
Security through Runtime Relocation
Function Relocation in Edited Binaries

Fully Relocatable Binaries

 Executables work as a whole

• Changing relative distances break execution

 Solution: Rewrite executables to be more relocatable

• Store the start address of function on stack

• Rewrite instructions to use that address and a

constant offset

 Create a table to store function locations

• Calls use stored address in the table

Secure Executables

 Attacks will fail even if return address can

be written

 Exact location of function is unknown

 Attacks may even fail when the address is

somehow obtained

 Target function might be relocated before

the attack

If I know where a critical

function is located, I can

exploit a vulnerability and

execute any code I want!

I will relocate functions

during execution, so

you will not be able to

find critical functions!

Return-to-libc Attack

 Purpose

• Jump (‘return’) to a critical function to execute

malicious code

 Requirements

 A vulnerability such as a possible buffer overflow

 Knowledge of the location of a critical function

 Method

• Overflow the buffer to overwrite the return address

stored on stack

• Execution will ‘return’ to address written to stack

foo() {

 prologue

 …

 …

 ip-based inst.

 …

 …

 function call

 …

 …

 table-based

jump

 …

 …

 epilogue

}

Save current function

address on stack

Use saved function

address and an offset

Call functions through

a function table

Use saved function

address and an offset

Reclaim used space,

adjust stack pointer

