
Deconstruction Principles

The Deconstruction of Dyninst
Building new tools, exposing new features

Abstract

 Divide the complex problems of binary analysis and

instrumentation into simple, well-defined pieces

 Generalize prior special-purpose solutions

Extensible

 Allow users to add new functionality

 Export the results of analyses for use by other tools

Portable

 Hide platform-specific details

Promote sharing and reuse

 Small, well-defined components are easy to adopt

 Encourage competing alternative approaches

Status

 SymtabAPI supports PE/PDB, ELF/DWARF

 InstructionAPI supports x86, x86-64, PowerPC

 ParseAPI supports x86, x86-64, PowerPC

 StackwalkAPI supports Linux, Windows, BlueGene,

FreeBSD

 ProcControlAPI supports Linux, Windows, BlueGene,

FreeBSD

 DataflowAPI beta supports x86, x86-64, PowerPC

DataflowAPI

 Collection of dataflow analyses

 Includes stack depth, liveness,

slicing, and symbolic evaluation

Instruction

Semantics

 Adds semantic information to

the InstructionAPI

representation

 Provides a foundation for

constant propagation, partial

evaluation, execution

simulation

PatchAPI

 Specifies where to instrument

a binary via instrumentation

point abstraction

 Splices new code into a binary

ProcControlAPI

 Controls processes: start, stop,

spawn, kill

 Monitors processes: fork/exec,

library load/unload, signals

 Modifies processes: poke

code/data into address space

InstructionAPI

 Decodes machine instructions to an

abstract representation

 Represents operand address

calculations

 Provides register liveness and

control flow target information

ParseAPI

 Performs control flow analysis

 Builds control flow graph (CFG) and call graph

for other components to use

Code Generator

 Converts architecture-

independent abstract syntax tree

(AST) representation to machine

language

DyninstAPI

StackwalkAPI

 Generates call stack traces in both

1st-party and 3rd-party modes

 Understands frameless functions,

signal handlers, and more

 Extensible to new frame layouts,

such as instrumentation

SymtabAPI

 Reads and updates symbol tables, debug

information, dynamic linkage information,

exception information, and type information

 Supports multiple file formats across multiple

platforms

