The Frequency of Dynamic Pointer Referencesin “C” Programs

Barton P. Miller

Computer Sciences Department
University of Wisconsin
1210 W Dayton Street
Madison, Wsconsin 53706

1. Introduction

A collection of ‘C"’ programs vas measured for the number of dynamic references to poirithes.
number of dynamic references to pointers is presenteded with respect to the total number of instructions a
program &ecutes, giving the percentage of pointer referengesuted in a‘C’’ program. Themeasure-
ments were done on a VAX 11/780 running the BEgkUNIX operating system. The measured programs
were selected byxamining the most commonly run programs on the Computer Sciences Department
UNIX machines. The measurement process was performedargéps: (1) the dynamic counting of
pointer references, and (2) the counting of the total number of instruckenged by the program.

There are seral uses for the results presented in this report. One use was for a study weho
“ C” programs would run on a CPU that did not easily support 32 bit poinssh time a pointer as
used, a couple of instructions were needed to form the 32lbi.vIfthis occurred too frequentlihe pro-
grams would not run well on this hardve. Asecond use of these results was for estimating the cost of
monitoring pointer references in a debugging system. If pointer references occur too fretheetigt of
monitoring would be prohibite.

The remainder of this report includes three sections. Thes¢harprocess used to obtain the mea-
surements, the actual numerical results, and a short discussion of the results.

2. Measurement Process

Each programin each situation, required dvmeasurements. Theseere the dynamic count of
pointer references in &'’ program, and the count of the total number of instructioeswged by the pro-
gram.

The pointer references were measured by modifying ‘@ie ¢compiler to add instructions to the
object code to meter each reference to a poirtach reference to a pointer is accompanied by an incre-
ment of a variable totaling these references. When the program compietesam, that value is printed.

The code added to the program to meter pointer references has no effect on thexaoutohef the pro-

gram. Explicitpointer references, as well as implied references that causés’'tremmpiler to treat them

as pointer references (e.g., array references) were couh@tprogrammers often takadvantage of the

fact that arrays are actually implemented as point€tsés means that it not possible to change the way the

“ C” compiler implements its arrays (currently working programs may stop doing so), and that the implied
pointer references must be counted.

The runtime library must also be considered when measuring the programs. The programs were
measure both using a metered version of the runtime library (i.e., one that had been compiled with the mod-
ified compiler), as well as using the standard (unmetered) version of the.liBtasyis to determine what
percentage of pointer references are generated by the actual program, and that are caused by the runtime
library. It is possible to rewrite the runtime library in aaywto reduce the number of pointer references.

While there can be no control onvinaser programs use pointers, it is still possible teetmntrol over the
(standard) libraries that these programs use. If minimizing the number of pointer references is desirable,

then rewriting the standard library provides an additional tool.

The measurement of the total number of instructiocesiged by a program was done by adapting an
instruction measurement progranthe program being measured runs as a debugged task, weith e
instruction being trapped and examined (in this case, only counted). The program being measured is an
unchanged version (no pointer counting instructions included).

The following programs hee teen measured, in the situations described:

exivi
A UNIX screen or line editor This was run in three situations: (1) start-up the editor with no file,
and immediately quit; (2) use the editor to start\a fike, adding approximate 20 lines; and (3) edit-
ing a 450 line file, adding lines, deleting lines, doing global changes.

csh
The Berleley UNIX shell. This was run in tev Stuations: (1) start-up with input; and (2) a 20 line
script of typical UNIX commands, including programs to be run and internal shell commands.

sh
The Bourne shell (fromP&T). Thiswas run on input similar to that for csh.

“C” compiler
The UNIX “C’’ compiler. The main compiler phase was used. The preprocessor (mganson),
and the postprocessor (optimizer) were not measurew.situations were measured: (1) a short pro-
gram (size.c, 49 lines); (2) and a medium length program (Is.c, 663 lines).

fr7
The UNIX Fortran-77 compilerThe main compiler phase was used. The postprocessor (optimizer)
was ot measured.Two situations were measured: (1) a short program (27 lines); (2) and a medium
length program (270 lines).

nroff
The UNIX word processor for non-typesetvies. Thiswas run in two dtuations: (1) a small file
(17 lines, about 2/3 a page output); and (2) a medium file (178 lines, 5 1/2 pages output).

Is

The UNIX list file utility. This was run in four situations: (1) short format list on an empty directory;
(2) long format with sorting by werse time order on an empty directory; (3) short format list on an
large directory; and (4) long format with sorting byase time order on an large directory;

Note that the traced programs were not run ogelanputs. This is because the dynamic instruction
counting has a 100:Xecution cost &ctor It is possible to do a fe of these, bt it is not anticipated that is
will produce results that differ significantly from the situations measured.

3. Measurement Results

The data collected is presenteded abl€s 1 and 2 belo Table 1 includes, for each measurement
situation, the number of dynamic pointer references, the number of total instrugigonted, and the per
centage:

pointer references

- - x 100
instructions executed

Table 2 compares the dynamic pointer references for the programs run with and without the nagtered v
sion of the runtime libraryFor each measurement situation there is the pointer count with the library being
metered, pointer count without the library being metered, and the percentage:

pointer references w/metered library
pointer references w/o metered library
Fdlowing are notes on some of the programs that were tested.

x 100

The ex program makes heavy use of the library routines on startup, doing initialization and reading
the file. Adding and deleting text are relaty simple operations and do novolve much pointer manipu-
lation. More comple editing (i.e, global substitutions or use ofytdar expressions) uses pointers to a
much larger gtent. Thethird measurement situation uses the more caomgléing facilities, causing a
great usage of pointers.

The nroff program is a nightmare. It is a direct transliteration of an assembly program intG'the
programming language. The structuregkward, and there is little use of higher data types. Most data is
kept in static, global ariables. Therés a nev version of nrof coming from AT&T, but it will not change
in ary significant structuraldshion. Theesults included in this study will be applicable to ther mersion
of nroff.

Thels program has been recently rewritten to dependilyean the standard libraryAll of its 1/O,
and most of it handling of the directory structures esalise of the library routines. This accounts for the
large percentage of pointer references attributable to the runtime library.

The early version of the Bourne Shet) that we used makes no use of the runtime librétrgalls
the UNIX I/O routines directly (doing no buffering), and has all its own routines for string handling.

A bug in the UNIX lernel has pnented the obtaining of the total instruction count frosh and
Mail.

Tablel

Count of pointer references, total instructions executed, and percentage.
(includeslibrary routines)

Sample Pointer References Instructions Executed Per cent of
Pointer References

LS
Is (emptydirectory) 19 1573 1.2%
Is -tl (empty directory) 36 1914 1.9%
Is (bigdirectory) 12251 93894 13.0%
Is -tl (big directory) 25906 374692 6.9%
CC (CCOM)
size.c (49 lines) 11253 655569 1.7%
Is.c (663 lines) 132925 7040887 1.9%
SORT
10 line file 802 6305 12.7%
497 line file 655569 2085139 31.4%
MAIL
Simple (1 recip, short letter) 16374 ?? ?2.2%
Longer (5 recip, long letter) 46392 ?? ?.2%
EX
start-up, no file 189 39632 0.5%
new file, add lines 4587 167620 2.7%
existing file (418 lines) edit 95189 658117 14.5%
NROFF
test.rno (small test) 55372 4473185 1.2%
prop.rno (6 pages) 153867 9489267 1.6%
F77 (PASSL)
27 line program 14886 3040133 4.9%
270 line program 119496 2163606 5.5%
SH
trivial script 655 18717 3.5%
comple script 15697 304495 5.1%
CSH
trivial script 16320 ?? ?2.2%
comple script 34930 ?? ?2.72%

Table2

Count of pointer references, with and w/o library measured, and per centage.

Sample w/Metered Library w/oMetered Library Percent of References
Dueto Library

LS

Is (emptydirectory) 19 8 42.1%

Is -tl (empty directory) 36 17 47.2%

Is (bigdirectory) 12251 1050 8.6%

Is -tl (big directory) 25906 3240 12.5%

CC (CCOM)
49 line program 11253 9394 93.0%
663 line program 132925 110970 84.0%
MAIL

Simple (1 recip, short letter) 16374 13453 92.0%

Longer (5 recip, long letter) 46392 31777 68.5%
EX

start-up, no file 189 101 53.4%

new file, add lines 4587 4447 96.9%

old file (418 lines) edit 95189 95308 99.8%

NROFF

test.rno (small test) 55372 55353 99.0%

prop.rno (6 pages) 153867 153848 99.0%
Fr77

27 line program 14886 13898 94.0%

270 line program 119496 112659 93.0%
SH

trivial script 655 655 100.0%

comple script 15697 15697 100.0%
CSH

trivial script 16320 11663 60.5%

comple script 34930 23116 66.2%

