

percube. Theseexperiments show that only 0− 19% of the messages in these programs were traced, and in all but

one case the optimal trace was generated.In addition, the small traces completely alleviated tracing bottlenecks

that plague traditional schemes which trace every message.These results suggest that our trace and replay tech-

nique is very effective in practice, producing small traces with low execution-time overhead, providing a new

technique to debug even long-running programs.We end by discussing how tracing overhead can perturb the exe-

cution, possibly causing behavior different than an untraced execution.

5.1. Implementation

The tracing algorithm presented in Section 4 detects races by determining theiiiiiHB relation between the

sender of a message and a previous receive.Our implementation of this algorithm uses a standard method of

maintaining theiiiiiHB relation during execution by keeping avector timestampin each process.A vector timestamp

is a vector of lengthp (the number of processes) containing event serial numbers[3].These timestamps are main-

tained by appending them onto user messages and updating them after each receive operation.The tracing algo-

rithm detects races by comparing timestamp values and event serial numbers to determine whether the previous re-

ceive happened before the sender of the current message.

12

In our implementation, each process maintains both a local virtual clock,Clock, and a vector timestamp,

Timestamp. The local clock is used to assign serial numbers to events: events are numbered sequentially within a

process beginning with the number 1, and the clock is incremented after each operation. The timestamps are

maintained so that at any point during execution, thei th slot of the vector timestamp for processp (i.e., Times-

tamp[i]) equals the serial number of the last event in processi that happened before the most recent event in pro-

cessp. By definition, thepth slot equals the current value ofp’s local clock. To maintain these timestamps, each

process appends the current value of its timestamp onto the end of each message it sends.Upon receiving a mes-

sage, it updates its timestamp by computing the component-wise maximum with the timestamp appended to the in-

coming message.Using vector timestamps to track theiiiiiHB relation has the advantage that they work even if

channels are not FIFO, and they do not require processes to synchronize their clocks[11].

The race check in line 4 of our tracing algorithm (Figure 4) is performed easily using the timestamps.The

sender ’s timestamp (which is appended to the incoming message) is compared to the serial number of the previous

receive to determine if the receive happened before the sender. The value of thepth slot of the sender’s timestamp

equals the serial number of the most recent event in processp that happened before the sender. If the serial num-

ber of the previous receive is greater than this value, then the previous receive did not happen before the sender,

and a frontier race exists.

5.2. ExperimentalResults

We implemented our tracing algorithm on two message-passing parallel machines: a 64-node Thinking Ma-

chines CM-5 and a 32-node Intel iPSC/2 hypercube. On each machine, two instrumented versions of the message-

passing library were created. One version uses the traditional approach of tracing every message sent during exe-

cution, and the other version uses our tracing algorithm to trace only racing messages.We analyzed a collection of

message-passing programs obtained from colleagues and measured two quantities. First, the percentage of mes-

sages that race was recorded.This percentage shows the trace size reduction obtained by our race-based tracing

strategy. Second, the increase in execution time of both the traditional approach of tracing every message and our

approach of tracing only racing messages was measured.These overheads show whether the cost of performing

race checks outweighs the time savings obtained by not tracing non-racing messages.We found that often only

0 − 2% of the total messages were traced, and in cases where the execution-time overhead of tracing every mes-

sage is high, race-based tracing is an order of magnitude faster.

Table 1 shows the results of our experiments on six programs.det computes the determinant of a matrix,

and was run on a randomly generated 100×100 matrix. line computes the intersections of a collection of line seg-

ments, and was run on 1000 randomly generated segments.meshcomputes finite differences over a grid to solve a

differential equation, and was run on a 300×300 grid. mult multiplies two matrices, and was run on two randomly

generated 100×100 matrices.sysuses Gaussian elimination to solve a linear system of equations, and was run on a

13

Program Messages Messages %of Optimal Run-time Overhead
Sent Traced Trace for tracing for tracing

all msgs racing msgs

det‡ 4713 63 (1%) optimal 568% 8%

line‡ 31 0 (0%) optimal 0.3% 8%

mesh‡ 10210 1392 (14%) optimal 28% 14%

mult‡ 1120 0 (0%) optimal 15% 0.1%

sys‡ 9424 332 (2%) optimal 561% 14%

tycho† 1791 412 (19%) within − −
46%

† 64-node Thinking Machines CM-5
‡ 32-node Intel iPSC/2

Table 1. Results of message tracing

system of 300 randomly generated (linearly independent) equations.tycho is a cache simulator, and was run on a

10 MByte address trace.

Our first experimental result pertains to trace sizes: In two programs (detandsys), only 1− 2% of the mes-

sages were traced — a two order of magnitude reduction over tracing every message. In two programs (line,

mult), noneof the messages raced, and no traces at all were generated.Executions of these programs (on the given

input) are guaranteed to be reproduced automatically; nothing special need be done during replay. In two pro-

grams (mesh, tycho), 14− 19% of the messages were traced.These cases represent programs that were designed

to be highly internally nondeterministic (although their final results are deterministic); they use some form of a

first-come first-served worker paradigm. Even in such cases, the number of racing messages was rather low. In

five of the six programs the optimal trace was generated (because the races were transitive, as discussed in Section

4.3). Inthe other program (tycho), the trace size was within 46% (or less) of optimal3. These results suggest that

our tracing strategy is effective, tracing as few as 0− 2% of the messages, and no more than 19% of the messages

3 We derived this quantity by computing a lower bound on the optimal trace size. As shown in the proof of Theorem 3 (in Appendix A),

computing an optimal trace is equivalent to computing a minimal vertex cover of a graph.To determine how the recorded trace size compares

to the optimal trace, we used graph matching to estimate the optimal size to within a factor of two.For tycho, the recorded trace size wasno

morethan 46% larger than optimal. Determining whether it was actually optimal would require computing a minimal vertex cover, which is an

intractable problem in general.

14

even in programs that are highly nondeterministic.In addition, our tracing algorithm generated optimal traces for

most of the test programs, and even when non-optimal traces were generated, they were small.

Our second result pertains to the execution-time overhead incurred by our tracing strategy. To assess this

overhead, we analyzed three versions of each program: the original (uninstrumented) program, an instrumented

version that traces every message, and an instrumented version that traces only racing messages. Each version of

every program was executed 10 times and the average execution times were computed.The last two columns of

Table 1 show the execution-time overhead incurred by tracing all messages and tracing only racing messages4.

Two programs (det and sys) suffered substantial slowdown (almost 600%) when using the traditional ap-

proach of tracing every message. These programs exhibited a high frequency of message operations.Tracing this

high traffic introduced a bottleneck, since many trace records needed to be written in a short time.In contrast, our

strategy of tracing only the racing messages reduced the tracing requirements to the point where the bottleneck

was completely alleviated (resulting in a slowdown of only 8− 14%). In the programs that had no racing mes-

sages (line, mult), the overhead of race-based tracing indicates the inherent cost of performing the on-the-fly race

checks. Thisoverhead shows that the cost of maintaining the vector timestamps and checking for races is low

(0.1-8%). Becauseline had low message-passing traffic, tracing every message was cheaper than maintaining the

timestamps. Inmult, longer messages were passed between nodes, making the incremental cost of appending

timestamps low. In both programs, tracing every message did not introduce a bottleneck, and both tracing strate-

gies had reasonable overheads.

5.3. PerturbationsCaused by Tracing

Although the overhead of our tracing strategy is low, it is non-zero. If the execution is nondeterministic

(contains races), this overhead can potentially perturb the actual execution enough for it to exhibit behavior differ-

ent than it would without tracing.Suchprobe effectis a drawback shared among all schemes that trace or monitor

nondeterministic programs. In the worst case it appears impossible to completely eliminate any probe effect. Our

test programs were very sensitive to variations in timing as they exhibited a different execution almost every time

they were run, even when not instrumented. For such programs, the probe effect is probably great, although it is

unclear if executions result that arecompletelydifferent than what would otherwise normally occur. In practice,

keeping the tracing overhead as low as possible can reduce the chance that such a perturbation will occur. Our

adaptive tracing strategy contributes to this goal.In addition, current work is exploring additional analyses that

can detect where in the execution the instrumentation may have changed the behavior. Dealing with the probe ef-

4 Because our CM-5 had not yet been equipped with I/O processors, overhead measurements for this machine were not reported.Our

implementation performed trace I/O by sending messages over the diagnostic network. The unusually high cost of this I/O makes the overhead

of tracing all messages several orders of magnitude higher than race-based tracing, making comparisons unrealistic.

15

fect in nondeterministic systems remains an issue of current research[9, 8].

6. Conclusions

In this paper we presented a trace and replay strategy for message-passing parallel programs that substantial-

ly reduces tracing overhead over past schemes. The small traces and low overhead produced allow even long-

running programs to be replayed that previously could not have been replayed in practice.This work provides a

new foundation on which efficient parallel-program debugging techniques can be built.We achieve these benefits

by making tracing decisions at run-time, instead of tracing every message (as earlier work proposes). Race checks

are performed after each receive operation to locate and trace those messages that introduce nondeterminacy. We

prove that our tracing strategy is optimal (in the sense that a minimal number of racing messages is traced) for

many programs which exhibit simple message patterns. Even when non-optimal traces are generated, experiments

show that the traces are kept small, and are one to two orders of magnitude smaller than traces of every message.

Although the primary applicaton of this work is replay, the on-the-fly tracing algorithm is also useful for di-

recting the programmer to the locations of races. When the programmer intends the execution to be completely

deterministic, but non-empty traces are generated, the traces can be perused to determine which messages (erro-

neously) raced.The traces can then be used to effect a replay where more detailed information about the races can

be collected.

Future work includes a more precise characterization of when our algorithm is optimal (e.g., transitive races

are sufficient for an optimal trace but not necessary). Better tracing strategies may be possible. By buffering more

information about recent messages, more informed tracing decisions might trace fewer races. By employing opti-

mizations for maintaining timestamps, the overhead of passing timestamps and performing race checks might also

be reduced.

References

[1] OzalpBabaoglu and Keith Marzullo, ‘‘Consistent Global States of Distributed Systems: Fundamental Con-
cepts and Mechanisms,’’Technical Report UBLCS-93-1, University of Bologna, (January 1993).

[2] R. Curtis and L. Wittie, ‘‘BugNet: A Debugging System for Parallel Programming Environments,’’ Proc. of
the 3rd Intl. Conf. on Dist. Computing Systems, pp. 394-399 (1982).

[3] C. J. Fidge, ‘‘Partial Orders for Parallel Debugging,’’ SIGPLAN/SIGOPS Workshop on Parallel and Dis-
tributed Debugging, pp. 183-194 Madison, WI, (May 1988). Also appears inSIGPLAN Notices24(1)
(January 1989).

[4] Arthur P. Goldberg, Ajei Gopal, Andy Lowry, and Rob Strom, ‘‘Restoring Consistent Global States of Dis-
tributed Computations,’’ ACM/ONR Workshop on Parallel and Distributed Debugging, pp. 144-154 Santa
Cruz, CA, (May 1991).

[5] Leslie Lamport, ‘‘Time, Clocks, and the Ordering of Events in a Distributed System,’’ CACM 21(7) pp.
558-565 (July 1978).

16

[6] ThomasJ. LeBlanc and John M. Mellor-Crummey, ‘‘Debugging Parallel Programs with Instant Replay,’’
IEEE Trans. on ComputersC-36(4) pp. 471-482 (April 1987).

[7] Eric Leu, Andre Schiper, and Abdelwahab Zramdini, ‘‘Efficient Execution Replay Technique for Distribut-
ed Memory Architectures,’’ 2nd European Distributed Memory Computing Conference, LNCS 487,
Springer-Verlag, Munich, (1991).

[8] JamesE. Lumpp, Jr., Julie A. Gannon, Mark S. Andersland, and Thomas L. Casavant, ‘‘A Technique for
Recovering from Software Instrumentation Intrusion in Message-Passing Systems,’’ Technical Report TR-
ECE-920817, University of Iowa Department of Electrical and Computer Engineering, (August 1992).

[9] Allen D. Malony and Daniel A. Reed, ‘‘Models for Performance Perturbation Analysis,’’ ACM/ONR Work-
shop on Parallel and Distributed Debugging, pp. 15-25 Santa Cruz, CA, (May 1991).

[10] BartonP. Miller and Jong-Deok Choi, ‘‘A Mechanism for Efficient Debugging of Parallel Programs,’’ SIG-
PLAN Conf. on Programming Language Design and Implementation, pp. 135-144 Atlanta, GA, (June
1988).

[11] ReinhardSchwarz and Friedemann Mattern, ‘‘Detecting Causal Relationships in Distributed Computations:
In Search of the Holy Grail,’’ Technical Report SFB124-15/92, Dept. of Computer Science, Univ. of Kaiser-
slautern, Kaiserslautern, Germany, (December 1992).

[12] Kuo-ChungTai and Sanjiv Ahuja, ‘‘Reproducible Testing of Communication Software,’’ IEEE COMPSAC
’87, pp. 331-337 (1987).

Appendix. Proofs of Theorems

Theorem 1 (Replay Theorem).

A program execution that has no frontier races is deterministic.

Proof. To establish a contradiction, assume that some program executionP = 〈E, iiiiiHB 〉 is nondeterministic but

free of frontier races.SinceP is nondeterministic, another execution of the program on the same input could pro-

duce a different execution,P′ = 〈E′, iiiiiHB ' 〉. P and P′ exhibit the same events and message deliveries up to some

point after which they differ. Let r be a receive event where they first differ. That is,x iiiiiHB y ⇔ x iiiiiHB ' y for all

eventsx, y wherex iiiiiHB r and y iiiiiHB r . Also lets1 ands2 be operations that send messages tor in P andP′: s1

iiiiiM r ands2 iiiiiM ' r . The messages sent bys1 ands2 in P must race becauseP′ meets the conditions in Definition

3.1 and thus belongs toF. The eventsx andy are all the events before the frontier, and s1, s2, and r are after the

frontier. But P containing a frontier race contradictions the assumption.Thus,P′ cannot be different thanP, im-

plying thatP is deterministic. QED

Theorem 2 (Tracing Theorem).

The tracing algorithm (Figure 3) tracesat leastone message in each frontier race.

Proof. We prove below that a message is traced by the algorithm when some predicate is true (Lemma 1), and

then prove that this predicate is true when a frontier race exists (Lemma 2). At least one message in each frontier

race is thus traced. QED

17

Lemma 1.

If two messages,SendiiiiiM Recvand PSendiiiiiM PRecv, exist such thatPRecviiiiiiHB Send ∧ PRecviiiiiXO

Recv ∧ SEND(Send) ∩ RECEIVE(PRecv) ≠ ∅ , then the tracing algorithm tracesSendiiiiiM Recv.

Proof. To establish a contradiction, assume that the above conditions hold but the algorithm does not traceSend

iiiiiM Recv. This message is not traced only if the algorithm finds that the previous receive,PrevRecv(located in

line 2), happened before the sender:PrevRecviiiiiHB Send. We must also havePRecviiiiiXO PrevRecv, otherwise the

algorithm would findPRecvas the previous receive. These orderings imply thatPRecviiiiiHB Send, which contra-

dicts the assumption thatPRecviiiiiiHB Send. QED

Lemma 2.

If PSend iiiiiM PRecv RacesWith Send iiiiiM Recv, then PRecv iiiiiiHB Send ∧ PRecv iiiiiXO

Recv ∧ SEND(Send) ∩ RECEIVE(PRecv) ≠ ∅ .

Proof. BecausePSendiiiiiM PRecv RacesWithSendiiiiiM Recv, there exists aP′ = 〈E′, iiiiiHB ' 〉 ∈ F such thatSend

iiiiiM ' PRecv (by Definition 3.2). We consider each term in the conjunctPRecv iiiiiiHB Send ∧ PRecv iiiiiXO

Recv ∧ SEND(Send) ∩ RECEIVE(PRecv) ≠ ∅ .

(1) To establish a contradiction, assume thatPRecviiiiiHB Send. In addition, by the definition ofF (part (3) of

Definition 3.1),SendiiiiiM ' PRecvimplies that∀ x ∈ E, x iiiiiHB Send ⇔ x iiiiiHB ' Send. Thus, if PRecviiiiiHB

Send, we must havePRecviiiiiHB ' Send, which contradicts the assumption thatSendiiiiiM ' PRecv.

(2) To establish a contradiction, assume thatRecviiiiiXO PRecv. Then,P′ cannot belong toF, since by its defi-

nition RecviiiiiXO PRecvimplies thatRecvis before the frontier and thusSendiiiiiM ' Recv(sinceSendiiiiiM

Recv), which contradicts the assumption thatSendiiiiiM ' PRecv.

(3) SinceSendiiiiiM ' PRecv, we clearly haveSEND(Send) ∩ RECEIVE(PRecv) ≠ ∅ . QED

Theorem 3 (Tracing Complexity Theorem).

Given a program execution,P = 〈E, iiiiiHB 〉, determining whether replay can be implemented by tracingk or

fewer messages is an NP-hard problem.

Proof. We use a reduction from the vertex cover problem, known to be NP-complete: given an undirected graph,

G = (V, E), doesG have a vertex cover withk or fewer vertices?A vertex cover is a subsetV′ of the vertices such

that every edge is connected to some vertex inV′. Given a graph,G, we reduce the problem of determining

whether it has a vertex cover withk or fewer vertices to the problem of determining whether a program execution,

P, can be replayed from a trace ofk or fewer messages.

From the graphG we constructP as follows. P contains two processes between which a message is sent for

each of then vertices inG. Process 1 inP containsn send operations, and process 2 containsn receive opera-

tions. Thei th send operation sends a null message over logical channeli , and thei th receive operation specifies

18

that it will receive over logical channeli . Additional channels are specified by the receive operations so that two

messages race iff an edge connects their corresponding nodes inG. For an edge from vertexi to vertex j , the i th

receive operation also specifies that it will receive over logical channelj . Because messages sent from process 1

may be delivered out of order, the i th and j th messages inP race iff an edge exists from vertexi to vertex j in G.

G has a vertex cover withk or fewer vertices iff P can be replayed from a trace ofk or fewer messages.As-

sume thatG has a vertex coverV′ with k vertices. Eachvertex inV′ corresponds to one of the messages sent by

P. P can be replayed from a trace of exactly these messages.Since two messages race iff an edge connects their

corresponding vertices, a vertex cover ensures that at least one message in each race is traced.By the Replay The-

orem (Theorem 2), a trace of these messages suffices for replay. Conversely, assume thatP can be replayed from a

traceT of k messages.T must contain at least one message in each frontier race, or else replay will not be fron-

tier-race-free. Sincetwo messages race inP if f an edge connects the corresponding vertices inG, the vertices cor-

responding to the messages inT are a vertex cover. QED

Theorem 4 (Optimality Theorem).

For any program execution,P = 〈E, iiiiiHB 〉, for which theRacesWithrelation is transitive, the tracing algo-

rithm (Figure 3) traces a minimal number of racing messages required to implement replay.

Proof. As in Theorem 3, we can view the tracing problem as equivalent to computing a vertex cover of a graph.

The program executionP defines a graphG: the messages inP define its vertices, and when two messages race an

edge is drawn between the corresponding vertices.As discussed in Theorem 3, any trace sufficient for replay must

cover the vertices ofG. When theRacesWithrelation is transitive,G becomes a forest of completely connected

graphs. Inthis case, a minimal vertex cover is easily computed.For each completely connected component ofn

vertices, a minimal vertex cover consists of anyn − 1 vertices. Whenraces are transitive, our tracing algorithm

traces all but one of the mutually racing messages (the first racing message is not traced), which corresponds to

such a minimal vertex cover. Thus, the minimal number of racing message is traced. QED

19

