Paradyn Parallel Performance Tools

User’s Guide

Release 4.1
April 2004

Paradyn Project

Computer Sciences Department
University of Wisconsin
Madison, Wl 53706-1685
paradyn@s. wi sc. edu

User’s Guide 4/13/04

Table of Contents Page i

IR © 1Y = 1 S 1-1.......
1.1 Release NOteSEUSION 4.1).........cccoiiiiiiiiiiiiiee e =2...
1.2 Release NOteS @USION 4.0)......ccooeiiiiiiiiiiiiiiieee e =2...
1.3 Release NOtES @VSION 3.3)......ccooiiiiiiiiiiiiiiiiiieie e 2.
1.4 Release NOtES QUSION 3.2).......cccciiiiiiieiiiiiiees e e e e e 1-3...
1.5 Release NOtES EVUSION 3.1).....cccoiiiiiiiiiiiiiiiiiirrr e -4...
1.6 Release NoteS @rSioN 3.0)........cooiiiiiiiiiiiiiiiiiiie e 1-4...
1.7 Supported hardare and softare platforms.............cccceeeiiiiiiiiiiccccceeee e, 1-6.
1.8 Currently Unsupported FEatUreS.........cooiiiiiiiiiiiiiiiiiiiiee e 1-6..
1.9 Other documentation: ManUALS..............ceiiiiiiieee e e e e e 1-7...
1.10 Other documentation:€Ehnical papers.........cccovvvvviiiiiiiiiiiiie e 1-7.
1.11 Contacting the &adyn d@elOPerS........ccooviiii i 1-8..

2 RUNNING RIFAAYN. ...ttt a e e e e e e e e e e e e e eeeeeennnnes 2:1......
2.1 OVErVIAN Of M@JOr STEPS .. .uuuuuiitiiiiiiiiiiiiiete e e e e e e e e e e e e e r e e e e e e e aeeeas 2:1....
2.2 Setting up Bradyn and thedadyn daemons..........ccccooeeeeeiiiiiieeeeiiiiii, 2-1

2.2.1 Paradyn emironment\ariables............cccoiiiiiiiii 2-1.
2.2.2 Overriding Raradyns defult ToNtS...........ceevvviiiiiiiiiiiiie, 2:4.
2.3 Preparing your application programl........ccccceeeeeeeeeeeeeeeeeeeeiiiceee e e e e e 2:5..
2.3.1 Generation of dalg information (all platforms)...............cceevveiinnnns 2-5
2.3.2 Including CodeVew dehug info in the gecutable (Whdows)............. 2-5
2.4 RUNNING RIAAYN.ot e e e e e e e 2:6.....
2.5 Running applications WithdPadyn............coooiiiiiiiiiiiiiiiii e 2:1..
2.5.1 DefiNiNg @ NB PrOCESS......cettiiiiiiiaaeeeeeiii i e e e 2-7...
2.5.2 Attaching tO @ PrOCESS........ccceeiiiiiieeeiree e e 2:9...
2.6 ArChiteCtUral ISSUBSo s 2-11..
2.6.1 Common Platforms.........ccooviiiiiiiiiiere e 2:11.
2.6.2 MPL o 2:12...
2.6.3 MiCrosSoft WINAOWScoooiiiiiiiieieeiee s 2:12.
2.6.4 Multi-threaded...........ooovviiiiiiiiiiii e 2:13..

IR \Y = 1T B @0 o 70 MY, Y71 T [Y 3:1....

3.1 MaIN MENUDA ... e e e e e e e e e e e e e e 3-1.....
3. 11 FlE MENU ... 3-1....
31,2 SEUUP MENU ittt e e -1....
3.1.3 PRASE MENU...eiiiiiiiiiiiiieiee et e e e e 3-2....
3.1.4 ViSimMenU/ITIONoooiiiiiiiie e 3-2...
3. 15 HEIP MENU.....e e 3-2....

3.2 SHALUS INES..uiiiiiiieiiiiiiie ettt e e e e e e e e e e e e e e 3:3......

3.3 BUIONS ... ettt e et e e e e enaaans 3-3......

4 TUNADIE CONSLANIS. ... uuuiiiiiie et e e e e e e e e 4:1.....
g R @ V= = S 4-1......
4.2 User Tunable CONSIANTS......ccuiiiiiiiiiieee et 4:2....
4.3 Developer Tinable CoNStaNntS.........cooiviiiiiiiiiieeeeei e 4:2...

5 SElECHNG MBSOUICES.....cciiiiiiiiiiiiiiia ettt e e e e e e e e e e e e eeeeesbnnan s 5:1.....
5.1 Resources (The “WNere” AXIS).......ccuuuiiiiiiiiiiiiiiiiiiiiiiee et e e e e 5:-1..

User’'s Guide April 13, 2004 Release 4.0

Table of Contents Pageii

52 TheWhere AXISAISPIAY ..ot 5-3
5.3 How to select foci using the Where AXIScooveieieeriecie et 5-4
54 TheWhere AXIS GUIcoiiiiiiiiieeieseeieee ettt nne e 5-5
55 Call Graph displaycccooeeereeieieesise s 5-6
6 SEECHING MELMICS... .ottt ettt nb e e b e 6-1
6.1 HOW tO SEIECE MELNICS ..ot 6-1
6.2 MELINC DESCIIPLIONS ...ttt ettt sre et sb e e nnee e 6-2
A o g1 70 1T 00 Y SRRSO 7-1
7.1 SEAITING oottt e et bbb bttt e et b e renne s 7-1
A2 (o o] o] oo TS 7-2
8 PRIESES.... ettt ettt benreens 8-1
8.1 Starting @NEW PESE ...c.eoiiiiiiiieiee et 8-1
8.2 VisualizationS and PhaSEScccoiveiiiiieiiicie e eseesee st ete e e eee e nae e 8-1
8.3 The Performance Consultant and phasesccccccvveeveeieieesece e 8-1
9 Performance CONSUITANT..........couririeierieie et ens 9-1
9.1 TheW3Search MOCEl ..o e 9-1
0.1 1 ThEWRY AXIS oottt 9-2
9.1.2 TheSearCh Stralegycccccceeieeiieie e 9-3
9.2 Running the Performance CONSUItANTcccoveriininnenie e 9-4
9.21 The Performance Consultant Windowcccceeeveveeneeriesienseeneseeseeeees 9-4
922 Starting and stopping aSearchcccccevveceiieveccece e 9-5
9.23 The Search History Graph displayccceeereeneniinieeeee e 9-6
9.3 Interpreting the results of callgraph-based search ... 9-7
9.4 Interpreting the results of module-then-function searchccccoccevveieiicceenn, 9-8
9.5 Customizing the search ParameLErscccvererienieneee e 9-13
10 Standard ViSi MOAUIES...........oouiiiiiiiieee et ae e 10-1
10.1 Time HISOGram VIS ..c.coouiieirieniieiieieie ettt sttt snesre s 10-1
10.1. 1 FlE@MENU oottt 10-2
10.1.2 CUIMNVE IMENU ..ottt esiee ettt ste e sae e s eeesseesseeesaeesneeesseesaneesneesnns 10-2
10.1.3 Panning @and ZOOMINGcceeererrererereneeiesieseesiessessesseseesee s seesneseeas 10-2
10.2 BaArChart VISl .oeeceeeieieie st sttt s snenne s 10-4
10.2.1 Changing metrics and foci being Viewedccoceveriinenenie e 10-5
10.2.2 VIEBWING AEIA ...eoivereeriieiieieiere ettt s 10-5
(ORI = o 1S USSP 10-6
10.3. 1 ACHONS MENU ...ocvieniiiieiieesieeee sttt st et be e sae e sreese e e saesneesaeessesneens 10-7
10.3.2 VIBW IMENU ..ooiiiiieieeie e eeestee e ssee e aessaesseeaesseesseesesseessesneesseessesnenns 10-7
10.4 3D TEITAIN VIS cueeueeieiesieetesiesieeee e see st sttt stesbesbesbesbeese e e eensesbesaesrenrens 10-8
10.5 Viewing the application output diSPlayccccceveeieniineeieee e 10-9
11 EXPOrting Paradyn Data.........c.cooiriiiieeienieseesie et nae e 11-1
11.1 Saving Performance Daacccceierereriniineneeee e 11-1
11.1.1 Saving Performance Data From Front-Endc.ccceevieiicce e, 11-1
11.1.2 Saving Performance Data From the ViSIScccvveieriincnence e 11-3

User’'s Guide April 13, 2004 Release 4.0

Table of Contents Page iii

11.2 Sa/ing the WREIE AXIS......cooiiiiiiiiiie ettt 11-4..
11.3 Saving Performance Consultant Search Data............ccccoooeeeeeeiiiiiiiiieeiiiinnn, 11-4
12 Paradyn Configuration LANQUAGE..........uuuueiiiiiiieeeeeeeeeeeeeeeeeee e e e e e e e e e e e 12-1.
2 I NN L) = 1[0 12-1....
12.2 LeXICAl CONVENTIONS .. .ouiieiieii ettt e e e e e e e e e e e e e a e eaaeeeanss 12-1..
12.3 LanNQUAQJE SITUCTUIE.......iiiii ittt e et et e et e e e e e e e e e eaa s 12-2..
I D - T=T o (o] 0 L= 11 1[0 o T 12-3...
12.5 ProCeSS e iNItION....c.uuiiieiiiiii et e e e e e e e e e 12-4...
12.6 Tunable constant definition..............oeiiiiiiiiie e 12-5.
A A TS o L= 11111 o] o I 12-6...
I S ol 18 To (=30 [T a1 (o) 12:6...
12.9 Metric Description LanQUAagEe..........ccovvvvieieiiiiiiiiiiiiee e e e e eeeeee e 12-7.
12.9.1 Metric definitioN.......c.uiiuiii e 12-8.
12.9.2 VaAlADIES... oo 12-8...
12,0 3 Ty P ettt 12-9...
12.9.4 Predefined @ables. ... 12:10
12.9.5 RESOUICE lISES...ivniiiiiiii i e e aeas 12-11
I T o] 0) [= 1] | £ 12-12
12.9.7 MetriC defiNitiONS.......covuiiei e 12-13
12.9.8 MEtriC StAtEMENTS.......ieeiiieiieie et e e e e e raa e eans 12-15
12.9.9 MELriC EXPreSSIONS.......ccciiiiiieieeieiieee e e e e e e e e e e e as 1215
12.9.10 FUNCHON CAllS.....cuniii i 12:16
12.9.11 InStrumentation FEQUESTSuuuuriiiiiiiieieieee e 12-17
12.9.12 InStrumentation COAB........uuiiiiiiiiiiii et 12:17
12.9.13 Interaction of constraints and MetriCS........ccooovviiiiiiiiiiiiiieceieeeis 12-18
12.9.14 A complete BamPIeoeeeiiiiiiiie 12-:19

User’'s Guide April 13, 2004 Release 4.0

List of Figures

1 Overview

Figurel: Platforms on which Paradyn can monitor application processes................. 1-6

2 Running Paradyn

Figure2: Files needed to run Paradyf.........cccoooeiieeeiiiiiiiieieiices e e 2:2..
Figure3: Environment variables used when running Paradyn................cooeevvvvviiinnnnes 2:3
Figured: Starting Paradyml............eeeeiiiiiiiiiiiiieee e 2-7.....
Figure5: Defining a new application ProCESS...........uuuvuuiiiiiiieiieeeeeee e 2-7..
Figure6: Paradyn ready to run the applicatian.............coooeiiiiiiiiiiiiic e 2-8.
Figure7: Specifying a process to attach 10...........cooeeiiiiiiiiiiiiiii e 2:10
Figure8: Attach completed and application execution continuing...............cccceeeenn... 2:11
Figure9: Sample Makefile for WINAOWS..........ooooiiiiiiiiiiiiiiice e 2:12

3 Main Control window

Figurel0: Paradyn Main Control WINAOW............ccouiiiiiiiiiiiiiiiieee e 3-1..
4 Tunable Constants

Figurell: The Tunable Constants WiNdQW...........oooeeiiiiiiiiiiiiiiiiiiine e eeeeeeeaieeees 4:1..
Figurel2: Tunable Constants Descriptions Windaw..............cooovveiiiiiiviiiiiiiiiiieeeeeenen . 402
Figurel3: User-level Tunable ConStantsS..........cccccoeeeeiiiiiiiiieeeee e 4-3..
Figurel4: Developer-level Tunable Constants. Use at your own tiskl............ccccceeennn. 4:4

5 Selecting resources

Figurel5: Where AXIS WINGOW.........cooeuiiuiiiiiiiiiie e e e ee e e ettt e e e e e e e e e e eeeeennnenes 5:-1...
Figurel6: Showing all resources in the Where Axis display.........cccccovviiiiiiiiieiiiinnnnnn. 5-3
Figurel7: A single fOCUS SElECted........ccccoiieiiiiiieeec e 5-4...
Figurel8: Multiple fOCI SEIECHION.iiiiiii s 5-5...
Figurel9: Callgraph diSPlay........cccoeeiiiiiiiiiiiieiiiee e e e e e e e e 5:7....
6 Selecting metrics

Figure20: Metrics dialog DOX........coovviiiiiiiiiiii e 6-1....
Figure21l: Metrics dialog box with several metrics selected.............ceeeeeviiiiiiiiiiiiiinnnnd 6-2
Figure22: Metrics defined in Paradyn...........cooooiiiiiiiiiiiiiii e 6-3...
Figure23: Developer Mode Metrics defined in Paradyn............ccccooevviiiiiiiiiiiiiiiiiinee 67

7 Controlling visis

Figure24: Paradyn Main Control WINAOW............oooiiiiiiiiiiiiiiiiiiiieeee e 7-1..
Figure25: Start A Visualization MEeNU............ccoeeiiiiiiiiiiiiiiiiiiieeeee e eeeeeeeeeeeeeeneessn e
Figure26: Message box indicating instrumentation has been deferted....................... 4+

8 Phases

Figure27: Phase Table DiSPIaY........ccooeiiiiiiiiiiiiiiiie e 8:1....
Figure28: Time Histogram: Global Phase...........cccoovviiiiiiiiii e 8-2..
Figure29: Time Histogram: Local Phase (3)........coooviiiiiiiiiiiiiiiiiiieieeeeeee e 8-2..
9 Performance Consultant

FIQUrE30: The WY AXIS.....cooieeiiiiiiiiiiie et e e e e e e e e e e e e e e e e e e e as 9:2.....
Figure31l: A sample Performance Consultant WindOW.............couvuiiiiviiiiiiiiniieeeeeeeeeeeee 9-4
Figure32: The Performance Consultant’s search begins..............cccoooviiiiiiiiiiiiiiineee. 9-6

Tutorial April 13, 2004 Release 4.0

List of Figures

Figure 33: The Performance Consultant refines bottleneck to CPUboundcccccvenienene 9-8
Figure 34: Search History Graph tunable constants for saving screen spacecccccceveeveeee. 9-9
Figure35: The Performance Consultant refines bottleneck beyond CPUbound 9-10
Figure 36: The second set of Search History Graph refinementsccccocvevieiinencnennene 9-11
Figure 37: Fina Search History Graph bottleneck refinementcccocoevviieiicieiicceee 9-12
10 Standard vis modules

Figure38: Time Histogram with SEleCted CUIVEcccoeovieeiieece e 10-1
Figure39: Time Histogram with unsmoothed and hidden Curvescccooeverieieenenenne 10-3
Figure 40: Zoomed Time HiSOGIamccooeiiriiiininenieie et 10-3
Figure41l: Barchart visualization WiNAOWcccoceieeiieiieiiesicse et 10-4
Figure42: Barchart SNOWing total VAIUEScccoeiiiiiiiiiiieee e 10-5
Figure43: Table visualization WINAOWcoeviiirininineeiesiese s 10-6
Figure44: Table visualization showing short fOCUS NAMEScccceeveeveeieciese e 10-7
Figure45: Table visuaization with values shown to two significant digitsc.ccoeeenee 10-9
Figure 46: 3D Terrain VISUAIZBLIONccccceiueriiriiiienienieeeeee et s 10-9
Figure47: Application QULPUE WINGOWcceeieiieerieeieceesie et 10-10
11 Exporting Paradyn Data

Figure 48: EXPOrt dialog WINAOWccciieiiiiieiieie e sttt st sreenne e 11-1
Figure49: Performance Data File Header and Data FOrmatccoooeeveninninienieneenienne 11-2
Figure50: The Paradyn Main Window after saving performance data.cccccocvverienene 11-3
Figure51: Vis Menu to Export Paradyn Dataccccceevveeeeieeiiesie e eee e 11-3
Figure52: The Paradyn Main Window after saving resource NAMES.occeveeveereeereennnns 11-4
Figure 53: Format for exported search datain Shg.tXt.cccoviririiinineneee e 11-5
Figure54: Paradyn Main Window after saving Performance Consultant data. 11-5
12 Paradyn Configuration Language

Figure55: List Of MDL KEYWOITSc.ccieeiieieieeiiee e sttt sneenne e 12-2
Figure56: Predefined variables ..ot 12-10
Figure 57: MEIC IaDEIS. ...oeoeee s 12-14

Tutorial April 13, 2004 Release 4.0

Page 1-1

1 OVERVIEW

Paradynis a tool for measuringhe performanceof parallelanddistributed programsWhenrun
with Paradyn,instrumentations dynamicallyinsertedinto anexecutingapplicationprogramand
its performance is reported in real-timer&lyns features include:

* Run-timeprograminstrumentationyou do not have to modify your sourcecodeor usea spe-
cial compiler Paradyn directly instruments the binary image of your running program.

» PerformancealatavisualizationsParadyncurrently providesvisualizationsto presentperfor-
mance data in time-plots, bar graphs, and tables.

* Automatedsearchfor performancebottlenecks:Paradyns PerformanceConsultanthas a
well-defined notion of bottlenecks and directésdlyns instrumentation in search of them.

* Multi-platform support: Paradyn currently can measure programs running on Solaris
(SFARC), Linux (x86), Whdows 2000 and XP (x86), and AlX (RS6000).

» Paradyncanmeasurgrogramgunningon heterogeneousombination®of theabove systems.
e Support for MPI message-passing.

* The ability to monitor and display performancedata, and isolate performanceproblemsto
particular interals (“phases”) of progranxecution.

* An openinterfacefor defining newv performancemetrics:the Metric DescriptionLanguage
allows the advancedParadynuser/programmeto define new performancemetrics. These
metrics can be based on application specific performance data.

* An openinterfacefor addingnew run-timevisualizersandexternalanalysis:using Paradyns
Visilib, programmersaninterfacenew or existing displayroutinesto Paradynperformance
data, and &adyns measurement datapsrt capability supports analysis witkternal tools.

Paradyndiffers from mary performanceoolsin thatit candecidewhatperformancelatato
collectwhile the programis running.Whenyou selectsomeperformancemetricto be displayed
for somepart of your program,at that momentParadynwill insertthe necessarylatagathering
instrumentationinto your application program. This method allows you to have direct and
dynamic control wer the @erhead of data collection (so you dopéy for what you dom’use).

A tool basedon dynamicinstrumentatiorcancontrol instrumentatioroverheadanddatavol-
umewhile still beingableto collectinformationaboutthe time-varying behaior of long-running
comple application programs.

Dynamicinstrumentationomay seema bit unusuahtfirst. Whenyou (or the Performancé&€on-
sultant)arenot requestinga particularkind of performancelata,it is usuallynot beingcollected.
This meanghattheremaybeintervals of time for which you cannotdisplaydata:if you displaya
time-plot,therewill be gapsin the curves.Paradyntriesto keepyou informedof thesedetails,so
that you can use this information to your adtage.

Note: this manual containscolor figures with detail which may not be easyto distinguish
when printed/viered in gayscale

User’'s Guide April 13, 2004 Release 4.1

Page 1-2

1.1 Release notes (version 4.1)

Release 4.1 of the Paradyn Parallel Performance Tools is provided as both binary and source dis-
tributions, along with extensive documentation. This new release consolidates functionality intro-
duced with the preceding releases, incorporates fundamentally improved analysis and
instrumentation techniques, and generally enhances capabilities, performance and software engi-
neering.

e Support for parsing and handling stripped binaries on x86

» Support for instrumenting multi-threaded applications on Linux 2.6/x86 systems with NPTL
MRNet 1.0 with atest suite, Windows support, and Dynamic Filter Management

» Unified the daemons for multi-threaded and single-threaded applications

* Improved MPI support

» Improved handling of application fork and exec calls

» Performance improvements

* Paradyn front-end uses true Win32 threads on Windows and supports customized fonts

* Paradyn now usestcl version 8.4.0

* AIX 4.1 support has been dropped

1.2 Release notes (version 4.0)

Key improvements for Paradyn 4.0 include:

» Support for instrumenting multi-threaded applications on AlX and Solaris.

» Support for Performance Consultant searches of multi-threaded applications

» Initial support for PAPI library which can aid in finding memory bottlenecks

» Partial support for new PMAPI interface

» Support for handling application fork and exec calls

* Paradyn and Kernlnst now use same visualizations

» Enhanced histogram save functionality

* Improved support for using ssh for startup of monitored mpi applications

* Paradyn now usestcl version 8.3.4

» TheParadyn front-end is preemptively multithreaded, enabling it to run on MP workstations.
* The Paradyn runtime library and Dyninst runtime libraries are fully decoupled

1.3 Release notes (version 3.3)

Key improvements for Paradyn 3.3 include:
* can instrument many more application functions on the x86 and SPARC platforms
* now handle applications with multiple names for the same function

User’'s Guide April 13, 2004 Release 4.1

Page 1-3

» separate window to display application stderr/stdout output

» ability to export data from visualizations for off-line analysis

e optimization of instrumentation based on sharing of common subexpressions
* handle MPI applications that create communicators and tags at arapid rate

» CPU time can be based on hardware counters on Al X, if they're availables

» sampling of wall time has been made much more efficient for Al1X

* 64 bit data path now from data collection to main Paradyn process

» scalability improvements when aggregating sampling data

Platform changes and notes for Paradyn 3.3:

* glibcversons 2.1 and 2.2 are supported on Linux.

» MPI message passing is supported for MPICH 1.2.2 with the ch_p4 device.

» support for instrumenting multithreaded applications is deferred until the next minor release.
* Windows 2000 is now supported.

* IRIX (MIPS), Solaris (x86) and Tru64 (Alpha) are no longer supported by Paradyn. The last
release for these platforms was Release 3.2

» Paradyn 3.3 isthelast release for Linux 2.2, Solaris 7, and Windows NT 4.0.

1.4 Release notes (version 3.2)

Key improvements for Paradyn 3.2 include:
» support for high-resolution wall timers on Linux based on the TSC register

» support for high-resolution CPU timers on Linux when used with a kernel built with the
hrtime patch. (See the Paradyn I nstallation Guide for details about obtaining and installing
this patch.)

» support for shared objects on AIX

» support for high-resolution wall timers on Irix

» improved predicted and observed cost estimates on Linux and Solaris
* improved process control and Fortran support on Irix

» function relocation on x86: functions with tight instrumention points are now relocated and
expanded to avoid trap-based instrumentation

» improved x86 function parsing
* many performance improvements and bug fixes

Platform changes for Paradyn 3.2:

* The Paradyn daemon is now supported for sequential programson AlX 4.3
* PVM isno longer supported

User’'s Guide April 13, 2004 Release 4.1

Page 1-4

Paradyn 3.2 is the last release for Solaris 2.6

1.5 Release notes (version 3.1)

Key improvements for Bradyn 3.1 include:

preliminary supportfor applicationsrunningon Tru64 Unix (Alpha): “beta” versionsof the
Paradyn daemon and run-time library avaikable on request

morereliable bootstrappindfor both explicit processcreationandattachingto existing pro-
cesses) and handling of processes asfth&(), exec() and it()

supportfor x86 applicationswhich have their own signal handlers(which would otherwise
conflict with Raradyns use of signals for instrumentation and control on these platforms)

more flible static and dynamic instrumentation heagaaization
cleaner source ganization and easiemore configurableuld
mary performance impnements, bg-fixes and softare reisions.

1.6 Release notes (version 3.0)

New features for Bradyn 3.0 include:

supportfor Irix 6.5 (MIPS; N64 & N32 ABIs; Origin MPI), Linux 2.2 (x86) andnewer ver-
sions of Solaris

support for applications using MPICH 1.2.0 on Linux and Solaris platforms
support for Brtran applications on Irix and MIowsNT

supportfor multithreadedapplicationsand perthreadmetrics(currentlyonly Solaristhreads
on SFARC/Solaris througha separatdaradyndaemorandrun-timelibrary: seethe separate
I nstrumentation of Multithreaded Programs document.)

dynamic instrumentation and notification of dynamic function calls
an etensve suite of inclusie metrics (i.e., metrics which include called functions)

programcallgraphdisplay and alternatve callgraph-basedode hierarcly searchbasedon
retroactve (“catchup”)instrumentatiorexecutionfor currently-eecuting(on-stack)functions
and cheaper inclug metrics

reoganization of processes and threads under the Machine resource kierarch
execution measurement datepert capability to support analysis witkternal tools

multiple inferior instrumentatiorheaps,localizedto allow use of atomic single-instruction
instrumentation points on 8RC and MIPS.

system-call interruption and restart (Solaris)

instrumentation trigger guardsalable on SRRC, MIPS, RS6000 and x86 platforms
support for remote/wide-area application monitoring

shared-memory sampling westandard (i.e., added forildowsNT and AlX)

User’'s Guide April 13, 2004 Release 4.1

Page 1-5

* dynamic loading of Paradyn runtime library (libdyninstRl now standard on all platforms
(except AlX)

* runtime histogram (rthist) visi ported to Tk (like most other Paradyn visis and the main GUI)
e Paradyn GUI and visis ported to WindowsNT

» support for Microsoft CodeView debug format (WindowsNT)

* many performance improvements, bug-fixes and software re-engineering.

Further implementation details behind these features (and more) are available in the Paradyn
Dewlopers Guide

Paradyn releases attempt to make capabilities available as early as possible on a wide variety
of platforms, however, there are some limitations in the current version:

* Fortran and C++ application support is being improved on a number of platforms.

* CPU timers are being derived from virtual timers for more efficient management of large
groups of metric timers (such as those used for timing functions which are disabled and then
re-enabled during message-passing communication operations based on spin-waiting).

» Handling of collections of processes (on the same processor by a single Paradyn daemon) and
propagation of associated metrics to fork& exec’d processes are being improved, along with
the management of metrics defined on dynamic sets of processes. Support for applications
consisting of multiple executables (and distinct callgraphs/resources) is being improved.

» The automated search executed by the Performance Consultant is being streamlined/opti-
mized to avoid redundant instrumentation of nodes, and the callgraph-based version refined to
re-evaluate inclusively-exigent nodes with exclusive metrics to verify whether internal (non-
leaf) graph nodes are themselves exigent. The search from all such exclusively-exigent nodes
will then progress to consider other resource hierarchies.

» AIX application programs that are to be monitored using Paradyn need to be re-linked with
explicit code block markers and Paradyn’s run-time instrumentation library. This link step is
necessary because Paradyn isn't yet able to dynamically load its instrumentation library under
AlX, and the peculiar format of libraries makesit difficult to distinguish user and library mod-
ules. Details of this link step are described in Section 2.3. Instrumentation of dynamically-
linked librariesis not supported on AlX.

» The standard version of Paradyn cannot safely handle some threaded applications or applica-
tions that share code space as it currently does not know about threads. If you use a non-pre-
emptive thread package, Paradyn will still work; performance data can be attributed to the
Unix processes, but cannot be broken-down by thread. If you use any multiprocessing or pre-
emptive threading package, Paradyn’sinstrumentation is likely to misbehave (i.e., we make no
guarantees on what will happen). A separate Paradyn daemon and run-time library supporting
applications based on Solaris threads on SPARC is available: see the separate Instrumenta-
tion of Multithreaded Programslocument for further information.

» Paradyn currently uses 32-bit counters as the basis for some of its instrumentation. For very
frequent events, such as those triggered by hardware counters (such asinstruction counters or
memory reference counters), these 32-bit counters will overflow. Future releases will allow

User’'s Guide April 13, 2004 Release 4.1

Page 1-6

larger counters.

» Instrumentation and monitoring of 64-bit applications is not supported. 64-bit SPARC/Solaris
support is under development.

* Instrumentation metrics for 1/O are based on the Unix read() and write() system cals. If
you use read or write for socket operations, these will appear as I/0O. If you use other system
callsthat do file 1/0, these will not be accounted for.

Most (if not all) of these restrictions will be relaxed in an intermediate release or the next major
release of Paradyn.

1.7 Supported hardvare and softwae platforms

The Paradyn user interface can run and Paradyn can monitor application programs on any of the
types of workstations and parallel computers listed in Figure 1. Paradyn can also monitor applica-
tion program running on heterogeneous combinations of these platforms.

System Identifier Description
Sparc-sun-solaris2.8 Sun Solaris operating system version 8 on SPARC processors.
sparc-sun-solaris2.9 Sun Solaris operating system version 9 on SPARC processors.

1386-unknown-linux2.4 | Linux operating system with kernel version 2.4 on x86 processors.

1386-unknown-nt4.0 Microsoft Windows NT operating system version 4.0 on x86 pro-
cessors. This should work, but we no longer test on this platform.

1386-unknown-w2k Microsoft Windows 2000 operating system on x86 processors.

1386-unknown-winxp Microsoft Windows XP operating system version on x86 proces-
Sors.

rs6000-ibm-aix5.1 IBM AIX operating system version 5.1 running on RS6000 proces-
Sors.

rs6000-ibm-aix4.32 IBM AIX operating system version 4.3.3 on RS6000 processors.

This should work, but we no longer test on this platform.

Figure 1: Platforms on which Raradyn can monitor application processes

a. Power3-based AIX systemswill only function properly if APAR 1'Y 03550 has been applied. Thisis
detailed in the AIX installation notes, below.

Note the following qualifiers:

* MPI programs can only be run under the non-threaded POE environment on SP clusters, and
under MPICH 1.2.x on Linux and Solaris platforms. Additional support isin development.

1.8 Currently Unsupported Features

e exceptions

User’'s Guide April 13, 2004 Release 4.1

Page 1-7

* 64-bit applications fecept on IRIX and u64 UNIX)
» use of system() &ept on Linux)

1.9 Other documentation: Manuals
In addition to thidJser’s Guide the folloving documentation isvailable for Riradyn:

Installation Guide

The InstallationGuide describeshow to obtain Paradynvia anorymousftp andinstall it on
your system(s)It alsodescribeghe minimum operatingsystemandsystemsoftwareversion
numbers needed for compatibility with this releasearByn.

Tutorial

Thetutorial providesa step-by-stexampleof the useof Paradyn.It walks you throughthe
mainfeaturesof startinga programwith Paradyn displayingperformancevisualizationsand
usingthe PerformanceConsultantThetutorial is intendedto shav you mary of thecommon
andmostusefulfeatureshput is not a completedescriptionof Paradyns featuresThis manual
(theUser’s Guidg contains the complete description afré&dyn.

VisiLib Programmers Guide

Visilib is the standardAPI interfacefor external processeshat wantto collect performance
datafrom Paradyn.Paradynperformancevisualizations(Time Histogram,Bar Chart, Table

and3D Terrain)executeasseparat@rocessesjsingVisilib astheirinterfaceto Paradyn.This

document describes Wwao use V&ilib in order to deelop custom data visualizations.

MDL Programmer’s Guide

MDL programming hints andxamples for those wishing to write thewio metrics.

Dewlopers Guide

This is intendedfor thosewho wish to understandhe Paradynsourcecode—whetheto just
to browse it or to actually makchanges with the intent of relding Paradyn from scratch.

Instrumentation of Multithreaded Programs
Describesmplementatiorof instrumentatiorfor threadedporogramswith currentusageand
status information for usingaPadyn with applications on Solaris, AlX, and Linux 2.6.

1.10 Other documentation: Technical papers

Following is abibliograply of currentlyavailablepapersonthetechnologycontainedn or related
to Paradyn. These papers and others may be obtained frorardyR Project \@b home page.

1. “The Paradyn Parallel PerformanceMeasurementlools”, Barton P. Miller, Mark D. Callaghan,
JonatharM. Camille, Jefrey K. Hollingsworth, R. Bruce Irvin, KarenL. Karavanic, Krishna Kun-
chithapadamand Tia Newhall. IEEE Computer28, 11, (November1995). Specialissueon Parallel

User’'s Guide April 13, 2004 Release 4.1

10.

11.

12.

13.

14.

15.

Page 1-8

and Distriluted Processingobls.

“An Adaptive CostModel for ParallelPrograminstrumentation'Jefrey K. Hollingsworth andBarton
P. Miller. EuroPar'96 Confeence Lyon, France August1996.AppearsasLNCS1123 Vol.l, pp. 88-
97, SpringeiVerlag.

“Dynamic Programinstrumentatiorfor ScalablePerformanceéools”, Jefrey K. Hollingsworth, Bar-
ton P Miller, and Jon Cagjille. Scalable High Brformance Computing Can&Knoxville, May 1994.

“Dynamic Control of PerformanceéMonitoring on Large ScaleParallel Systems” Jefrey K. Holling-
sworth and Barton.MMiller. International Confeznce on Supeomputing Tokyo, July 19-23, 1993.

“The ParadynParallel Performanc&oolsandPVM”, BartonP. Miller, Jefrey K. Hollingsworth, and
Mark D. CallaghanEnvironmentsand Toolsfor Parallel Scientific Computing, J.J. Dongarraand
B. Tourancheau, eds., SIAM Press, 1994.

“Mapping PerformanceDatafor High-Level and Data Views of Parallel ProgramPerformance”R.
Bruce Irvin and Barton.BMiller. International Confon Suparomputing Philadelphia, May 1996.

“A Performancdool for High-Level Parallel Programmind-anguages”R. Brucelrvin andBartonP,
Miller. Programming Environments for Massively Parallel Distrib uted Systems K. M. Decker
and R. M. Rehmann editors, Birkhauserleg, pp. 299-314, 1994.

“Optimizing Array Distributionsin Data-Rurallel Programs” KrishnaKunchithapadanandBartonP.
Miller. 7th Workshop on Languges and Compileyrfor Rarallel Computing Ithaca, NY August 1994.

“Integratinga DebuggerandPerformancdool for Steering”,KrishnaKunchithapadanandBartonP.
Miller. Workshopon Dehbugging and PerformanceTuning for Parallel ComputingSystemsCapeCod,
Massachusetts, USA, October 1994.

“What to Draw? Whento Draw? An Essayon Parallel ProgramVisualization”,BartonP. Miller. Jour-
nal of Rarallel and Distrituted Computind.8, 2 (June 1993).

“Binary Wrapping:A Techniquefor InstrumentingObjectCode”, Jon Cagille andBartonP. Miller.
SIGPLAN Notice27, 6 (June 1992).

“Finding Bottleneckdn Large-scaleParallel Programs” Jefrey K. Hollingsworth, August1994.Uni-
versity of Wisconsin-Madison Computer Sciences DepartmenhTReport #1243 (Ph.D. Thesis).

“PerformanceMeasurementools for High-Level Parallel Programming-anguages”R. Brucelrvin,
October1995. University of Wisconsin-MadisonComputerScienceDepartmentTechnical Report
#1292 (Ph.D. Thesis).

“MDL: A LanguageandCompilerfor DynamicPrograminstrumentation”Jefrey K. Hollingsworth,
BartonP. Miller, MarceloJ. R. Goncgales,OscarNaim, ZhichenXu andLing Zheng.PACT’'97, San
Francisco, California, USA, Nember 1997.

“A Callgraph-base&earchStratayy for AutomatedPerformancdiagnosis, Harold W. Cain, Barton
P. Miller and Brian J. N. Wlie. EuroPar’2000, Munchen, German August 2000.

1.11 Contacting the Rradyn developers

Therearevariouswaysto getin touchwith us. We aregladto answerquestionsandappreciate
feedback.

e-mail: paradyn@s. wi sc. edu

This is our project e-mail address. Use this address for technical questions or requests.

User’'s Guide April 13, 2004 Release 4.1

Web:

FTP:

FAX:
Postal:

User’'s Guide

Page 1-9

http://ww. cs. w sc. edu/ ~par adyn

Thisis our home page. From this page, you can find out how to get a binary or source version
of Paradyn. Y ou can also get updates and news on the current rel ease of Paradyn.

ftp://grilled.cs.w sc.edu/ paradyn/

Thisis our ftp site. In the “paradyn” directory, you will find subdirectories containing the bi-
nary and source versions of the Paradyn release. Make sure to look at the README files!

+1-608-262-9777

Par adyn Proj ect

c/o Prof. Barton P. MIler
Conput er Sci ences Depart nent
Uni versity of Wsconsin
1210 W Dayton Street

Madi son, W 53706- 1685

U S A

April 13, 2004 Release 4.1

Page 2-1

2 RUNNING PARADYN

In this section, we describe the steps that you should follow to run Paradyn. First we give you an
overview of the mgor steps and then we explain each one in detail. For this section, we are
assuming that you have already installed Paradyn as documented in the I nstallation Guide.

2.1 Overview of major steps

To run Paradyn, follow the steps:

1. Set up Paradyn and daemons (Section 2.2): You need to specify the location of the Paradyn
executable and configuration files and some external libraries. You may also wish to override
the default fonts used in the Paradyn GUI.

2. Prepare your application program (Section 2.3): Generally Paradyn is able to handle unmodi-
fied executables, however, on some platforms you may need to re-link your application pro-
gram with Paradyn’s run-time dynamic instrumentation library.

3. Run Paradyn (Section 2.4): Paradyn has several options that you may use during execution,
such as adding a new process to your application. These options may be specified directly on
the command line or in a Paradyn configuration file for the application.

Sections 2.2 through 2.4 explain these steps in more detail.

2.2 Setting up Paradyn and the Paradyn daemons

Paradyn has two main parts: the Paradyn front-end and user interface (“paradyn”) and the Paradyn
daemons (“paradynd”), which are the agents that run on each remote host where your application
program is running. Paradyn contains the user interface that allows you to display performance
visualizations, use the Performance Consultant to find bottlenecks, start or stop your application,
and monitor the status of your application. The Paradyn daemons operate under the control of
Paradyn to monitor and instrument the application processes. Paradyn also uses configuration files
to specify details of Paradyn configuration, instrumentation and application programs. You must
have Tcl and Tk library filesinstalled to be able to use the Paradyn front-end. Also, a special RPC
package is required to use Paradyn on Windows systems.

For the details of installing Paradyn, its daemons, Tcl/Tk and other external software, refer to
the Paradyn I nstallation Guide. This section details settings for environment variables required
for Paradyn’s operation, and describes how to override the default fonts used by the Paradyn GUI.

2.2.1 Paradyn environment variables

After you have installed Paradyn, you need to specify the location of Paradyn’s executable and
configuration files. The files needed to run Paradyn are listed in Figure 2, along with explanations
of their use. The environment variables that are needed or hel pful when running Paradyn are listed
in Figure 3, along with a description of their use.

User’s Guide April 13, 2004 Release 4.1

Page 2-2

File

Use

par adyn
par adyn. exe

par adynd
par adynd. exe

par adyndMr

paradyn.rc

The executable that starts a Paradyn session and provides the main user
interface. There are versions for each supported platform and an appropri-
ate version should be placed in alocation that will be found by your shell’s
search path (or you can specify the full path nameto run it).

The executable for a Paradyn daemon. Versions exist for each of the sup-
ported target application environments, and an appropriate version should
be placed in a location that will be found by your shell’s search path (or
you can specify the full path name to runit).

The executable for the Paradyn daemon that handles monitoring multi-
threaded applications. Currently supported on AlX and Solaris.

Contains crucial information, such as metric and daemon definitions. The
following steps are used to try to find thisfile (in the order listed):

1. Look for thefile par adyn. r ¢ in the directory specified by the environ-
ment variable “PARADYN_ROOT” (i.e., $PARADYN_ROOT/ par adyn. r).

2. Look inyour current working directory for the file par adyn. rc.

. paradynrc In addition to par adyn. r ¢, Paradyn will also look in your account’s home
directory for a file named . par adynr ¢ (note the dightly different form).
Should it exist, thisfile is processed after, and in addition to, par adyn. rc.
Figure 2: Filesneeded to run Paradyn
User’s Guide April 13, 2004 Release 4.1

Page 2-3

Environment Variable

Use

PARADYN_ROOT

PARADYN_LI B

DYNI NSTAPI _RT_LI B

PARADYN LI B_MI

LD LI BRARY_PATH
(UNI X only)

Al XTHREAD_ SCOPE

Specifieghelocationof thepar adyn. r ¢ configuratiorfile. In source
codedistributionsof Paradyn,it is alsousedto locatetheroot of the
Paradyncodetree. (Not requiredif you are running Paradynfrom
your current vorking directory or from your home directory

Usedto specifythe Paradynrun-timeinstrumentatiorsharedobject
file (1i bparadynRT.so.1 or IibparadynRT.dll). The full path
name of this file must be specified. E.g.,

setenv PARADYN LI B /usr/home/ne/lib/libparadynRT. so. 1

Usedto specifythe Dyninstrun-timeinstrumentatiorsharedobject
file (Ii bdyni nst APl _RT.so.1 Or |ibdyninstAPlI _RT.dll). This
file is requiredfor usewith Paradyn.The full pathnameof this file
must be specified. E.g.,

set env DYNI NSTAPI _RT LI B /usr/ hore/ me/li b/

i bdyni nst APl _RT.so. 1

This ervironmentvariableis neededonly if paradyndMT the dae-
mon for monitoring multi-threadedapplications,is used.Used to
specify the Paradynrun-time instrumentatiorsharedobjectfile for
multi-threadedapplications(l i bpar adynMr. so. 1). The full path
name of this file must be specified. E.qg.,

set env /fusr/home/ me/lib/libpara-

dynMr. so. 1

PARADYN LI B_MT

Update this variable so that the directory that containsthe libp-
dthread.sdile is specifiedwhichis usedby thefront-end.On Linux,
updatesothatthe directorythat containsthe libdwarf.sofile (which
canberetrieved off of the releasewveb page)is specified.The libd-
warf.so file is used by theaRadyn daemon. E.g.,

setenv LD LI BRARY_PATH /usr/home/ ne/lib:/usr/home/li bd-
war f

Thisis needednly on AlX if paradyndMTis beingused.This envi-

(AIX ONLY) ronment ariable should be set to ‘'S’ on AlX.

TCL_LI BRARY Theseenvironmentvariablesspecifythe locationof the Tcl and Tk

TK_LI BRARY commandiles neededo implementthe basicTcl/Tk objecttypes.If
you have beenusinga currentinstalledversionof Tcl/Tk, you proba-
bly alreadyhave thesecorrectlyset.If not, seetheinstructionsin the
Paradyn I nstallation Guide for information on setting them.

LI BPATH Thisis needednly on AIX. This ervironmentvariablespecifieghe

(Al X ONLY) location of the fil@ i bDyni nst Text . a.

Figure 3: Environment variables used when running Paradyn
User’s Guide April 13, 2004 Release 4.1

Page 2-4

Environment Variable | Use

PARADYN_RSH This ervironment variable will specify the programto use when
startingdaemon®n remotehosts.The pcl file variable,remoteShell
is analternatve way to specifytheshellusedfor startingremotedae-
mons. er example, one might set it to ‘ssh’.

PD_TI MER_SHOW I NFO | This ervironmentvariableis not requiredto be defined.If this ervi-

ronment variable is set, Paradynwill display the time querying
methodit will beusingin thetermWn visi. For example,if Paradyn
Is queryingthe cputime with a methodthatusesa hardwarecountey
“Chosencputimerlevel: 1” will display If Paradynusesa software
basedime queryingmethodfor cputime, “Chosencputimer level:

2" will appear

Figure 3: Environment variables used when running Rradyn
2.2.2 Owerriding Paradyn’s default fonts

Paradyns graphicaluserinterface(GUI) usesontsthatmaynot be availableon all systemsr
be visually appealingto all users,so Paradynallows usersto specify alternatve fonts to use
insteadof its defaults. Alternative fonts are specifiedto Paradynusing Tk’s optionsdatabase.
(ParadynusesTk to implementits GUI.) Tk initializesits optionsdatabaselifferently depending
onthetype of system.On UNIX systems]k initializesits optionsdatabasdérom the X resource
databaseso alternatve Paradynfont specificationshouldbe addedto whatever file the systems
X installationusesto specify X resourcege.g., $HOVE/ . Xr esour ces). On Microsoft Windows
systems Tk addsthe contentsof the $HOVE/ . Xdef aul t s to its optionsdatabaseso specifications
for alternatve Raradyn fonts should be added to that file.

To specify an alternate font, add a line of the form:

resource_path.Font:font_specification

to the appropriateTk optionsdatabaseconfigurationfile. Like all Tk-basedapplications,each
graphicalresourcge.g.,button, menu,or label) canbeidentifiedwith a path.Similar to resource
pathsin the X Window System,eachcomponentn the pathcanbe eitherthe nameof a Tk GUI
componentlasssuchasMenu,Button,andLabel,or it canbethe nameof a particularinstanceof
a Tk GUI componentlass.Pathsarereadleft-to-right, with the outermostGUI componenspeci-
fied first in the path. Componentsn a pathareseparatedby a period‘.” or anasterisk*. If two
componentgareseparatethy aperiod(“x.y”), thefirstcomponen{“x”) istheimmediateparentof
theseconccomponen{®y”). Becausat is tediousto specifyall GUI componentin eachresource
path,the™’ indicateszeroor morecomponentsrenot specified For example,theresourceath
Par adyn* st at us. But t on namesall buttonsin all windows of the Paradynclass,but only if they
areimmediatelyenclosedy someothercomponentvhoseinstancenameis st at us. The subtle-
tiesof resourcepathsareoutsidethe scopeof this documentpecauseesourcegathsarespecified
the samewhetheron UNIX or Microsoft Windows systemsyve referthereaderto the X Window
System documentation for complete details.

User’s Guide April 13, 2004 Release 4.1

Page 2-5

The font specification can be given in Tk’s shorthand notation instead of the X Window Sys-
tem’s font naming scheme. For example, afont specification can be givenas“times 10 italic”

the reader to the Tk documentation for details.

In the Paradyn GUI, all top-level windows have the class Par adyn so that aternative fonts can
be specified easily that apply to all windows in the Paradyn GUI. Although we do not list the class
and instance names of all components of the Paradyn GUI here, alternative font specifications
similar to the following should suffice for most users:

Paradyn* Font: helvetica 10 roman
Paradyn* Button.Font: helvetica 10 bold roman
Paradyn* Menu.Font: helvetica 10 bold roman
Paradyn* M enubutton. Font: helvetica 10 bold roman
Paradyn* L abel.Font: helvetica 10 bold roman
Paradyn* Entry.Font: helvetica 10 roman
Paradyn* M essage.Font: helvetica 10 roman
Paradyn* Text.Font: helvetica 10 roman

2.3 Preparing your application program

On most platforms, Paradyn is able to instrument unmodified executable files (a. out or *. exe).
However, some platforms require preparation of executables, and Paradyn will benefit from the
inclusion of debug information on all platforms. This section details the application preparation
required or recommended for use with Paradyn. Additional platform-specific build and execution
details are documented in Section 2.6

2.3.1 Generation of debug information (all platforms)

Paradyn will benefit from access to debug information for the application under study, so we
recommend that executables be built to contain debug information if possible. For most compil-
ers, this means passing the -g compile flag to generate debugging information. For the Microsoft
Visua C++ compiler, use -Z7 or -Zi.

Note that often this does not require disabling any compiler optimizations, and while generat-
ing debug information may result in a slightly slower build and larger executable, there are no
execution performance implications.

2.3.2 Including CodeView debug info in the executable (Windows)

Windows presents a special case for Paradyn with respect to debug information. Recent ver-
sions of the Microsoft Visual C++ compiler, by default, place debug information in an external
“program database” file. These file are named with a.pdb extension. When debug information is
contained in an external file, Paradyn cannot determine the information it needs about the execut-
able. Therefore, Paradyn currently requires that executables on Windows be built so that the
debug information is included in the executable itself.

User’s Guide April 13, 2004 Release 4.1

Page 2-6

To ensure that debug information is appropriately placed in the executable file itself, pass the
“-debug - pdb: none” flags to the Microsoft linker when linking the executable. These flags
indicate that the linker should generate CodeView-format (also called “Microsoft style’) debug
information and place it in the executable rather than a separate PDB file.

2.4 Running Paradyn

At this point, your should be ready to run your application program with Paradyn. You start Para-
dyn by entering the following command at a command prompt*
% par adyn

Severa optional command line arguments can be used when invoking Paradyn:

e -f <pcl-configuration-fil ename>
specifies afile from where Paradyn can read configuration commands (see Section 12);

e -default_host <host nane>
specifies the default host where Paradyn should start an application when no host name is
given. (If the- def aul t _host option is not used, the default host is the local host.)

* -X <connect-filenanme>
specifies a file to which Paradyn daemon start-up information will be written, which may be
used by external programs to explicitly start Paradyn daemons on different hosts which will
connect to this Paradyn front-end. (Thisfileis created if it doesn’t already exist.)

» Paradyn should start running and display the Paradyn Main Control Window, shown in
Figure 4. Thiswindow has five menus, File, Setup, Phase, Visi, and Help . These menus allow
you to:

1. File: Inthis menu thereis an option to get information on how to start up a daemon (Daemon
start-up info) and an option to exit the program (Exit P aradyn.)

2. Setup: This menu has selections to allow you to describe a new application program to run
from scratch (Define a Process, described below) or attach to an already-running application
process (Attac h to a Process , below). In addition, you can bring up windows which allow you
to start the Performance Consultant (Performance Consultant , described in Section 9), change
Paradyn’s tunable constants (Tunable Constants Contr ol, described in Section 4), bring up the
call graph of the program (Call Graph), and view the WhereAxis (Where Axis).

3. Phase: start and define anew local phase for visualizations and analysis (see Section 8).
4. Visi: start visualizations of your application performance (see Section 7).
5. Help: get additional information about Paradyn.

Additionally, there are four buttons in this window: RUN, PAUSE, EXPORT and EXIT. RUN
and PAUSE are disabled when there is no application currently defined. These two buttons allow
you to run or stop execution of your application as you wish. EXPORT will open adialog offering
to save the data from current measurements to files for off-line analysis (see Section 11). Finally,

1. A command prompt is available under Windows from the “ Command Prompt” item under the Programs
submenu of the Start menu.

User’s Guide April 13, 2004 Release 4.1

Page 2-7

EXIT will exit Paradyn, terminating the application program if necessary, and end the session.

The Paradyn Main Control Window can contain several status lines. Each status line repre-
sents information about some part of Paradyn or your application. In the initial window, thereisa
status line labeled “UIM status’. This line shows the current state of Paradyn’s User Interface
Manager (“ready” in this case).

Paradyn Main Control |
ara
File Setap Phase Visi Help | v
UIM status : readn
EXPORT EXIT

Figure 4: Starting Paradyn

2.5 Running applications with Raradyn

There are two ways to give Paradyn an application program to monitor: defining a new process to
start, and attaching to an already-running process. These two methods are described below.

2.5.1 Defining a new pocess

One way to measure a program with Paradyn is to select the option Define A Process from
the SetUp menu. A new window appears, as shown in Figure 5.

Define A Process
User: I
Host: I
Directory: I
Daermon: 4 defd s Wnntd o mit o d + mpid
Command: I

ACCEPT I CANCEL I

Figure5: Defining a new application pocess

From this window, you can specify the following parameters:

1. User. Thisisyour login name on the host on which Paradyn will run your application process.
If you leave this field blank, the login will default to your current login name.

2. Host: Thisis the name of the host on which Paradyn will run your application. If you leave

User’s Guide April 13, 2004 Release 4.1

Page 2-8

this field blank, it will default to the hostspecifiedwith the - def aul t _host commandiine
optionto paradynr to the currenthost(the oneon which the Paradynfront-endis running),
if the option- def aul t _host is not used.

3. Directory: Paradynrunsparadyndandyour applicationasfollows. First, it performsaremote
login operationusingthe “User” and“Host” fields specifiedabove. The currentdirectory(on
the remotemachine)at this point is the root directory—notusually whereyour application
programresides.The “directory” entry box allows you to specify a directory to changeto
beforeexecutingthe commandspecifiedn the“Command”entrybox. Notethatthe pathname
givenis interpretednthefield namedn the“Host” field. For UNIX hosts theallowedsyntax
is familiar: the pathspecifiedmay startwith a slash(*/”) (specifyinganabsolutepathname,
startingfrom the file systemroot directory),or it may startwith atilde (“~”) followed by a
username(specifyinga pathnamerootedat the specifiedusers homedirectory).A tilde not
followed by a usernameis the sameasa tilde followed by the currentusername.For Win-
dows hosts,the pathmay startwith a drive letter, for example“d:\myprograms\bbbba”. Both
forward and backslashes are acceptedimddis paths.

4. Command: The commandthat will startthis instanceof your applicationprogram.If the
Directory entry hasbeenfilled in, the commands executedwith the currentdirectory setto
thespecifiedpath.If the Directoryentryis left blank,thenthecommandwill be executedwith
the currentdirectory setto the homedirectory of the specifieduser Under Windows, ary
backslashes the commandnmustbe escapedvith anotherbackslashfor example®..\\bubba
exampleb”.

5. Daemon: This optionallows you to specifywhich Paradyndaemorto run. For mostusesthe
defaultdaemon(“defd”) is appropriateFor Windows applicationsusethe “winntd” daemon.
For MPI applications selecteither“mpid”. For multi-threadedapplications(only on Solaris
andAlX), usethe“mt_d” daemonlf you specifyadditionaldaemonsn the Paradynconfigu-
ration file, thg will appear here.

Onceyou have madeyour selectionsglick on Accept andParadynwill startthe application
programandinitialize it. Whenthe statusof the Paradynwindow is like thatin Figure6, the pro-
gram is ready to run and be measured.

Paradyn Main Control f |

File Setup Phase Visi Help ¥y
UIM status : readyp
Application mame : program: foo, machine: {local host), wser: (self), daemon:
Application status
Data Manager : readyp
Processes : PID=173E3
. brie : PID=12363, rceadp.

RUN | EXPORT | EXIT |

Figure 6: Paradyn ready to run the application

User’s Guide April 13, 2004 Release 4.1

Page 2-9

The window in Figure 6 shows several new status lines with the following information:

1. Application name: Thisisthe name of the application program (foo), the host machine where
it has been started (if remote), the user identifier which it is running as (if different), and the
type of daemon which is monitoring it (defd).

Application status: Thisisthe overall application status (either PAUSEDor RUNNING.
Data Manager: Thisisthe status of Paradyn’s Data Manager.
Processes: Thisisthe process identifier of the controlling processin your application.

a b~ 0N

brie: There is one status line on each host or node on which you are running your application;
here there is the status line for host “brie”. It shows the current status of your application pro-
cess on this host/node.

Notice that since you have defined a new process the RUN button is enabled and you are ready
to run and measure your program!

The information in the “Define a Process” window can be stored in a Paradyn Configuration
Language (PCL) file. In thisfile, the user can specify information such as: user application, new
visualizations to be added to the system, new metrics, and additional paradyn daemons. The com-
plete details of the Paradyn Configuration Language are given in Section 12.

As asimple example, if we want to run an application called “bubba’, with an executable file
named “bubba pd” indicating specia Paradyn support, afile called “ bubba.pcl” might contain:

process bubba {
dir “/p/paradyn/applications/sequential/bubba”;
command “bubba_pd example.dat”;
daemon defd,;

}

and the command to automatically start Paradyn with this application would be like this:
% paradyn -f bubba.pcl

This command tells Paradyn to run the application “bubba’ in the directory specified by “dir”
using the command line specified by “command” with the Paradyn daemon specified by “dae-
mon” (defd or default daemon in this case).

2.5.2 Attaching to a process

Sometimes, defining a new process from Paradyn as shown in the previous sub-section is not con-
venient. The main limitation of defining a new process is that a new process is launched every
time you run Paradyn (and killed every time you exit Paradyn). Many programs you may wish to
measure are not amenabl e to starting up and shutting down every time you wish to measure them.
Typically these are server-type programs, which are meant to run for an indefinite amount of time.
In such cases, it is more convenient to attach to an already-running program when you wish to
measure it with Paradyn, and to detach from it when you exit Paradyn.

Paradyn currently does not offer the option to detach from the application leaving it running

User’s Guide April 13, 2004 Release 4.1

Page 2-10
when you exit; on exit, Paradyn kills the application it is monitoring and all its associated pro-
cesses. This limitation will be removed in a future release.

To attach to a running process, choose Attac h to a Process from the Setup menu of the Para-
dyn main window. A dialog box (Figure 7) will appear.

Attach to a Process
User: |
Host: |
Ixecutable file; |
Pid: |
Daemon: & defd s wnntd e mt_d .~ mpid

Entering a pid is mandatory.

Enter the full path to the executable in ‘Executable file’. It will be used just to parse the symbol table,
Paradyn tries 1o determine this information automatically, so you can usually leave ‘Executable file” blank,

After attaching: | Pauseapplication |« Punapplicaion | 4 Leaveasis
ATTACH | CANCEL [
Figure 7: Specifying a process to attach to.

The User, Host, and Daemon items have the same meaning as in Section 2.5.1. The most
important box is Pid, where you specify the process identifier of the process (on the Host
machine) you wish to attach to. The Executab le file item lets you specify a full pathname to the
executabl e file corresponding to the process id. The Paradyn Daemon needs to find the executable
file on disk in order to extract symbols (procedures, modules) that will go in the Code portion of
the Paradyn Where Axis . Obtaining symbols from the executable file is al'so done when defining a
new process (Section 2.5.1). However, it can be burdensome to enter the full path name of a pro-
cess that you want to attach to; it is possible that you might not even know the disk directory from
which it was launched. Therefore, if you leave the Executab le file item blank, the Paradyn Dae-
mon will make an effort to locate its value automatically. (It obtains the program name by examin-
ing the process’ first argument, ar gv[0] . It then looks in severa directories for this program
name; it searches the process current directory and all items in its PATH environment variable.
For those interested, further technical details on how attach is performed can be found in the sep-
arate Paradyn Developer’s Guide.) If Paradyn reportsthat it cannot locate the executable file, you
will have to enter the full path name in the Executab le file field.

The Paradyn daemon can attach to a process, whether it is currently running or stopped. After
it has attached, you may wish to have the daemon automatically pause or run the application. To
do this, choose either Pause application Or Run application itemsfrom the dialog box. The default
is Leave as is, which detects whether the program was running or stopped at the time of attach.
Note that the processis necessarily paused for a short time while the Paradyn daemon initializesit

User’s Guide April 13, 2004 Release 4.1

Page 2-11

(parsesits symbol table, parses any shared librariesit has been linked with, etc.)

When you have entered the desired parameters, click on ATTACH to perform the attach opera-
tion. When ready, the Paradyn main window should look like Figure 8.

Paradyn Main Control |
Jara
File' Setup Phase Visi Help | ¥

UIM status : readp
Applicatiom name : program: Splpacadpnd applications/Test disty/bubba_=eqriffe-
Applicatiom status : RUHNHIHG
Data Manager : readp
PYXOCessSes : PID=130E52
. brie - application oanming

| PAUISE | EXFORT | EXIT |

Figure 8: Attach completed and application execution continuing.

2.6 Architectural issues

Certain platforms require slight modifications to the procedures discussed above. In this subsec-
tion, we describe each of them in turn.

2.6.1 Common Platforms

These notes apply for Solaris, Linux (x86), and AIX (RS/6000). Variations for Windows and MPI
programs follow.

On these platforms we support instrumenting shared objects (dynamically-linked libraries).
Dynamic executables are executables that are linked with shared object files, and are the default
output generated by the link-editor, therefore no special flags are needed to create dynamic exe-
cutables. Paradyn’s run-time instrumentation library is a shared object (I i bpar adynRT. so. 1)
which is dynamically loaded at run-time, and does not need to be linked with the executable.

Shared objects will show up on the Paradyn Where Axis and performance data can be col-
lected for functions from shared objects. Also, the Performance Consultant will include functions
in shared objects in its search for bottlenecks. The MDL exclude option can be used to specify
shared objects and/or functions from shared objects that should not be included in the Perfor-
mance Consultant’s search. Thisis discussed in more detail in Section 12.8.

When using the Sun C or Fortran compilers on Solaris, you should aso specify the - xs option
together with - g. The - g option alone will direct the compiler to place debugging information in
the object files (. o files), but it will not place the debugging information on the executable
(a. out) file. You must use the - xs option so that the compiler will add the debugging information
to the a.out file. The - xs option is not needed if you are using GNU compilers..

User’s Guide April 13, 2004 Release 4.1

Page 2-12

Inter-library calls on AIX appear to be made by a “shadow” function with the same name as
the function being called. Paradyn detects these shadow functions and appends*“_linkage” to their
names. Thisis simply for clarification purposes.

2.6.2MPI

To run an MPI application under Paradyn one should follow the steps described in
Section 2.5.1. The user should set Daemon to mpid. The Command field should contain the same
command line one uses to launch the application without Paradyn(e.g., “npi run -np 2 hel | 0”).
Note that the Processes field for MPI will identify the type of MPI being used (POE, IRIX or
MPICH) and not the processes involved in the job. Platform-specific details are given below.

* MPICH: Currently, Paradyn supports MPICH version 1.2.2 with the ch_p4 device. The user
should use the “npi run” command to start an application. Unsupported mpirun options
include “- p4pg file”,"-gdb” and “- dbx”. The “nmpi run” command will be started through
aremote shell on the machine specified in the Host field of the dialog box. If no name is spec-
ified, it will run on the frontend machine.

* POE MPI on Al X: the POE job launcher poe can be entered in the command field or omitted.

2.6.3 Microsoft Windows

The way Paradyn works in Windows is similar to other platforms, however there are a few small
differences.

On Windows the run-time instrumentation library (1i bpar adynRT. dl |) is loaded dynami-
cally. You must either define PARADYN LI B with afull pathto | i bpar adynRT. dI | or haveitin
a directory that is listed in your PATH environment variable, so that it can be found by the
dynamic linker.

Paradyn needs symbolic debug information, so you must compile your application with
debugging information enabled. We currently handle CodeView (also called “Microsoft style”)
and COFF symbol formats, though we recommend CodeView format since it provides more com-
plete and accurate information than with COFF symbols. The option to enable a CodeView sym-
bol table will depend on the compiler used. For the Microsoft compiler thisoptionis/ z7 or /zi .
You must aso direct the linker to generate symbolic information in the executable file. The
options/ debug and /pdb: none must be passed to the linker. Figure 9 shows a sample Makefile for
the Microsoft Visual C++ compiler.

CcC=cl /27
OBJECTS = nmin.obj this.obj that. obj

bubba. exe: $(OBJECTS)
I ink -out:bubba. exe -debug -pdb: none $(OBJECTS)

Figure 9: Sample M akefile for Windows.

Paradyn needs to instrument some system libraries (in particular, ker nel 32. dI |), and this can
only be done if the symbols for the system libraries are installed. The symbols are available with

User’s Guide April 13, 2004 Release 4.1

Page 2-13

the CD-ROM or online, and they can be installed by the installation programs of compilers (e.g.
the Microsoft Development Studio has an option to install the system symbols files).

The files which are needed to run on Windows are par adynd. exe (the paradyn daemon),
| i bpar adynRT. dI | (the run-time dynamic instrumentation library), and oncrpc. di | (aversion
of the Sun RPC library for Windows, included with the Paradyn binary release, which is used by
Paradynd to communicate with the Paradyn front-end). All of these files should be in directories
that are listed on your “path” environment variable.

In order to have a Paradyn daemon started automatically by the Paradyn front-end (as for the
other platforms), you need to have aremote shell daemon (rshd or sshd) running on the Windows
machine(s), and you must be able to execute commands on Windows from the Unix machine
where the Paradyn front-end is running. If you don’'t have an rshd running on the Windows
machine, you must start the Paradyn daemon manually. Either refer to the - x command-line
option for Paradyn to automatically get this information (Section 2.4) or use the information from
the “Daemon start-up info” menu item under the “File” menu in the Paradyn user interface. You
must start paradynd giving the exact arguments shown in that dialog but specifying the appropri-
ate “flavor” (which will be wi nnt d for a Paradyn daemon and application processes running on
Windows): note that for each session the port identifier (and possibly also host machine) argu-
ments will be dlightly different, so you can’'t reuse exactly the same command line for different
Paradyn sessions. The command line to start paradynd on Windows will look like:

paradynd -zwi nnt -12 -mmyhost machi ne. domai n. org -pl12345

Once the Paradyn daemon is started, it connects to the existing Paradyn front-end session, and
everything else will work as usual.

Note that currently Paradyn is not expected to work with gcc-compiled application programs
under Windows.

2.6.4 M ulti-threaded

Paradyn currently only supports monitoring multi-threaded applications on the Solaris, Linux
2.6, and AlX operating systems. To run a multi-threaded application under Paradyn one should
follow the steps described in Section 2.5.1.

User’s Guide April 13, 2004 Release 4.1

Page 3-1

3MAIN CONTROL WINDOW

In this section we discuss features of the Paradyn main control window (an example is shown in
Figure 10). The Paradyn main window is the interface though which a user can access all parts of
the Paradyn tool. The main window is divided into three sections; the top section contains a menu
bar, the middle section contains a dynamic set of status lines (split into a generic part and a part
for per-process status information which is both resizable and scrollable), and the bottom section
contains a set of menu buttons. We discuss the details of each of these below.

Pll’lfh-‘l‘l TTrToEE e
. £
File Setup Phase Visi Help |

UIH status ! ready
Epplication name : program: foo, machine: beaufort, user: (self), daemon: def

Application status
Data Hanager : ready
Processes : PID=26%90

beaufort : PID=Z690, ready.

“RUN | | EXPORT | EXIT |

Figure 10: Paradyn Main Control window

3.1 Main menubar

The menu bar in the Paradyn main control window contains five items; four of these display a
sub-menu when selected, and the other opens adialog, as follows:

3.1.1 Filemenu

The File sub-menu contains two menu items. The option Daemon start-up info givesinformation
on how to manually start a daemon from aterminal. When the option Exit Paradyn is selected, the
Paradyn process and all currently-associated application, daemon and visualization processes exit.
The same effect can be achieved by clicking on the EXIT button (Section 3.3).

3.1.2 Setup menu

The setup menu contains items to define an application process, to attach to an already-running
application process, to create a Performance Consultant window, to bring up the Tunable Con-
stants dialog, and to bring up the Where Axis display. Selecting Define A Process displays the
Define A Process window (this window is shown in Figure 5 in Section 2.5.1). This is a mecha
nism through which a user can provide information about their application so that Paradyn can
start it. A description of how to use the Define A Process window is given in Section 2.5.1.

User’s Guide April 13, 2004 Release 4.1

Page 3-2

Using Define A Process creates (i.e. starts) a new application process, which Paradyn can
begin monitoring right away. Sometimes, however, it is more convenient to ask Paradyn to attach
to an aready-running process (supported since Paradyn release 1.2). Thisis especialy useful for
server-type processes such as database servers or file servers, for which re-launching every time
you wish to measure with Paradyn would be inconvenient. To attach to an already-running pro-
cess, select Attach to a Process from the Setup sub-menu. A description of how to use Attach to a
Process isgiven in Section 2.5.2.

The Performance Consultant menu item will bring up the Performance Consultant window.
This window provides an interface for the user to start automated performance bottleneck
searches. The Performance Consultant is described in Section 9.

The Tunable Constants menu item will bring up the Tunable Constants dial og, through which
the user can set values for any tunable constants defined in Paradyn. Information about the set of
tunable constants and how they can be modified is given in Section 4.

The wWhere Axis menu item will bring up the Where Axis display, through which the user
makes resource hierarchy selections. Information about the Where Axisis given in Section 5.2.

The call Graph menu item will bring up the Call Graph display, which provides an interactive
representation of the callgraph of each executable in the application. Information about the Call
Graphisgivenin Section 5.5.

3.1.3 Phase menu

Phases may be started using the Phase menu. There are presently four items under this menu:
Start, Start with Perf Consultant, Start with Visis, and Start with Perf Consultant & Visis. Each item
under this menu will create a new phase; they differ in what additional actions they take. The first
item, Start, does nothing additional. Start with Perf Consultant will have Paradyn’s Performance
Consultant module (Section 9) commence searching on this phase, as opposed to simply defining
the new phase. Note: Start with Visis and Start with Perf Consultant & Visis are not yet imple-
mented. Compl ete information about phasesis provided in Section 8.

3.1.4 Vis menu/button

Visualization processes can be started by selecting them from the Start A Visualization dialog
which appears upon pressing the visi button in the main menubar. A complete description of how
to start a visualization process is given in Section 7.1, and documentation on the standard visual-
ization modulesis given in Section 10.

3.1.5Help menu

The Help menu options offers basic information about Paradyn in separate displays. General Info
has summary information about Paradyn capabilities and supported platforms, along with pointers
to project Web pages and the par adyn@s. wi sc. edu maintainers’ account for further information
or to report problems. License Info contains a copy of the license agreement governing use of the
Paradyn Parallel Performance Tools. Release Info provides information related to the current

User’s Guide April 13, 2004 Release 4.1

Page 3-3

Paradyn release (and obtaining other releases). Finally, Version Info displays build/release infor-
mation about the version of Paradyn which isrunning: it is more detailed than the abbreviated ver-
sion identifier appearing in the upper-right of the display title, and you may be asked to provide
this information when reporting any problems with special versions of Paradyn.

3.2 Statuslines

The middle section of the Paradyn main window consists of a dynamic set of status lines which
are updated as Paradyn runs and learns about new application processes. Each line displays status
information about some part of Paradyn, the application, or the Paradyn daemons monitoring
application processes.

The main window in Figure 10 contains status lines that were created after asequential (single
process) application was defined. Some of the status lines contain information about the applica-
tion program, such as its name (f 00), the process identifier(s) associated with the application on
the host (PI D=19271) and an indented/offset area with status lines for each host machine or pro-
cessor node on which the application is running (in this case, only on one host, beauf or t).
There are also lines displaying the status of the Ul Manager and Data Manager (r eady).

The indented/offset area grows additional lines as hosts or nodes join the set which constitutes
the application managed by Paradyn. After a certain number of lines is reached, this area no
longer grows automatically and a scrollbar appears in the indent area to manage this region of the
display. If desired, the window can be vertically resized to display more (or all) of the host/node
status lines, or shrunk to display fewer (down to a minimum number which can still be displayed).

3.3 Buttons
There are four buttons at the bottom of the Paradyn main window.

The RUN and PAUSE buttons allow the user to run or pause execution of the application. When
the application is running, the RUN button is disabled and the PAUSE button enabled. Conversely,
when the application is paused the PAUSE button is disabled and the RUN button enabled. Before
an application has been defined, both buttons are disabled.

The EXPORT button dumps the application execution data Paradyn currently maintainsto files
for off-line analysis. This is useful for exporting execution data from Paradyn to other analysis
tools. Complete details are in Section 11.

The EXIT button, when selected, will exit Paradyn and terminate all associated application and
visualization processes.

User’s Guide April 13, 2004 Release 4.1

Page 4-1

4 TUNABLE CONSTANTS

4.1 Overview

Users can customize Paradyn’s operation through tunable constants. Paradyn defines several tun-
able constants that may be altered by the user, ranging in scope from user-interface window layout
issues to tuning the automated search parameters of the Performance Consultant (see Section 9).

Tunable constants are either boolean or floating-point. Paradyn’s tunable constants are listed
in Sections 4.2 and 4.3.

To change the value of a tunable constant, choose Tunable Constants Control from the Setup
menu of the Paradyn Main Control window. This brings up the window shown in Figure 11.

Help

S developertdode
persistentData
showWherefwisTips
showShgkey
showShgTips
hideShgTrueModes
hideShgFalseModes
hideShgUnknownModes
hideShgMeverSeenModes
hideShgActiveModes
hideShglnactiveModes
hideShgShadowModes
costLimit B [20 1.2
minObservationTime of 60 10.0
sufficientTime 1) I 1000 [15.0
PC_SyncThreshold of O 1 0.2
PC_CPUThreshold o o 1 0.3
PC_IOThreshold of O 1 0.2
PC_100pThreshold o e 8192 |40956.0

SNSRI E SN SN ERE NSRS

Accept | Cancel |

Figure 11: The Tunable Constants Window

Boolean tunable constants (developerMode, showWhereAxisTips, showShgKey, showShgTips, and
so on through hideshgShadowNodes in Figure 11) are shown before floating-point numeric con-
stants. The checkbox to the right of a boolean tunable constant is colored gray if the tunable con-
stant’s setting is false, and blue if the tunable constant’s setting is true. Floating-point tunable
constants with bounds on their acceptable values have a dlider widget between the name and the
entry field. A new value can be typed into the entry field or click on the slider and “drag” it to the
desired value. The minimum and maximum allowable values are displayed on the left and right
sides of the dider as a convenience: attempts to set values outside this range are truncated.

Changes made to tunable constant values do not take effect until the window is dismissed by

User’s Guide April 13, 2004 Release 4.1

Page 4-2

clicking on Accept. Clicking on Cancel will dismiss the window without making any changes.
Tunable constant settings remain in effect for the duration of this Paradyn session; that is, until
you explicitly change the value again through this dialog or quit the Paradyn process.

Each time a new Paradyn session is started, tunable constants are reset to their default values.
This can be an inconvenience if the default values of certain tunable constants are not to your lik-
ing. The Paradyn Configuration Language (PCL) allows you to create files read by Paradyn on
startup. Among many other things, such files can contain tunable constant settings to your liking.
See Section 12.6 for particulars on how to set tunable constant valuesin a PCL file.

Under the Tunable Constants Window Help menu is an entry Show Tunable Descriptions.
Invoking this menu item brings up the Tunable Descriptions window, giving a concise description
of each tunable constant. An exampleis shown in Figure 12.

I developertdode

Allow access to all tunable constant
including those limited to developer mode.
(Use with caution)

showWherefwisTips

If true, the where axis window will be drawn
with helpful reminders on shortcuts for
expanding, unexpanding, selecting, and
scrolling. A setting of false saves screen
real estate.

showShgkey

If true, the search history graph will be
drawn with a key for decoding the meaning
of the several background colors, text

/ colors, italics, etc. A setting of false saves

erroon roal actata

Dismiss |

Figure 12: Tunable Constants Descriptions Window

4.2 User Tunable Constants

Each tunable constant is classified as either User or Developer mode. User tunable constants are
intended for everyday use. User tunable constants are listed in Figure 13.

4.3 Developer Tunable Constants

Developer tunable constants are not intended for everyday use. I f you change a developer mode
tunable constant, you are presuming a detailed knowledge of the internal workings of Para-
dyn. We provide no guarantees on how system behavior changes, nor can we offer support if any
developer tunable constant has been altered from its original setting. In addition, developer tun-
able constants are subject to significant change from release to release. Nevertheless, we realize
that some experienced users may benefit by occasional access to these tunable constants.

To access devel oper tunable constants set the tunable constant developerMode to true and click
Accept: the Tunable Constants window will re-present itself containing both the user and devel-
oper tunable constants. Setting the tunable constant developerMode to false will “hide” the devel-

User’s Guide April 13, 2004 Release 4.1

Page 4-3

oper tunable constants once again. Developer tunable constants are listed in Figure 14.

Tunab le Name

Description

showWhereAxisTips (bool)

If true, the Where Axis window is drawn with several user-interface tips on
how to select and expand where axis items. Setting to fal se saves screen real
estate.

persistentData (bool)

If true, all performance data remains stored internally in Paradyn histograms
after data collection has been halted by removing the instrumentation. If
false (the default), internal data is deleted at the time the related instrumen-
tation is removed (for example, when avisualization is exited).

costLimit (float)

Maximum allowable perturbation of the application when running the Per-
formance Consultant (Section 9). Paradyn keeps track of an estimate of the
extent to which its instrumentation is perturbing the application under exe-
cution; this tunable constant allows users to set a maximum upper-bound on
such perturbation, as a percentage of execution time.

minObser vationTime (float)

Specifies a lower bound on the time (in seconds) before the Performance
Consultant will begin using data collected to evaluate hypotheses. Thistime
guards against the effects of transient data values at the start of a phase.

sufficientTime (float)

Specifies the minimum amount of time (in seconds) before the Performance
Consultant can conclude that a hypothesisis false.

showShgK ey (bool)

If true, the Performance Consultant window includes a key to the meaning
of the node and text colors shown.

showShgTips (bool)

If true, the Performance Consultant window includes a key to relevant
mouse functions.

hideShgT rueNodes (bool)

If true, the Performance Consultant’s Search History Graph (SHG) will not
show true nodes.

hideShgF alseNodes (bool)

If true, the SHG will not show false nodes.

User’'s Guide

Figure 13: User-level Tunable Constants

April 13, 2004 Release 4.1

Page 4-4

hideShgUnknownNodes (bool)

If true, the SHG will not show nodes which haven't been determined true or
false yet.

hideShgNeverSeenNodes (bool)

If true, the SHG will not show nodes which it has not begun to evaluate yet.

hideShgActiveNodes (bool)

If true, the SHG will not show nodes which are active (instrumented).

hideShglnactiveNodes (bool)

If true, the SHG will not show nodes which are inactive (un-instrumented).

hideShgShadowNodes (bool)

If true, the SHG will not show shadow nodes.

PC_SyncThreshold (float)

Percentage Performance Consultant uses as threshold for all synchroniza-
tion hypotheses (such as ExcessiveSync\WaitingTime). For example, select-
ing 20% here will cause any synchronization-related hypothesis-focus pair
testing above 0.20 to conclude “true.”

PC_CPUThreshold (float)

Percentage Performance Consultant uses as threshold for determining CPU
bottlenecks (CPUbound).

PC_lIOThreshold (float)

Percentage Performance Consultant uses as threshold for determining 1/0
blocking time bottlenecks (Excessivel OBlockingTime).

PC_IOOpThreshold (float)

Number of bytes Performance Consultant uses as threshold for determining
small 1/0O operation bottlenecks (TooManySmalllOOps).

developerMode (bool)

If set, additional tunable constants and metrics are made available to the
user. NB: USE AT YOUR OWN RISK!!

Figure 13: User-level Tunable Constants

Tunable Name

Description

hysteresisRange (float)

Represents the fraction above and below threshhold that a test should use.

PCuseCallGraphSearch
(bool)

If true, the Performance Consultant uses a callgraph-based search of the Code
hierarchy, otherwise uses a module-then-function search.

PCprintDataTrace (bool)

If true, the Performance Consultant prints a full trace to stdout of all PC-related
dataevents: data arrival at the PC, data values after filtering, etc.

PCprintTestResults (bool)

If true, the Performance Consultant prints data to the console window every time
it computes aresult value for an experiment.

PCprintDataCollection
(bool)

If true, the Performance Consultant prints out trace information on PC-initiated
instrumentation requests and disables.

PCuselndividualThresholds
(bool)

If true, the Performance Consultant will ignore the user-level tunable constants
PC_SyncThreshold,PC_CPUThreshold,PC_IOThreshold,PC_IOOpThreshold,
and use a set of hypothesis-specific devel oper-level tunable constants instead.

PCprintSearchChanges
(bool)

If true, the Performance Consultant prints data to the console window every time
it draws a conclusion for a hypothesis, or starts or stops an experiment.

PCcollectinstrTimings
(bool)

Times all instrumentation requests, saving result in TESTr esul t . out

printChangeCollection
(bool)

If true, the name of each metric/focus pair is printed to the console window any
timeit isenabled or disabled.

Figure 14: Developer-level Tunable Constants. Use at your own risk!

User’s Guide April 13, 2004 Release 4.1

Page 4-5

printSampleArrival (bool)

If true, the arrival of each sample from par adynd is printed out to the console
window.

tclPrompt (bool)

If true, a Paradyn prompt is presented in the start-up shell window, allowing the
user to type in and execute arbitrary Tcl language commands.

enableRequestPacketSize
(float)

It represents the length of the packet sent when batching enable requests. The
default valueis5.

highSyncThreshold (float)

If PCuselndividualThresholds isset to true, thiswill be used as the Performance
Consultant test threshold for ExcessiveSync\WaitingTime.

highCPUtoSyncRatio-
Threshold (float)

If PCuselndividualThresholds is set to true, thiswill be used as the Performance
Consultant test threshold for CPUbound.

lockOverhead (float)

If PCuselndividualThresholds is set to true, thiswill be used as the Performance
Consultant test threshold for lockOverhead.

minLockSize (float)

If PCuselndividualThresholds is set to true, thiswill be used as the Performance
Consultant test threshold for minLockS ze.

highlOthreshold (float)

If PCuselndividualThresholds is set to true, thiswill be used as the Performance
Consultant test threshold for Excessivel OBlockingTime.

diskBlockSize (float)

If PCuselndividualThresholds is set to true, thiswill be used as the Performance
Consultant test value for TooManySmalll OOps.

seekBoundThreshold (float)

If PCuselndividualThresholds is set to true, thiswill be used as the Performance
Consultant test threshold for seekBound.

Figure 14: Developer-level Tunable Constants. Use at your own risk!

When the Developer Mode tunable constant is set, Paradyn makes available a number of addi-

tional “developer-mode metrics’ for selection. For further details, see Section 6.

User’s Guide April 13, 2004 Release 4.1

Page 5-1

5 SELECTING RESOURCES

You specify performancedatafor Paradynto collectin two parts:the type of performancedata
andthe part(s)of the programfor which you wantthis datacollected.The partsof your program
arecalledresources in Paradyn.This sectiondiscusse$iow to selectresources(Section6.1 dis-
cusses hw to selectmetrics—the type of performance data.)

5.1 Resouces (The “Wher” AXxis)

TheWhere Axisis usedto describehe partsof your programfor which Paradyncanreportperfor-
mancedata.lt is avisualrepresentatioof differentwaysto specifytheseparts.A simpleexample
of aWhereAxis is givenin Figure1l5. The WhereAXxis is usedto malke all resource-relatedselec-
tions. For example,userswill usethe WhereAxis for addingresourceso avisi, andin thefuture
for manualrefinementsn the Performance&onsultantThis sectiondescribeshe WhereAxis, its
visual representation, and how to make selections.

Window Selections Navigate Ahstractionl

j Whole Program
“Machine ¥ Code
Process
“SyncObject b

=

£ =

Click to select; double-click to expandfun-expand
Shift-double-click to expandfun-expand all subtrees of a node
CtH-double-click to selectfun-select all subtrees of a node

Search: |

Figure 15: Where Axis window.
“Whole Program” has three unexpanded subtrees and one expanded subtsee) (

Before we dele into specific xamples of usage, avedefinitions are in order:

Resour ces:

Resourcesire programcomponentsExamplesnclude modules proceduresprocessedarriers,
locks, processonodes,and disks. Someof the resourcetypesare commonto all programming
platforms. Examples of these common resourcesinclude Modules and Procedures.Some
resourcesreonly supportedn particularplatforms.An exampleof this type of resourcevould
be the Barrier synchronization object.

User’s Guide April 13, 2004 Release 4.1

Page 5-2

Resource Hierarchy:

Paradyn organizes all of a program’s resources into hierarchies (trees). Each hierarchy represents
a broad class of objects in an application. Typically, a parallel program has at least four hierar-
chies: code (under which we have an application’s modules, then individual functions), Process
(under which we have each node in a parallel machine), Machine (these are the nodes or hostsin the
parallel or distributed environment), and syncobject (that includes such types as message tags,
semaphores and barriers).

The code hierarchy contains a hierarchical representation of the code which comprises the pro-
gram under examination. It is atwo level hierarchy. The code space as a whole is separated into
modules, which represent a high level grouping of program functionality. In general, a module
corresponds to an individual sourcefilein ahigher level language, or to asingle library. A module
contains al of the functions located in the corresponding original source file (or files, for librar-
ies).

There are afew instancesin which the set of modules displayed in the code hierarchy will not cor-
respond exactly to the set of source files and modules linked into the program, as discussed next.

The “DEFAULT_MODULE” module holds all functions which could not be assigned to any other
module, either because the necessary information could not be found, or because the functions are
not rightfully assigned to any of the input files or libraries which make up the given executable.
On most supported platforms, this module should include only functions which are built-in by the
compiler or environment, in the sense that they do not come from any user specified source files or
libraries (e.g., the _start, __do_gl obal _ctors_aux, and__do_gl obal _dt ors_aux func-
tions provided incr t 0 by most Unix C compilers).

Some compiler and linker settings do not generate enough information to resolve functions into
modules. e.g., when compiled/linked without the ‘- g’ compilation flag which requests a symbol
table be included in the object/executable for the use of tools such as a debugger. When parsing a
file which does not contain this information, Paradyn assigns al functions to the
“DEFAULT_MODULE”. In particular, we are not aware of any compilers and linkers on the AIX
platform which provide the necessary information. As such, when Paradyn is used on AlX, all
functions are generally placed in that module. Note that this affects the MDL “exclude” directive
(Section 12.8).

In Paradyn versions 2.1 and above, it is no longer necessary to explicitly delineate “interesting”
user code with DYNI NSTst ar t Code and DYNI NSTendCode block objects. However, later Para-
dyn versions should still correctly parse executables which have been so built. To maintain com-
patibility with older Paradyn versions, when an application is linked with DYNI NSTst ar t Code
and DYNI NSTendCode, any statically linked code which is outside of the range delimited by
DYNI NSTst ar t Code and DYNI NSTendCode is placed in the “DYN_MODULE” module.

Focus:

A focus is a set of selections from the Where Axis containing exactly one resource from each
resource hierarchy. For example, in the Where Axis of Figure15, a focus might be the set

User’s Guide April 13, 2004 Release 4.1

Page 5-3

{/Code/Alloc.0, /Machine, /Process, /SyncObject}. The selection /Code/Alloc.o means restrict our perfor-
mance data collection to only the code contained in module Al | oc. o. The selection /Machine
means all machines (nodes) on which your program isrunning. /Process means all processesin the
program and /syncObject means for all types of synchronization used. If you select the root nodein
each hierarchy, this means that Paradyn will collect data for a metric for the whole program (all
nodes, processes, modules, etc.).

Performance datais collected for a particular focus. For example, suppose we made the following
focus selection and requested that CPU time data be collected for this focus: {/Code/Alloc.o/XtCalloc,
/Machine, /Process/psicm.pd.pn{123657_mendota}, /SyncObject}. This selection means “measure the CPU
time spent in function xtcalloc while it's being executed on any machine, only when executed by
Jprocess psicm.pd.pn{123657_mendota}, and for any type and instance of a Syncobject.” In this example,
CPU timeisametric. Paradyn metrics are functions that describe how the behavior of your appli-
cation program changes over time. Metrics and their selection are presented in Section 6.

5.2 The Where Axisdisplay

Resources for your application program are displayed in the Where Axis display. The resource
hierarchy in Figure 15 is an example of a such a window. Many programs will have hundreds, if
not thousands of resources; displaying the complete tree for all of their hierarchies and their nodes
(asin Figure 16) is cumbersome to the user, who will have difficulty finding desired items.

Window Selections Navigate Abstraction |

I |Who|e Programl
Code'
Alloc.ol ArgList.ol AtomMgr.ol |AuDispose.o| ‘AuFiIeName.o| |AuG

tCalloc | XtMergeArglists | | XmGetAtomName | XauDisposefuth | | XauFilslame | | XauGetBe
tFree *minternAtom
tMalloc _XmintematomandName
tRealloc
7 | e

Click to select; double-click to expandfun-expand
Shift-double-click to expandfun-expand all subtrees of a node
Cir-double-click to selectfun-select all subtrees of a node

Search:
Figure 16: Showing all resourcesin the Where Axis display

Paradyn allows the user to control how much of the Where Axisisvisible at any onetime. The
children of a node may be displayed as separate single nodes or be displayed together in asingle
listbox. The listbox is a compact way of representing many children of a node. For example, in
Figure 15, the root node (whole Program) has four (yes, four!) child nodes. Three of these nodes
(Machine, Process, and SyncObject) are combined in the blue listbox. The fourth child of Whole Pro-
gram isthe salmon colored single node, Code.

If the listbox contains alarge number of nodes, then it may even have a scroll bar on the side.

User’s Guide April 13, 2004 Release 4.1

Page 5-4

A trianglebesidea nodein alistbox meanghatit is not aleaf node—thathe subtrees presently
un-expandedto consere screerreal estate Double-clickingon sucha nodewill expandit from

the listbox as a single node. This new single nodewill be salmoncoloredwith a blue listbox

below, containingits child nodes.The code nodein Figurel5 wasoriginally displayedasa node
in thelistbox whole Program. Double-clickingonthe code resultedn code beingdisplayedassingle
node. Since code is not a leaf node,its children (a list of modules)are displayedas a listbox
below.

After expandinga node,the resourcedesiredmay still be buried lower in the hierarcly. You
cancontinueto double-clickon appropriatenodes.Shift-double-clickon the parentof a listbox
(that is, on a pink node shing a listbox under it) will @pandall listbox items one leel.

5.3 How to select foci using the Where Axis

A focusis a selectionof oneresourcerom eachresourcehierarcly. To choosea focus,click the
left mousebutton over a resourcename,therebyselectingit. Performingthis operationon one
resourcein eachhierarcly selectsa single focus. An exampleof sucha selectionis shavn in
Figurel?. The focus selected in this figure is:

{/Code/anneal.c/a_cost, IMachine/goat, /process, /SyncObject}.

Window Selections Navigate Abstraction |
I Whole Program|

C dl Machi | IF‘ S Object
———__—i) e ﬂ(:l ine I'OTESS yncl JL=
anncalc| [geat | |Eubbapaziorogoat | E
]
B
aneighbar |
| amea
choosepmove
dopmove |

7 |~
Click to select; double-click to expandfun-expand
Shift-double-click to expand/un-expand all subtrees of a node

CtH-double-click to selectfun-select all subirees of a node

Search:
Figure 17: A single focus selected

The WhereAXxis alsocanbe usedto selectmultiple foci atthe sametime. Multiple selections
are done by making more than one selectionin a given hierarcly. The set of foci currently
selecteds the cross-producof all resourcehierarcly selectionsFor example,in Figure18there
are three resourcesselected from the code hierarcly (/Code/channel.c, /Code/anneal.c, and
ICode/anneal.c/a_cost), oneresourceselectedrom the machine hierarcly (/Machine/goat), Oneresource
selectedrom the process hierarcly (/Process), andtwo resourceselectedrom the syncobject hier-

User’s Guide April 13, 2004 Release 4.1

Page 5-5

archy (they are /syncobject and /SyncObject/Semaphore). The total number of foci currently selected is
therefore (3 x 1 x 1 x 2=6). They are:

¢ {/Code/channel.c, /Machine/goat, /Process, /SyncObject}

¢ {/Code/channel.c, /Machine/goat, /Process, /SyncObject/Semaphore}

¢ {/Code/anneal.c, /Machine/goat, /Process, /SyncObject}

¢ {/Code/anneal.c, /IMachine/goat, /Process, /SyncObject/Semaphore}

¢ {/Code/anneal.c/a_cost, /Machine/goat, /Process, /SyncObject}

* {/Code/anneal.c/a_cost, /IMachine/goat, /Process, /SyncObject/Semaphore}

Window Selections Navigate Abstraction |

I ‘Whole Programl
Code' Machine' IProcess ISyncObject
I 1

—_— 1
1
a neighbor |
anneal |
choosepmove |
dopmove |

7 =
Click to select; double-click to expandfun-expand
Shift-double-click to expandfun-expand all subtrees of a node

Ctrd-double-click to selectfun-select all subtrees of a node

B

Search:

Figure 18: Multiple foci selection
5.4 TheWhere Axis GUI

Locating a resource

Resource names are sorted in every listbox, to ease locating resources. All sibling expanded sub-
trees are sorted left-to-right on screen. A subtree’s sibling listbox is always leftmost, followed by
its expanded items, if any. If all of a subtree’'s children are expanded, then no listbox is drawn.

To quickly locate aresource, you may type aresource prefix into the “ Search” entry box at the
bottom of the Where Axis window and press return. This feature finds, expands, and scrollsto the
first resource with that prefix (if any). Continuing to press return will find the next prefix match.
The search wraps around to the beginning when no more matches are found. The search is case-
sensitive.

Secting aresource

Clicking on aresource name (whether in alistbox or expanded) selectsit. Clicking again dese-
lectsit. A <ctrl-dbl-click> on the root of an expanded subtree will select al of its children (but not

User’s Guide April 13, 2004 Release 4.1

Page 5-6

its children’s children; i.e., not recursively). Another <ctrl-dbl-click> deselects the same. Note
that when a function is selected or deselected in the code hierarchy, the selection state of the cor-
responding function in the Call Graph is changed (see Section 5.5 for more details).

To deselect every node in the Where Axis, choose Clear from the Selections menu.

Listbox expansion

As previously mentioned, double-clicking on a non-leaf listbox item will expand it. To
quickly expand all (non-leaf) items of a given listbox, <shift-dbl-click> on the listbox’s parent
node (which is always salmon colored). Another <shift-dbl-click> on the listbox’s parent will un-
expand all children back into the listbox.

The navigate menu

If many Where Axis items have been expanded (e.g. a <shift-dbl-click> on a listbox contain-
ing 100 elements), it may be difficult finding your way around the Where Axis. The Navigate
menu can help with this. After clicking on any node (whether or not it was a listbox node), the
Navigate menu will contain every ancestor of that node (i.e., its parent, its parent’s parent, and so
on up to the root node). Selecting any item from the Navigate menu will scroll the Where Axis so
the chosen itemisvisible.

Serolling

The Where Axis contains traditional horizontal and vertical scrollbars for navigation. In addi-
tion, the Where Axis may be scrolled by moving the mouse to the center of the window, holding
down the Alt key, and moving the mouse. The mouse pointer will remain fixed, but the Where
Axiswill scroll around it.

5.5 Call Graph display

A new display added to Paradyn provides a representation of the callgraph of each executable
in the application: see Figure 19. Starting from each program’s entry-point function (such as
main for C/C++ applications), the graph of functions called from it are presented, using the same
hierarchical display and search functionality as the WhereAXxis.

The resource selection state of functions in the Call Graph and Where Axis are synchronized
since they represent the same resources. When a function node in the Call Graph is selected, the
shadow nodes in the Call Graph and the corresponding function in the code hierarchy of the
Where Axis are also selected. On the other hand, when a function in the code hierarchy is
selected, the primary and shadow nodes in the Call Graph representing the same function are also
selected.

One view option currently supported allows the module containing each function to be
prepended to its name.

User’s Guide April 13, 2004 Release 4.1

Page 5-7

Call Graph
A
¥

Programs View | 4]

Current Program: om3

j main |
PMPI_Init 2 time_step |

PHMPI_Buffer_attach
PMPI_Type_vector density filtdp | filtdm | filtds |

PMP Type comwnit wragr g2
PMPI_Comm_rank wrap_q3 ¥ |wapg | |wap g || (wap e |
PMPI_Comm_size
global_open

_ it
read_geometry
read_stress
reard_annual_temp
read _annual_salt
wirite picture
T_max

init_state

write history
PMPI_Finalize

b 4

b 4

bl

b 4

vy v v wvivwvwvwvwyw

7 [

Search:' |
Figure 19: Callgraph display

The call graph displays statically determined edges, that is function calls that are not made
through function pointers. Function calls made through function pointers will be displayed in the
call graph when the Performance Consultant instruments the function containing the call through
the function pointer.

User’s Guide April 13, 2004 Release 4.1

Page 6-1

6 SELECTING METRICS

A metricis atime-varyingfunctionthatquantifiessomeaspecof programperformanceThis sec-
tion illustratesthe metricsselectionprocessn Paradyn.Section6.1 describediow to selectmet-
rics and SectioB.2 describes all the metrics currently definedaraByn.

6.1 How to select metrics

Whenyou wish to display or modify performancedata,you mustselecta focus (seeSection5)
and list of metrics. This section discusse® o selecimetrics—the type of performance data.

The Metrics Dialog Box appearsvhenParadynneedghe userto specifyoneor moremetrics
for someoperation Currently thereis only oneplacein Paradynwherethe MetricsDialog Box is
used:when choosingmetric-focuspairsto addto a visi. Choosinga set of metric-focuspairs
involves making selection(s)from both the Metrics Dialog Box (for the metrics)and from the
whereaxis (for thefoci). In this sectionwe will discusonly metricselection;Section5 describes
in detail hav to male focus selections.

A samplemetricsdialog box appearsn Figure20. Note thatthe metricswhich appeaiin the

Select Metrics and Focusies) below

number_of_cpus exec_time h_msg bytes
pause_time sync_ops cpu
active_processes msgs cpu_inclusive
predicted_cost sync_wait io_wait
observed_cost msg bytes_sent io_ops
procedure_calls msg_bytes_recy io_bytes
procedure_called msg bytes

CLEAR CANCEL

Figure 20: Metrics dialog box

dialog box are specificto the platform beingrun (suchassequentials. parallel/PVM).In addi-
tion, if thedeveloperMode tunableconstanis set(seeSection4.3), the “developermodemetrics”
arealsomadeavailable.Completedescriptionf the variousmetricsareprovidedin Section6.2;
expertuserscanuseParadynConfigurationLanguages Metric DescriptionLanguage(Section)
to add custom metrics.

Whenthe metricsdialogbox appearsselectoneor moremetricsfrom the givenlist. To select
a metric, simply click the mousein arny checkbox.Selectednetricswill have aredsquareto the
left of the metric namein the dialog box. Figure21 shavs how the metrics dialog box of
Figure20 would look afterthe metricscpu, msg_bytes_sent, andprocedure_calls wereselected.
Clicking on apreviously-selecteanetricwill deselecit. Clicking onthe CLEAR buttonatthebot-

User’s Guide April 13, 2004 Release 4.1

Page 6-2

Select Metrics and Focusies) below

number_of_cpus exec_time h_msg bytes
pause_time Sync_ops o cpu
active_processes msgs cpu_inclusive
predicted_cost sync_wait io_wait
observed_cost B msg bytes_sent io_ops

M procedure_calls msg_bytes_recy io_bytes
procedure_called msg bytes

ACCEPT CLEAR CANCEL

Figure 21: Metricsdialog box with several metrics selected
tom will deselect all selected metrics.

When done with metric selections, press ACCEPT or CANCEL. The metrics dialog box will
disappear at that time; it will reappear the next time a metric selection is requi red?.

6.2 Metric Descriptions

A list of al current metrics is presented in Figure 22. As we have described in the previous
Section, expert users can create their own custom designed metrics using the Paradyn Configura-
tion Language. Most of the metrics that appear in Figure 20 and Figure 21 were created using this
language and are provided within Paradyn. Additionally, an expert user can select Developer
Mode metrics (Figure 22). Developer mode metrics are mostly internal metrics, or metrics that
have been hard coded into Paradyn, that can be used to monitor Paradyn’s own performance or for
debugging purposes. Developer mode can be selected from the Tunable Constants option of the
Setup menu, as it is illustrated in Figure 11 (Section 4). After developerMode is selected, a
larger list of metrics will appear in the metrics dialog box.

It isimportant to make a distinction between three types of metrics: normalized, unnormalized
and sampled. Normalized metrics are time related metrics that are being computed as a percent-
age (e.g., cpu). Unnormalized metrics are mainly computed using counters (e.g., procedure _calls)
and they are usually expressed as a rate (e.g., operations per second). Sampled metrics are like
unnormalized metrics, but the units are not represented as arate (e.g., operations).

1. This contrasts with the Where Axiswindow (Section 5), which is kept open because the ability to browse a
program’s resource hierarchy at any timeis desirable.

User’s Guide April 13, 2004 Release 4.1

Page 6-3

Metric Description Units Visi Axis
L abel

active_processes Each bin represents the number of processes | # of pro- | operations
active during the corresponding interval of | cesses
time. Aggregation is the average number of
processes active over an interval of time.

cpu Each bin represents the percentage of CPU | CPUs CPUs
time spent during the corresponding time inter-
val. Aggregation is total CPU time over an
interval.

cpu_inclusive Same as cpu but includes called procedures in | CPUs CPUs
the process time calculation.

exec_time Each bin represents the elapsed wall clock time | exec CPUs
per unit during the corresponding time interval. | time
Aggregation is the sum over theinterval.

i0_bytes This metric represents the number of bytes for | #bytes bytes
Input/Output operations. Currently, only “read” | read/
and “write” are supported as input/output oper- | written
ations for UNIX, MPI, and PVYM. On Win-
dows, “ReadFile” and “WriteFile" are used.

i0_ops Number of Input/Output operations. 10 opera- | #10 ops | operations
tions are the same asfor io_bytes.

io_wait Time spent during Input/Output operations. IO | CPUs CPUs
operations are the same asfor io_bytes.

i0_wait_inclusive Same asio_wait but includes called procedures | CPUs CPUs
in the process time calcul ation.

msgs The total number of messages sent and | #msgs msgs
received. The unit is operations per unit of | sent/recv
time. Aggregation is the sum of al sends and
receives over the time interval. Send and
receives are defined as follows:
UNIX send:"“write”
UNIX recv:“read’

Figure 22: Metricsdefined in Paradyn
User’s Guide April 13, 2004 Release 4.1

Page 6-4

Metric

Description

Units

Visi Axis
L abel

pp_msgs

cC_Msgs

msg_bytes

msg_bytes recv

pp_msgBytesRecv

Similar to msgs, but it counts the number of
point-to-point messages (only for MPI applica-
tions). Point-to-point communications are
defined asfollows. PMPI _Send, PMPI_Bsend,
PMPI Ssend, PMPI Isend, PMPI _|ssend,
PMPI _Recv, PMPI _Irecv, PMPl_Sendrecv,
PMPI _Sendrecv_repl ace.

Similar to msgs, but it counts the number of
collective communications (only for MPI appli-
cations). Collective communications are
defined asfollows: PMPI _Bcast ,

PWPI Alltoall, PMPI _Alltoallv,

PMPI _Gat her, PMPI _Gat herv,

PWPI _Al | gat her, PMPI _Al | gat herv,

PMPI _Reduce, PMPI _Allreduce,

PMPI _Reduce_scatter, PMPI_Scatter,

PMPI _Scatterv, PMPI_Scan.

Number of message bytes sent and received.
Aggregation is the total number of bytes sent
and received. Send and receive are defined as
follows:

UNIX: “read”, “write”

Number of message bytes received per unit of
time. Aggregation is the total number of bytes
received. Message receives are defined as for

msgs.

Similar to msg_bytes recv, but only for receive
messages involved in point to point communi-
cations (MPI applications only). These point to
point communications are defined as follows:
PMPI _Recv, PMPI _Irecv, PMPlI_Sendrecyv,

PMPI _Sendrecv_repl ace.

#msgs

#msgs

#bytes
sent/recv

msg-
bytes
recv'd

msg
bytes
recv'd

msgs

msgs

bytes

bytes

bytes

User’'s Guide

Figure 22: Metricsdefined in Paradyn

April 13, 2004

Release 4.1

Page 6-5

Metric

Description

Units

Visi Axis
Label

cc_msgBytesRecv

msg_bytes sent

pp_msgBytesSent

cc_msgBytesSent

number_of cpus

observed cost

Similar to msg_bytes recv, but only for receive
messages involved in collective communica
tions (MPI applications only). These collective
communications are defined as follows:

PwPl _Bcast, PMPI_Alltoall,

PWPI _Alltoallv, PMPI_Gather,

PMPI _Gat herv, PMPI _Al | gat her,

PMPI _Al | gat herv, PMPI _Reduce,

PMPI _All reduce, PMPI _Reduce_scatter,
PMPI _Scatter, PMPI_Scatterv,

PMPI _Scan.

Number of message bytes sent per unit of
time. Aggregation is the total number of bytes
sent. Message sends are defined as for “msgs’.

Similar to msg_bytes sent, but only for send
messages involved in point to point communi-
cations (MPI applications only). These point to
point communications are defined as follows:

PMPI _Send, PMPI _Bsend, PMPI _Ssend,
PMPI | send, PMPI | ssend,

PMPI _Sendrecv, MPI_Sendrecv_repl ace.

Similar to msg_bytes sent, but only for send
messages involved in collective communica-
tions (MPI applications only). These collective
communications are defined as follows:

PMPI _Bcast, PMPI _Alltoall,

PWPI _Alltoallv, PVPI_Gather,

PMPI _Gat herv, PMPI _Al | gat her,

PMPI _Al'l gat herv, PMPI _Reduce,

PMPI _Al'l reduce, PMPI _Reduce_scatter,
PMPI _Scatter, PMPlI_Scatterv,

PMPI _Scan.
Number of CPUsin the system.

Internal metric: Indicates the effect on the
application from collecting data. Its purpose is
to check that the overhead of data collection
does not exceed pre-defined levels, and should
these levels be exceeded, it reportsto the higher
level consumers of data.

msg
bytes
recv'd

msg-
bytes
sent

msg
bytes
sent

msg
bytes
sent

#CPUs

slow-
down

bytes

bytes

bytes

bytes

#CPUs

slowdown

User’'s Guide

Figure 22: Metricsdefined in Paradyn

April 13, 2004

Release 4.1

Page 6-6

Metric Description Units Visi Axis
L abel
pause_time Each bin represents the fraction of time in | pause CPUs
which the application program was paused by | time
Paradyn. Maximum value is 1.0. Aggregation
isthe total time paused over an interval.
predicted cost Internal metric: Expected overhead of collect- | slow- slowdown
ing the data necessary to compute ametric for a | down
particular focus or combination of resources.
The predicted cost is expressed as the percent-
age utilization of CPU.
func_calls to Represents the number of procedure callsto the | #calls operations
specified function or module.
func_calls by Represents the number of procedure calls made | #calls operations
by the selected function or by all of the func-
tions in the selected metric.
sync_ops The number of synchronization operations per | #sync operations
unit of time. Aggregation is the sum. The fol- | ops
lowing are defined as synchronization opera-
tions:
UNIX: “write”, “read”, “recv”, “recvfrom”,
“select”, “sendmsg”, “send”, “ sendto”
sync_wait The elapsed wall time spent waiting for a syn- | sync CPUs
chronization operation. Aggregation is the sum | wait time
of al waiting time. The following will be
included in the reported times:
UNIX: “write”, “read”
sync_wait_inclusive | Same as sync_wait, but includes called proce- | sync CPUs
duresin the process time cal cul ation. wait time
Figure 22: Metricsdefined in Paradyn
User’'s Guide April 13, 2004 Release 4.1

Page 6-7

Metric Description Units Visi Axis
L abel

sampling_rate Internal metric: It is the time interval at which | millisec- | millisec-
samples are taken of the application by the dae- | onds onds
mon.

stackwalk_time Internal metric. Amount of time the Paradyn | stack- CPUs
daemon(s) spend walking the stack. This is done | walk
when timers or counters need to be manually | time
started.

numOfActCounters | Internal metric: The number of active count | # of | opera
based metric-focus pairs. Or the number of | counters | tions
counters that are actively being sampled.

numOfActProcTim- | Internal metric: The number of active process | # of tim- | opera-

ers time based metric-focus pairs. Or the number of | ers tions
process timers that are actively being sampled.

numOfActWall Tim- | Internal metric: The number of active wall time | # of tim- | opera-

ers based metric-focus pairs. Or the number of wall | ers tions
timers that are actively being sampled.

Figure 23: Developer Mode Metrics defined in Paradyn
User’s Guide April 13, 2004 Release 4.1

Page 7-1

7/ CONTROLLING VISIS

This section describes how to start and stop visualizers (known as ‘visis') from Paradyn.

7.1 Starting

A new visualization can be requested by pressing the Visi button from the Paradyn main window
menubar (Figure 24), which opens the Start A Visualization dialog.

Paradyn Main Control
A P
File Setup Phase Visi Help |

UIM status : ready

T

Figure 24: Paradyn Main Control window

This dialog presents a list of visualizations to choose from as shown in Figure 25. Visualiza-
tions can be started so that they receive either global phase performance data or current phase per-
formance data The selection in Figure25 is for a Histogram visualization that will receive
performance data from the global phase of the application’s execution.

Start A Visualization

Barchart.
Histogram
PhaseTable
Table
Terrain

|0 Gilobal Phase Iv Current Phase

Start | Cancel |

Figure 25: Start A Visualization menu

Once a visualization has been defined, metric and focus menuing is usually initiated before
the visualization process is started. Whether or not this menuing is done is determined by the
force flag setting in the PCL entry for this visualization. If the force option is set then the visual-
ization process is started without metric and focus menuing. This is typically used for starting

User’s Guide April 13, 2004 Release 4.1

Page 7-2

visualizations that do not want to enable data flow before starting. The Phase Table visualization
is an example of one which should have the force option set. For other visualizations, once menu-
ing is done, and at least one metric/focus combination is successfully enabled, the visualization
process is started.

The instrumentation required to collect data to be shown in a visualization can be deferred if
an application process is executing in the neighborhood of an instrumentation point. If instrumen-
tation is deferred, Paradyn displays a message box like the one shown in ??? listing the metric-
focus pairs with deferred instrumentation.

—
iFor
cpu_inclusiwve: fCodefanneal. cfa_anneal, Machine, /SyncObject

IInstrumentation for the above metric/focus pair(s) was deferred
{because the application process is executing code in the
;neighburhuud of an instrumentation point. Paradyn will insert
ithe instrumentation as soon as 1t 1s able.

] I B |

0K [

Figure 26: M essage box indicating instrumentation has been deferred
7.2 Stopping

Each visualizer has a menu option to quit that invokes the VisiLib QuitVisi routine which takes
care of disabling data collection and cleans up any associated state, then exits.

User’s Guide April 13, 2004 Release 4.1

Page 8-1

8 PHASES

Phases in Paradyn are contiguous time-intervals within an application’s execution. There are two
kinds of phases. the global phase and local phases. The global phase starts at the begining of the
program execution and extends to the current time. Local phases are non-overlapping subintervals
of the global phase. When a new local phaseis defined in the system, the current local phase ends
and all data collection for the current phase stops. Data collection for the new phase will occur at
afiner granularity than collection for data the global phase. At any time in the program’s execu-
tion, data collection can be enabled for one or both of the the current local phase and the global
phase. Similarly, a Performance Consultant search (Section 9) can be started for the global phase
of an application’s execution, or can be restricted to search over only the current local phase of
execution.

8.1 Starting a new phase

A new local phase can be defined by selecting Start under the Phase menu of the Paradyn main
window (Section 3) or Start Phase from the Phase Table display menu (Figure 27). When a new
phase is defined, any visualizations defined for the current local phase stop receiving performance
data. Similarly, if the Performance Consultant is active for the current phase, its search ends when
anew phase is defined.

Phase Table
ara

File Start Phase Help |V
Phase Name Start Time End Time
phase_0 0s Z2m2i0s
phase_1 Z2m2ls dm3is
phase_2 dm3is amé2b s
phase_3 amab s

Figure 27: Phase Table Display

8.2 Visualizations and Phases

Visualizations can show datafor either the local phase or the global phase. Local phase visualiza-
tions receive and display performance data from the phase’s start time until the phase ends. Typi-
cally, local phase datais collected at afiner granularity than global phase data. Figure 28 shows a
real time histogram visualization that has been defined for the global phase, and Figure 29 shows
one that has been defined for specific phase.

8.3 The Perfor mance Consultant and phases
The Performance Consultant (Section 9) can simultaneously search both the local phase and the

global phase. Complete details are given in the Performance Consultant section; searching on
multiple phases in particular is discussed in that section.

User’s Guide April 13, 2004 Release 4.1

Page 8-2

Time Histogram Display CF& -
File Actions View .
Phase: Global
operationsfsec CPUs
3000 1 0.7
2500 { 06+
zo00{ 0 M‘ \
0.4 N /™M Lo et e
1500 - o \ A e ,r'h"* I 8, ek z
034 ' v r / / 0
| I o
1000 0zl M
00~ gq
0- 0.0 T T T T T T T T T
0:00 1:20 Z2:40 4:00 2:20 640 .00 920 10:40 1200 13:20

Min:sec

cpu <Whole Program: (smoothed)
procedure_calls <Whole Program:= {(smoothed)

Figure 28: Time Histogram: Global Phase

Time Histogram Display ﬁ .
File Actions View i
Phase: phase_3
operationsfsec CPUs
3000 0.5
2500 - {
0.4+ At ; F Lk
2000 -| ﬁﬁ‘h’r}“" ! fﬂ{d"b”""'* || ﬁi’m _W’\“k"‘l'vklﬂwmpm‘\ﬁwﬁm
0.3 - o 1
1500 - | L z
f' il o
0.2 -
1000 - [ﬂ
so0] 017 |
[}
0- 0.0-- T T T T T T T T T T
540 600 620 640 700 720 740 8§00 0§20 8:40

Min:sec

cpu <Whole Program= (smoothed)
procedure_calls <\Whole Program:= (smoothed})

Figure 29: Time Histogram: Local Phase (3)

User’s Guide April 13, 2004 Release 4.1

Page 9-1

9 PERFORMANCE CONSULTANT

Paradyn provides many options for selecting and displaying performance information about your
application program. Sometimes these options can be overwhelming. In a large, complex pro-
gram, it can be difficult to know where to start looking for performance problems, and Paradyn’s
Performance Consultant is designed to help. The Performance Consultant (PC) helps identify the
type of performance problems (“why”), where in the program these problems occur (“where”)
and the time during the execution during which the problem occurred (“when™). This “why-

where-when” model of searching for performance problems is called the w3 (pronounced “W-
cubed”) Search Model and forms the core of the PC.

The PC is automated so that, in its normal mode of operation, you simply tell it to start search-
ing for performance problems. The PC will continually select and refine which performance met-
rics are enabled and for which foci they will be enabled.

The Performance Consultant in Release 3.0 of Paradyn introduced a couple of significant
changes to previous behavior. Firstly, the former Process/Thread hierarchy is now relocated
underneath Machine, so that searches progress from considering machines to processes (to
threads where supported), instead of separately considering machines and processes together.
Secondly, a callgraph-based search of the Code hierarchy replaces (as default) the former

unwieldy modules-then-functions search.t

In this section, we describe the W3 Search Model (Section 9.1), the components of the Perfor-
mance Consultant’s window (Section 9.2), how to interpret what the PC tells you (Section 9.4),
and (once you get a bit of experience) how to adjust and fine-tune its operation (Section 9.5).

9.1 The WP seach model

The Performance Consultant automatically locates potential bottlenecks in your code. The PC
describes each bottleneck by stating why there is a problem (the hypothesis), and where in the
application the problem was found (the focus, see Section 5). You can direct the search to find out
when the problem occurred by including either the entire execution or a particular phase of its
execution.

The “Why” Axis: The PC includes the definition of a set of generic performance problems.
These problems, called “hypotheses’, are typically of the form:

PerfMetricX > SpecifiedThreshol d

where PerfMetricX is some metric defined in Paradyn (Section6) and the
Speci fi edThr eshol d is avalue that you can set by using a Tunable Constant (Section 4).
The threshold value is typically expressed as a fraction (between 0 and 1) of the execution
time of the application program. Each hypothesis may also contain pruning directives, which
cause some portion of the resource hierarchy to be ignored while searching.

1. The former search behavior is available by setting (before opening the Performance
Consultant window) a developer mode Tunable Constant: PCuseCallGraphSearch.

User’s Guide April 13, 2004 Release 4.1

Page 9-2

The “Wher e” Axis: A focusin Paradyn alow you to constrain a performance metric to a particu-
lar subset of program resources. The PC makes step-by-step selections in the Where Axis, as
it triesto isolate the cause of performance problems.

The “When” Axis: The PC can look for performance problems whose effect is large enough to
stand out over the total execution of the application program, or it can look for problems that
stand out during a restricted interval of time. You can associate a PC with each phase
(Section 8). The PC associated with the global phases searches for performance problems that
affect the entire program execution; the PC associated with a local phase searches for prob-
lems that affect (at |east) that interval of execution.

Depending on the complexity of the application program, i.e., the number of nodes in the
Where Axis for the application, the number of hypothesis/focus pairs that could be explored
might be quite large. On the other hand, the goal isto find the handful of most troublesome bottle-
necks in the application. Any hypothesis/focus pair that doesn’'t exceed the threshold does not
require further attention; realistically, any that exceeds the threshold for only a short interval of
time won't get any attention. For this reason the PC only reports bottlenecks that exist for a signif-
icant portion of the overall phase being tuned.

9.1.1 The Wty Axis

The space of all possible hypotheses (such as synchronization-bound, CPU-bound, etc.) is

TopL evelHypothesis

ExcessiveSyncWaitingTime CPUbound Excessivel OBlockingTime

TooManySmalllOOps

Figure 30: The Why Axis

called the Why Axis. The root hypothesis is the generic TopLevelHypothesis. This hypothesis is
considered true if any hypothesis at the next level istrue. The remaining hypotheses are:

* CPUbound: Compares CPU time to the tunable constant PC_CPUThreshold. Searching
through /SyncObject and /Process hierarchiesis disabled.

* ExcessveSyncWaitingTime: Compares total synchronization waiting time to the tunable
constant PC_SyncThreshold.

» ExcessvelOBlockingTime: Compares total 1/0 waiting time to the tunable constant
PC_lOThreshold. Searching through the /SyncObject hierarchy is disabled.

User’s Guide April 13, 2004 Release 4.1

Page 9-3

* TooManySmalllOOps. Compares average number of bytes per 1/0O operation to
PC_lOOpThreshold. Searching through the /SyncObject hierarchy is disabled.

If aparticular hypothesis in the Why Axistests true, the PC will try to test the children of that
hypothesis next. When the Performance Consultant searches along the Why Axis in this way to
test more detailed hypotheses for a particular focus, we say a Why Axis refinement has been
made.

9.1.2 The search strategy

When a new search is started, the Performance Consultant makes instrumentation requests to
evaluate the topmost levels of the why and where axes; that is, it evaluates each top level hypothe-
sis (CPUBound, SyncWaiting, 10Blocking) for WholeProgram. These particular hypothesis/focus
pairs will continue to be evaluated for the entire phase.

There are two questions of interest here: when is the search expanded, and how is expansion
done? The search is expanded anytime a (hypothesis : focus) pair teststrue. The only exception is at
start-up, when an initial set of (hypothesis:focus) pairs are enabled. If, a any time, a
(hypothesis : focus) pair (h : f) tests true, then the following hypothesis:focus pairs will be added to
the search: (h : all child foci of WholeProgram), plus (all child hypotheses of h : f). The why axis, and
each of the resource hierarchies, are trees, so refining one step in the search is defined as moving
down along a single edge in either the why axis or one of the resource hierarchies. For example,
from (ExcessivelOBlockingTime : WholeProgram), using the resource hierarchy in Figure 17, the fol-
lowing set of (hypothesis : focus) pairs would be added:

1. One step aong the Why Axis:
(TooManySmalllOOps : WholeProgram)

2. One step aong the Code hierarchy:

(ExcessivelOBlockingTime : bubba.c) (ExcessivelOBlockingTime : channel.c)
(ExcessivelOBlockingTime : graph.c) (ExcessivelOBlockingTime : outchan.c)
(ExcessivelOBlockingTime : partition.c) (ExcessivelOBlockingTime : anneal.c)

3. One step aong the Machine hierarchy:
(ExcessivelOBlockingTime : goat)

All of the new (hypothesis : focus) pairs resulting from this expansion generate instrumentation
requests, and, if possible, data collection beginsimmediately. However, the total amount of instru-
mentation active at any given time during the tuning session is limited by an internal cost-tracking
system. If the total cost of currently enabled instrumentation for all visualizations and searches
exceeds the cost threshold, new (hypothesis : focus) pairs are queued and activated after some other
instrumentation is disabled.

Each (hypothesis : focus) pair is represented as a node of adirected acyclic graph (DAG), called
the Search History Graph (SHG). The root node of the SHG represents the pair
(TopLevelHypothesis : WholeProgram), and its child nodes represent the list of possible refinements
chosen as described above. If a SHG node tests false, it is not expanded. After a certain minimum

User’s Guide April 13, 2004 Release 4.1

Page 9-4

observation interval, testing on all but the topmost level false nodes is halted. If an already-
expanded node changes from true to false, then testing is halted for all of its children.

9.2 Running the Perfor mance Consultant

In this section, we describe how to run the Performance Consultant on an application.
Section 9.2.1 describes the Performance Consultant Window, Section 9.2.2 describes starting and
stopping a search, and Section 9.2.3 provides a detailed description of the Search History Graph.

9.2.1 The Performance Consultant window

The Performance Consultant window may be opened any time after an application has been
defined (see Section 2.4) by choosing Performance Consultant from the Setup menu of Paradyn’s
main window. Figure 31 shows a sample Performance Consultant window.

The Performance Consultant
ara
Searches ~——————) Searches | yn
Menu Current Search: Global Phase
IaHiaitZing Search for Global Phase.
Current / CPUbound tested true for /Code,/Machine,/Process,/SyncObject Search Stat
Search topLevelHypothesis tested true for fCode,/Machine,/Process,/SyncObject J ' us
7
I TopLeveIHypothesis|
Search History
Graph
—
= |\,| |
Resume Node Status
Deferrad
SHG Color Unknown uninstrumented
Key > True
False s iraneniod; shadow node
Why Axis Refinement Where Axis Refinement
Hold down Alt and move the mouse to scroll freely 1 HeIp Tips
Click middle button on a node to obtain more info on it

Figure 31: A sample Perfor mance Consultant window

The Searches menu contains alist of all possible phases on which a search has been requested
or may be started, including the default, “Global”, for whole program searches. If you have not
defined any phases for the application, then you will see only two choices, “Global” and “Cur-
rent.” The currently displayed phase has a blue diamond next to its name; the others have gray
diamonds. Choosing items under this menu allows you to page through the search displays for all
active, paused, and completed searches. When a new phase is defined, the Performance Consult-
ant detects it, and adds the new phase’'s name to its Searches menu.

User’s Guide April 13, 2004 Release 4.1

Page 9-5

The Current Search line gives the name of the currently displayed search phase. At any given
time, it is always the same as the Searches menu item having a blue diamond before its name.

The Search Status box is a scrolling text display just beneath the Current Search line. From
time to time, the Performance Consultant adds some information about the currently displayed
search in this box; examples include when refinements are made, phases end, and unexpected
error conditions occur. As with most items in the Performance Consultant window, the informa-
tion displayed is specific to the currently displayed search; changing searches (by choosing a dif-
ferent item under the Searches menu) will show different information.

The Search History Graph Display is the resizable window below the status box. The Search
History Graph is a compact graphical display of the history of refinements made by the Perfor-
mance Consultant. Each search has a distinct Search History Graph; changing searches will show
adifferent Search History Graph. Section 9.2.3 discusses the Search History Graph in detail.

The Node Status displays extrainformation for a given Search History Graph node. To see the
full description for any node in the SHG display, click the middle mouse button on the node. For
example, the node status line in Figure 35 shows the full hypothesis and focus for the blue node
labeled goat. For convenience, this line of information will remain present until the next time a
node is clicked on with the middle mouse button. The Search and Pause buttons are described in
Section 9.2.2, where we discuss running the Performance Consultant.

The SHG Color Key explainsthe colors and display styles used in the SHG display. We discuss
each key item in Section 9.2.3. To conserve screen space, the SHG Color Key may be removed by
setting the tunable constant showShgKey to false.

Help Tips describe mouse and key presses in the Performance Consultant window. To con-
serve screen space, these may be removed by setting the tunable constant showShgTips to false.

9.2.2 Starting and stopping a search

To start the currently displayed search, click on the Search button in the Performance Consultant
window. The PC directs instrumentation insertion to begin locating application bottlenecks. Note
that the application program must be running for data to be collected for the PC; if the application
has not been started or has been paused, (re-)start it by pressing the RUN button of the Paradyn
Main Window (see Section 2). Current Phase Searches may also be started at the same time a new
phase is defined. To do so, choose Start with Performance Consultant from the Phase menu of
Paradyn’s main window.

The Pause button stops the Performance Consultant temporarily, and removes all instrumenta-
tion for the particular search displayed. Note that it does not stop the application itself; its only
effect ison the PC’s currently displayed search. To resume a search after pausing, press Resume.

A search ends when its phase ends; for a current phase, this is when you define the start of a
new phase; for the global phase, it is when the application terminates.

User’s Guide April 13, 2004 Release 4.1

Page 9-6

9.2.3 The Searh History Graph display

As the Performance&Consultansearche$or bottleneck(s)it leavesa recordof its progressn
the Seach History Graph Initially, the SearchHistory Graph containsonly a single item:
TopLevelHypothesis. A few momentsafter the searchbegins, the SearchHistory Graphwill look
like thatin Figure32. The threeitemswithin the listbox below TopLevelHypothesis are what the

The Performance Consultant

ExcessiveSyncWaiting Time
Excessivel OBlocking Time
CPUbound

frsirennenied; siadow node
_ Fase | uoinstrumentod; shedow node |
_ WhyAdsRefnement | WhereAdsRefnement |

Figure 32: The Rerformance Consultants seach begins

PerformanceConsultantfirst teststhe programfor—excessve synchronizationwaiting time,
excessve I/O blockingtime, or CPUbound.To usetheterminologygivenabove, the Performance
Consultanis presentlytrying to find out whythe programis runningslowly, asopposedo where
(whatprogramresource(s)it is runningslowly. Whenever itemsareaddedto the SearchHistory
Graph,we saythatarefinemenhasbeenperformedn this example,a Why Axisrefinemenhas
beenperformedjndicatedby the yellow line connectingropLevelHypothesis to its descendaritst-

User's Guide April 13, 2004 Release 4.1

Page 9-7

box. As shown in the window’s key area at the bottom of the Performance Consultant window, a
yellow lineisaWhy Axis refinement; a purple line is a Where Axis refinement.

Each item in the Search History Graph of Figure 32 has a green background. As shown in the
window's key area, a green background indicates Unknown status; that is, we do not yet know
whether any of ExcessiveSyncWaitingTime, ExcessivelOBlockingTime, Of CPUBound are true or false,
since we have just begun the Performance Consultant’s search. Also, the text of each item in the
listbox has awhite foreground. As shown in the window’s key area, white text indicates an active
test; that is, the Performance Consultant has instrumented the program to perform the test and is
collecting datafor it. If an experiment’s instrumentation has been deferred because an application
process was executing in the neighborhood of an instrumentation point, the text of the listbox item
will be drawn in blue. When the instrumentation is eventually inserted, the item’s text will be
redrawn in white.

We continue the search until the Performance Consultant has made a further refinement
(Figure 33). First, note that the Performance Consultant has decided that the program is CPU
bound (because CPUbound is drawn with a blue background). The nodes
(ExcessiveSyncWaitingTime : WholeProgram) and (ExcessivelOBlockingTime : WholeProgram) have
both tested false, so their background color is now pink. Although al three of these nodes will
continue to be tested (which we see by the white text), only the true node, CPUBound, has been
expanded to try to further refine the bottleneck. As aresult of the search, alistbox below cPub-
ound has appeared. The line connecting CPUbound to its children is drawn in purple, since is a
Where Axis refinement. Each item in the listbox contains program resources that are being exam-
ined with the CPUbound hypothesis. The Performance Consultant has decided that the program is
CPU bound; now it’s trying to refine the bottleneck to (in this case) a certain machine (goat) or in
the Code hierarchy.

Double-clicking on a true node (such as CPUbound in Figure 33) collapses the display so its
children are no longer shown. Because it saves screen space, this is useful for traversing large
complex search graphs. In the example of Figure 33, double-clicking on CPUbound would put
CPUbound into the listbox with ExcessiveSyncWaitingTime and ExcessivelOBlockingTime. A triangle
will appear next to CPUbound in the listbox to indicate that it has children which are presently
being hidden to save screen space. To expand the node's children, double-click on the namein the
listbox.

Screen space can be saved in the Search History Graph by hiding certain combinations of
node types. For example, you may wish to view only nodes which the Performance Consultant
has determined to be true bottlenecks (blue nodes). Or, you may wish to show all but those nodes
which have been determined not to be bottlenecks (pink nodes). There are seven such node char-
acteristics; boolean tunable constants (Section 4) can be set to show or not to show nodes of any
given characteristic. We now briefly describe each node characteristic; they are discussed in more
detail in Section 9.4.

9.3 Interpreting the results of callgraph-based search

The callgraph-based search is similar in principle to the modul e-then-function search, differing in
the way searches and refinements proceed through the Code hierarchy, and in the initial use of

User’s Guide April 13, 2004 Release 4.1

Page 9-8

The Performance Consultant

bubba.c
partition.c
channel.c
anneal.c
outchan.c

graph.c

Figure 33: The Performance Consultant refines bottleneck to CPUbound

inclusive metrics instead of exclusive metrics. Since inclusive metrics are less costly/intrusive and
the search is directed by executing functions, the callgraph-based search is typically faster and
more accurate than the modul e-then-function search.

9.4 Interpreting the results of module-then-function search

Results may change over time because the Performance Consultant continues running for the
duration of the phase being tuned. Figure 35 shows a search in progress and explains how to inter-
pret the PC display. The Performance Consultant has decided that the program is CPU bound (and
it represents this by presenting CPUbound drawn with a blue background). The nodes

User’'s Guide April 13, 2004 Release 4.1

Page 9-9

Tunable Constant to

Visual representation control display look

Description

1. Gray node background shgHideNeverSeenNodes | Nodes that the Performance Consultant has not yet
examined.

2. Green node backgroundshgHideUnknownNodes Nodes that the Performance Consultant has not yet
determined to be true cale.

3. Blue node background| shgHideTrueNodes Nodes that the Performance Consultant has dete
mined to be true.

=
1

4. Pink node background| shgHideFalseNodes Nodes that the Performance Consultant has deter
mined to bedlse.

5. White node tet shgHideActiveNodes Nodes with white tet are those that are aai—the
Performance Consultant has instrumented the pro-
gram and is collecting performance data for it.

6. Black node tet shgHidelnactiveNodes Nodeswith blacktext areinactve—thePerformance
Consultant has not instrumented the program to ¢ol-
lect performance data for it.

7. Red node ¢ Nodes with red tet are deferred—the daemon hag
communicated to the performance consultant that
the metric-focus request is delayed. The delay c4d
vary depending on the function and the program.

5

8. ltalicized node tet shgHideShadowNodes Nodeswith italicizedtext areshadev nodesthey are
discussed in Sectidh4.

Figure 34: Search History Graph tunable constants for saving screen space

(ExcessiveSyncWaitingTime : WholeProgram) and (ExcessivelOBlockingTime : WholeProgram) have
bothtestedfalse,sotheir backgroundtoloris now pink. Althoughall threeof thesenodesremain
active, only the true node,CPUbound, hasbeenexpandedto try to further refinethe bottleneck.
Eachitemin thelistbox undercPuUbound containgorogramresourceshathave beentestedaspos-
sible refinementf the CPUbound hypothesis Refinementgo two differenttrue nodes(machine
namegoat and sourcecode modulepartition.c) have beenmade.The PerformanceConsultantis
capableof makinganarbitrarynumberof simultaneousefinementshbecausenultiple hypothesis/
focuspairsmay be testedconcurrently For example,in the SearchHistory Graphof Figure35,
the PerformanceConsultanwill try to make refinementf the two true nodesbelov CPUbound:
goat andpartition.c.

Two separatsearchpathsmaycornvergethroughexpansionto the samechild node.For exam-
ple, the next refinemenof goat might be partition.c, andthe next refinemenbf partition.c might be
goat. If so,they would sharethe samechild node:(CPUbound : /Code/partition.c,/Machine/goat,/Pro-
cess,/SyncObject). The searchdisplaydoesnot connectthe two differentparentnodesto the same
child; insteadjt addsa child nodefor eachwhereoneis aregularnodeandthe other(s)is acopy.
Thesecopiesarecalledshadow nodes. In Figure35, the regular nodegoat hasbeenclicked with
themiddlemousebuttonto provide its detailsin theinformationline below the shg,while thelist-
box item goat underpartition.c is drawn in italics to indicatethatit is a shadev node.The color of
ashadev nodewill be updatedo reflectthe statusof its regularnode.Shadev nodesarealways

User’s Guide April 13, 2004 Release 4.1

Page 9-10

The Performance Consultant
S
¥

Searches | (4]

Current 3earch: Global Phase

CPUbound tested true for fCode,/Machine /Process, /SyncObject
toplLevelHypothesis tested true for /Code, /Machine,/Process fSyncObject
CPUbound tested true for fCode,/Machinefgoat,/Process,/SyncObject J
CPUbound tested true for fCodefpartition.c, /Machine,/Process fSync Object
4
CPUbound
channel.c
anneal.c A
outchan.c
graph.c
£ =

|CPUhuund::fCude,!Max:hine!guat,!Pmcess,!Syn[: Object

Resume | |

Dafarrad

Unknown uninstrumented
False LTS TR RTEiedl; ST Rode
Why Axis Refinement Where Axis Refinement

Figure 35: The Perfor mance Consultant refines bottleneck beyond CPUbound

leaf nodes; although the regular node may be expanded in the usual way, the resulting listbox is
not be copied to the shadow nodes. In this example, the node goat under partition.c is a shadow
node because it has the same hypothesis/focus pair (CPUbound : /Code/partition.c,/Machine/goat,/
Process,/SyncObject) as the listbox item partition.c under goat.

Figure 36 shows the contents of the Search History Graph after the next set of refinements are
made. First, the node partition.c under goat has been found true; this is the hypothesis/focus pair
CPUbound : /Code/partition.c,/Machine/goat,/Process,/SyncObject discussed above. This focus can be
read as, “code in module partition.c when executing on machine goat”. The shadow node goat
under partition.c is also true; no attempt is made to refine anything beyond it, however, becauseit’s
just a shadow node of partition.c under goat. Additionally, the node p_makeMG under partition.c iS

User’s Guide April 13, 2004 Release 4.1

Page 9-11

The Performance Consultant
S
¥

Searches | (4]

Current 3earch: Global Phase

CPUbound tested true for fCode,/Machinefgoat,/Process,/SyncObject
CPUbound tested true for fCodefpartition.c, /Machine,/Process fSync Object
CPUbound tested true for /Code/partition.c./Machine/goat,/Process,/3yncObject J
CPUbound tested true for fCodefpartition.cfp_makeM G, /Machine,/Process,/SyncObject
4
/ e [CPUbound]
channel.c
ameae | [owbac | [0 [p_makeMG |
outchan.c channel.c p_copy
graph.c anneal.c hah I |
outchan.c redosetmap
graph.c delmem
overap
p_isvalid
p_init
p_hconst
whichset
= p_new
printpart
£ =

|CPUhuund::!Cudefpartjtjun.cfp_makeMG,IMax:hinefguat,!Pmcess,!Sync Object

Resume | |

Dafarrad

Unknown uninstrumented
False LTS TR RTEiedl; ST Rode
Why Axis Refinement Where Axis Refinement

Figure 36: The second set of Search History Graph refinements

now true. Its hypothesis/focus pair is (CPUbound : /Code/partition.c/p_makeMG,/Machine,/Process,/
SyncObiject). Note that p_makeMG has just asingle element in the listbox below it (goat), and it'sa
shadow node. The hypothesis/focus pair for this node is shown in Figure 36 (i.e., we have clicked
the middle button on that node). It can be read as “function p_makeMG of module partition.c;
machine goat”. This item is a shadow node of p_makeMG, located in the listbox below partition.c
which isin turn under goat. Hence, in Figure 36, two searches are in progress. The first has tenta-
tively concluded that a bottleneck exists for module partition.c on machine goat. The other has ten-
tatively concluded that a bottleneck exists for the function p_makeMG (of module partition.c), and
istrying to refine further.

User’s Guide April 13, 2004 Release 4.1

Page 9-12

The state of the Performance Consultant after the next (and last) refinement is shown in
Figure 37. In the middle of the figure, we see that p_makeMG (under partition.c, in turn under goat)

The Performance Consultant
S
¥

Searches | (4]

Current 3earch: Global Phase

CPUbound tested true for fCodefpartition.c, /Machine,/Process fSync Object

CPUbound tested true for fCodefpartition.c /Machinefgoat,/Process /Sync Object

CPUbound tested true for fCodefpartition.cfp_makeM G, /Machine,/Process,/SyncObject
CPUbound tested true for fCodefpartition.c/p_makeM G, /Machinefgoat,/Process, /Sync Object J

iy |
CPUbound
_] goat
| [pvac p_makeMG
g channel.c p_copy i
|| | anneal.c pmakeriG) i I
= | outchan.c m redosetmap
graph.c redosetmap delmem
delmem overiap
p_isvalid
p_init
= it p_hconst
p_hconst | whichset
Lashichset | R
£ [

|CPUhuund::!Cudefpartjtjun.cfp_makeMG,IMax:hinefguat,!Pmcess,!Sync Object

RHesume | Pause |

uninstrumented

False LTS TR RTEiedl; ST Rode
Why Axis Refinement — Where Axis Refinement

Figure 37: Final Search History Graph bottleneck refinement

is true. Its hypothesis/focus pair is shown below the Search History Graph (i.e., we have clicked
the middle button on the node). It can be read “function p_makeMG of module partition.c; machine
goat”. In addition, the shadow node goat under p_makeMG (in turn under partition.c) has been set to
true, to reflect the change in truth value of the actual node for which it is a marker.

In this example, we are done. The Performance Consultant has found the bottleneck, and will
not refine any further nodes. After afew more moments, the green items (unknown) in the listbox

User’s Guide April 13, 2004 Release 4.1

Page 9-13

below partition.c will turn pink (false); though we do not show a picture of it here. The Perfor-
mance Consultant will continue to re-evaluate all true nodes and top level hypotheses so that a
change in application behavior will update the search.

All nodes which are true (blue) at the end of the search indicate hypothesis/focus pairs that
have remained true for a significant portion of the phase searched. The PC refines al true nodesto
as specific afocus as possible; in some cases the focus will be refined down to the leaf level of the
resource hierarchies, but in others the bottleneck is spread across some number of foci and so
refinement stops earlier. For example, total CPU time for a module may exceed the current
PC_CPUThreshold, but the module may contain a number of functions with roughly equal CPU
times. If no single function exceeds the threshold, refinement will terminate at the module level.

Whenever a node tests true, a note is added to the Search Status Box near the top of the win-
dow. During your tuning session you may scroll through this list to see a history of test results.

Note that it is possible for the Performance Consultant to report fal se negatives: that is, it may
fail to detect bottlenecks in the code for any of the following reasons: you start a search after the
behavior has started and ended; you perform a search on a phase that contains several distinct
behavioral phases, so no individual bottleneck occurs throughout the entire phase; or the bottle-
neck is of relatively short duration, relative to the length of the phase being tested. The PC may
fail to completely refine a given bottleneck, if the individual refinement changes from false to true
after the PC hastested and found it false.

9.5 Customizing the search parameters

The Performance Consultant has several kinds of controls that you can set to customize its search
operation. These controls are tunable constants that set the threshold for deciding when a perfor-
mance problems exists. Setting the tunable constants is easily done following the instructions in
Section 4.

Several user-level tunable constants are currently defined to control the search:
PC_CPUThreshold, PC_SyncThreshold, PC_lOThreshold, and PC_lOOpThreshold. For example, if
PC_CPUThreshold is set to 0.3 (30% of the phase), then any focus with CPU time greater than
30% of the phase’s elapsed time will be reported as a bottleneck. Other tunable constants control
the sensitivity of the hypothesis testing.

The tunabl e constants determine the thresholds used for testing hypotheses:
PC_CPUThreshold: used for hypothesis CPUbound.
PC_SyncThreshold: used for hypotheses ExcessiveSync\WaitingTime.
PC_lOThreshold: used for hypothesis Excessivel OBlockingTime.
PC_lOOpThreshold: used for hypothesis TooSmalllOOps.

These tunabl e constants determine search parameters:

minObservationTime: all testswill be continued for at least thisinterval of time before any conclu-

User’s Guide April 13, 2004 Release 4.1

Page 9-14

sions are drawn. This protects against transitory effects at the start of a phase.

costLimit: determines an upper bound on the total amount of instrumentation that can be active at
agiven time while the application runs. A low value permits less concurrent instrumentation,
so the search may proceed more slowly but perturbation of the application will also be lower.
A high value increases perturbation, which may result in less accurate values for all visualiza-
tions as well as the Performance Consultant.

User’s Guide April 13, 2004 Release 4.1

Page 10-1

10 STANDARD VISI MODULES

Paradyn provides an open interface to its performance data. All visualization modules (visis) in
Paradyn are external processes that use the Paradyn-provided library and remote procedure call
interface (MisiLib) to access performance data in real time. Existing visualizations can be easily
added to Paradyn by modifying them to use VisiLib routines to access Paradyn performance data.
Paradyn currently has visis for a time-histogram, bar chart, table and 3D terrain visualization.
These visualizations are described in the following sections, and the VisiLib library is described
in a separate document, the VisiLib Programmer’s Guide.

10.1 Time Histogram visi

The time-histogram visudlization plots performance data for metric/focus pairs over time.
Figure 38 displays a time-histogram showing three curves corresponding to three enabled metric/
focus pairs. The time axis begins at the start time for the phase over which the datais being dis-
played (in this case the data is displayed for the globa phase which begins at time 0). The time-

Histogram Visualization ‘f)
File Curve | -

opsizes CFUsz
100000 1

90000 0.4
&0000 0.5
0000 0.7 1 l

G0000 0.6

50000 0.5 7
o 4 ‘ WWW\/W/J”W‘\N\
30000 0.3 |

20000 0.2

==)

10000 7 0.1 |

- 1] T T T T T T T T T
0 20 40 60 g0 100 120 140 160 180

c < fCodefartition.c > {smoothed)
cpu<Whole Programs {smoothed)
procecure_calls<Whole Program: (smoothed)

=l

Fan

Figure 38: Time Histogram with selected curve

histogram can display multiple y-axes. In Figure 38 there are two y-axes displayed; the rightmost
one corresponding to the metric “CPU utilization”, and the leftmost corresponding to the metric
“Procedure Calls’. Each y-axisis labeled with the units in which its corresponding metric is mea-
sured. The y-axislabels can be seen in Figure 38.

Time-histogram is launched by choosing Histogram from the Start A Visualization dialog pro-
duced by pressing the Vvisi button in the Paradyn Main Control window. A dialog box with alist of
al visisknown to Paradyn is brought up; choose Histogram and click Accept.

User’s Guide April 13, 2004 Release 4.1

Page 10-2

10.1.1 File menu

The Histogram visi’s File menu contains two items for operations that apply to the Histogram
visualization as awhole. The Keep on Paradyn Exit item isacheck box that specifies that the His-
togram display should not terminate when Paradyn is closed. This behavior is useful in case the
user wishes to make screen dumps of the histogram display after the application under study has
completed and Paradyn has been closed. By default, this behavior is disabled (i.e., the Histogram
window closes when Paradyn is closed).

The Close item closes the Histogram visi window, disabling instrumentation and removing
resources no longer required.

10.1.2 Curve menu

The Curve Menu contains items that manipulate curvesin the Histogram visi window. Most of the
items operate on the selected curve(s). To select a curve, click on its name in the legend of the
Histogram visualization window. See Figure 38 for an example of a selected curve.

The Add... menu item adds curves to the Histogram visualization. When selected, the “Para-
dyn Metrics Menu” dialog will be displayed to allow the user to choose which metrics are to be
shown in the Histogram. The Where Axis is also used in adding a new curve, in that the current
selection in the Where Axis is the focus for the new curve. The Add... menu item is the only item
in the Curve menu that does not require a current selection.

The Remove menu item removes one or more curves from the Histogram visualization. When
this item is chosen, the curves selected in the Histogram visualization window’s legend are
removed from the Histogram visualization. If possible, the instrumentation that was used to col-
lect the datafor that curve is removed from the application under study.

The Smooth menu item smoothes the data for the selected curve(s). A smoothed curve is one
that shows the effects of passing afilter over the datato remove spikes from the curve's data. The
curves shown in Figure 38 are smoothed. By default, curves are smoothed when added to the His-
togram.

The Unsmooth menu item removed the smoothing effect from the selected curve(s). For com-
parison with the smoothed curves of Figure 38, see the same curves unsmoothed in Figure 39.

The Show menu item reshows a hidden curve in the Histogram visualization window. Con-
versely, the Hide menu item hides a visible curve in the display. Both operations work on the
selected curve(s) only. In Figure 39, the “ cpu<Whole Program>" curve has been hidden in the dis-
play..

10.1.3 Panning and zooming

The scroll bars at the bottom and right of the time-histogram allow the interval of time displayed
in the histogram window to be adjusted. The zoom bar can be adjusted to get amore detailed view
of a particular time interval along the x-axis. As the zoom bar is moved upwards, the percent of
the total x-axis displayed decreases. Also, once the zoom bar has been moved, the pan bar can be
used to change the time interval that is currently being displayed in the window. Figure 40 shows
the time-histogram with a zoomed and panned view.

User’s Guide April 13, 2004 Release 4.1

User’'s Guide

Histogram Visualization

File Curve

opsfaec CFUs
S50000 5 1
500000 049
450000 0g
400000 07
350000
0.6 7
300000
0.5
250000 z
0.4 a
200000 4 o
0.3 m
150000 4
100000 L
50000 0 Rl Mottt oty e)
o- 1] T T T T T T T T T
1] 20 40 =11 g0 100 120 140 160 180
Sec
Icpu<.fC0defpartition.c>
cpu<Whole Programs {smoothed)
—_— |procedure_caJI3<Whole Progranm -
Fan f
~ |~

Figure 39: Time Histogram with unsmoothed and hidden curves

File Curve

Histogram Visualizatio c:f)
=

OpfEes CFUs
100000 1
90000 049 -_—‘\“_TJ”—‘_'_\wjf_kf_‘—”“‘_'___ﬁ_r_
50000 0.5
70000 0.7
60000 0.5
50000 0.5 z
40000 0.4 =}
WMWW o
30000 0.3 m
20000 0.2
10000 0.1
- 1] T T T T
100 120 140 160
Sec
cpus/Codefpartition.c» {smoothed)
cpu<Whole Program: (smoothed)
—— procedure_calls<Whole Program: (smoothed)
Fan f
R ' =

Figure 40: Zoomed Time Histogram

April 13, 2004

Page 10-3

Release 4.1

Page 10-4

10.2 Barchart vig

Barchart is an external visualization module that enables many metric-focus pairs to be viewed in
real time. Barchart receives its data through the visi lib. The visi lib is described in the VisiLib
Programmer’s Guide; we do not discussit further here.

Figure 41 shows the Barchart window. The vertical axis contains the names of al foci selected
for viewing. There are also a certain number of metrics currently selected for viewing; they (along
with a range of values) are displayed in the horizontal axis. Note that each metric has its own
color; this helpsidentify the bars emanating horizontally next to each focus.

Barchart is designed to view many metric/focus pairs. In Figure 41, there are seven foci and
two metrics, leading to 7 x 2 = 14 metric/focus pairs. Barchart can easily handle far more; it is
not unusual to display 30 or more foci, and five or more metrics. This contrasts with the Histo-
gram visi (see Section 10.1), which is restricted to eleven metric/focus pairs at a time. On the
other hand, Barchart has no way to show how metric/focus pairs change over time.

Barchart Visualization
ara
File Actions View | VI
Phase: Global
anneal.c —]i
bubba.c -
channel.c -
graph.c | T
outchan.c -
partition.c -
= yhole Prograrm | IR
4
procedure_calls {operationsfsec) | 0.0 3333.0 6666.0
0.0 0.5 1.0

Figure 41: Barchart visualization window

Barchart is launched by choosing it from the Start A Visualization dialog produced by pressing the
Visi button in the Paradyn Main Control window. A dialog box with alist of all visis known to
Paradyn is brought up; choose Barchart and click Accept.

A dialog box containing al metrics known to Paradyn will appear. Paradyn is asking you to select
some initial metric-focus pair(s) for the Barchart. Choose metric(s) by selecting desired check-

boxes in the metrics dialog box!. Choose foci by selecting desired resources in the Where Axis
window.? The metric-focus pairs generated will be the cross-product of the foci and metrics.

1. For details on selecting metrics, refer to Section 6.
2. For details of focus selection, and the Where Axisin general, refer to Section 5.

User’s Guide April 13, 2004 Release 4.1

Page 10-5

At this point, the Barchart window (as in Figure 41) should appear, with the metrics and foci you
selected. If Paradyn is running an application, data should begin appearing immediately.

10.2.1 Changing metrics and foci being viewed

You must specify an initial metric/focus set when launching a barchart. You may later add as
many more metric/focus pairs as desired (duplicates will be correctly filtered). To do this, choose
Add Bars from the Barchart’s Actions menu. Theinterface for adding metrics and foci at this point
is the same as upon startup; you will be shown the metrics dialog box for choosing metrics, and
the where axis for choosing foci.

You may delete foci by clicking on their names and choosing Delete Selected Foci from the
Actions menu.

10.2.2 Viewing data

Values being viewed in a Barchart are, by default, current. Each time a screenful of new data
arrives (from Paradyn), Barchart immediately displays the most recent values, thereby overwrit-

ing the previous screenful of data, which cannot be re-displayed later®.

There are two other ways of viewing data. Under the view menu, we could choose to view Aver-
age values. In this case, what we see on the screen will be the average (over time) of all values
collected by this instantiation of Barchart. After a short time, the bars will probably setting down
to a steady state; thisis to be expected when viewing average values. The third way of viewing
data is to view Total values. This causes the bar values to monotonically increase over time.
Figure 42 shows a Barchart, otherwise similar to that of Figure 41, with Total instead of Current

Barchart Visualization
ara
File Actions View | {28

Phase: Global

[]

anneal.c 5
bubba.c -
channel.c -

graph.c -

outchan.c -

|
partition.c -
[

Whole Program -

procedure_calls {operations) | 0.0 2F736.5 aad73.0

0.0 5.9 11.0

Figure 42: Barchart showing total values

3. To get afeeling for metric/focus pair changes over time, try the run-time Histogram visi (Section 10.1).

User’s Guide April 13, 2004 Release 4.1

Page 10-6

values displayed. Note that the metric units (the lower left corner of Figure 42) changes accord-
ingly, and that the metric bounds (the lower right part of Figure 42) adjust accordingly.

10.3 Tablevis

Like the Time Histogram (Section 10.1) and Barchart (Section 10.2), Tableis a Paradyn visualiza-
tion module (visi) that receives its data through the visi lib (described in the document VisiLib
Programmer’s Guide) interface.

Figure 43 shows the Table window. The columns are metrics; the rows are foci. Note that

File Actions View

[Phase: Global

[N active_processes cpu exec_time procedure_calls
operations CPUs CPUs operationsfsec

{Code/anneal.c 1 1] 0.0034226 58.484
{Code/bubba.c 1 1] 1]]
{Code/channel.c 1 1] 1]]
{Code/graph.c 1 014595 0.1144 693.44
{Code/outchan.c 1 1] 1]]
{Code/partition.c 1 01946 0.2024 245.44
{Code/partition.c/p_makeMG 1 01946 0.19447 20141

v Whole Program 1 0.3892 0.99999 1,199.2

= =]

Figure 43: Table visualization window

there are two lines describing each metric: the first name (in blue) is the metric name; the line
below it (in black) gives the metric’s units.

Like Barchart, Table uses screen real estate efficiently—it can show many metric-focus pairs
at atime. For example, Figure 43 has four metrics and eight foci for atotal of 4 x 8 = 32 metric-
focus pairs. It isreasonable for a Table to show hundreds of metric/focus pairs at atime. However,
like Barchart, Table cannot show how metric/focus pair values are changing over time.

Table is launched from the Start A Visualization dialog resulting from pressing the Visi button
in the Paradyn Main Control window menubar. A dialog with alist of all visis known to Paradyn
is brought up; choose Table and click Accept.

A dialog box containing all metrics known to Paradyn will appear (see Section 6). Paradyn is
asking you to select some initial metric-focus pair(s) for the Table. Choose metric(s) by selecting
desired checkboxes in the metrics dialog box. Choose foci by selecting desired resources in the
Where Axis window (see Section 5). The metric-focus pairs generated will be the cross-product of
the foci and metrics.

At this point, the Table window (as in Figure 43) should appear, with the metrics and foci you
specified. If the application is running, data should begin appearing immediately.

User’s Guide April 13, 2004 Release 4.1

Page 10-7

10.3.1 Actions menu

Launching Table requires an initial metric/focus set to be specified. However, you may later add
or delete metric-focus pairs as desired (when adding, duplicate pairs will be correctly filtered). To
add metric-focus pairs, choose Add Entries from Table's Actions menu. The interface for adding
metric/focus pairsis the same as when starting Table (Section 10.3); choose entries from the met-
rics dialog box and the Where Axis window.

Deletion in Table can take 3 forms; you can delete afocus (an entire row of the table), ametric
(an entire column of the table), or a single metric-focus pair (a single cell of the table) with one
delete operation. First you select what to delete by clicking once with the left mouse button on the
appropriate item. To delete afocus, click on the focus name itself on the |eft side of the table; the
entire row will become highlighted. To delete ametric, click on the metric name itself at the top of
the table; the entire column will become highlighted. To delete an individual metric/focus pair,
click on the cell value; it will become highlighted. Once you have selected an item, the second
entry of the Actions menu (named Delete Selected Focus (entire row), Delete Selected Metric
(entire column), Or Delete Selected Cell, as appropriate) will become active. Choose that menu
item to perform the deletion.

10.3.2 View menu

Long vs. short names

Focus names can be displayed in long form (e.g., / Code/ anneal . ¢) or in short form (e.g.,
anneal . c). To toggle between the long and short forms, choose Long Names from Table's View
menu. The default is to show long names. Figure 44 shows the equivalent of Figure 43 with short
instead of long names..

File Actions View

| Phase: Global

[N active_processes cpu exec_time procedure_calls
operations CPUs CPUs operationsfsec

anneal.c 1 0 0.0034226 58.484
bubba.c 1 1] 1]]
channel.c 1 0 1]]
graph.c 1 014595 0.1144 693.44
outchan.c 1 0 1]]
partition.c 1 01946 0.2024 245.44
p_makeMG 1 0.1946 0.19447 20141

_/ Whole Program 1 0.3892 0.99999 1,199.2

= =]

Figure 44. Table visualization showing short focus names

Current vs. average vs. total values

By default, Table cellsare “current”: As soon as ascreenful of new data arrives from Paradyn,

User’s Guide April 13, 2004 Release 4.1

Page 10-8

Table redraws the cells with the new values. As with Barchart, there are two other ways to view
data. Under the view menu, we could choose to view Average values. In that case, metric/focus
pair values shown will be the average (over time) of all values collected by this instantiation of
Table. After a short time, the values shown will probably settle down to a steady state; thisisto be
expected when viewing averages. The third way of viewing data is Total values. This causes the
bar values to monotonically increase over time.

Sorting metrics

By default, Table displays the columns (metrics) in the order in which they were added. To
sort them by name, choose Sort Metrics (ascending) from Table's View menu. To change back to
the default, choose Don't Sor t Metrics from Table's View menu.

Sorting foci

By default, Table displays the rows (foci) in the order in which they were added. To sort by
name, choose Sort Foci (ascending) from Table's View menu. Note that sorting foci is sensitive to
the current setting of Long Names in the vView menu: if long focus names are displayed, sorting is
according to these long names; if short focus names are displayed, sorting is according to the
short names.

There is another way to sort foci: by value. Choosing Sort Foci By Values (of Selected Metric)
effectively turns Table into a profiler; whenever a screenful of new data arrives from Paradyn, the
foci (rows) are reordered to match the new values. When viewing Current Values, rows can seem
to jump around so quickly that they are difficult to read. Sorting foci by value clearly works best
when viewing Average Values or Total Values , which reach a steady state quickly.

In order to sort foci by value, Table needs to know which metric to sort by. To give an exam-
ple, sorting the foci of the table in Figure 44 would yield very different orderings between the foci
procedure_calls and cpu. In the former, graph.c has a higher value than partition.c ; not so the lat-
ter.

Sgnificant digits
Individual metric/focus pairs are floating point values. You can change the number of signifi-
cant digits in which these values are viewed by choosing the desired item under the view menu.

Figure 44 is shown to five significant digits. Figure 45 shows the same table with two significant
digits. Scientific notation is used when necessary.

10.4 3D Terrain vis

Like all the previous visis, Terrain is a Paradyn visualization module (visi) that receives its data

through the visi lib (described in the document VisiLib Programmer’s Guide) interface.* The Ter-
rain visualization displays data in 3D, alowing the performance data to be analyzed using a sur-
face rather than curves or bars. This visuaization can be particularly useful when we want to

4. Note that the Terrain visi is not supported on Microsoft Windows.

User’s Guide April 13, 2004 Release 4.1

Page 10-9

File Actions View

| Phase: Global
[N active_processes cpu exec_time procedure_calls
operations CPUs CPUs operationsfsec

anneal.¢ 1 1] 0.0034 ab
bubba.c 1 1] 1]]
channel.c 1 0 1]]
graph.c 1 0.15 011 6.9e+02
outchan.c 1 0 1]]
partition.c 1 0.19 0.2 2.58+02
p_makeMG 1 0.19 0.19 20

_/ Whole Program 1 0.39 1 1.2e+03

= =]

Figure 45: Table visualization with values shown to two significant digits

compare a particular metric for different foci (like the example shown below in Figure 46, which
displays CPU time for machines “beaufort”, “cham” and “poona’).

sD-Histogram Display cﬁz ra
Yy

From top: 60.000 degs | From x-z: 30.000 degs
Phase: Global

File View

cpu

CPUs

0.35

time (min:sec)

Figure 46: 3D Terrain visualization

10.5 Viewing the application output display
A specia graphical window, called the termWin, is created whenever Paradyn starts an applica-

tion. Thiswindow displays the output of the application. The output information displayed in this
window can be edited and saved to afile. In developer mode, debug information from Paradyn

User’s Guide April 13, 2004 Release 4.1

Page 10-10

daemon is also displayed in this window; a different color is used to identify the debugging out-
put. An exampleis shown in Figure 46.

licati Output

File Option | (4
address = 0 of 4 I
address = 1 of 4
address = 2 of 4

address = 3 of 4

File open: fom3_ 2 Z.cmpics

Started on 4 nodes.

Meools,Mrows 2 2 MMy BE BB

Started on < nodes.

Started on 4 nodes,

Started on 4 nodes.

Mas 520 0.206100, sy 0117000, ann. temp, 27.570
391, ann. salt 35.763659 J
istep: 37EB16 Maz u: 0.000000, »: 0000000, & 21.65
<4333, p: 0.000000

Figure 47: Application output window

There are two commands available: the File]Save menu option, which creates a standard save
dialog for the application output; the Option|Close menu option, which controls when the window
can be closed. By default it is closed when Paradyn exits. Alternatively, it will remain even after
Paradyn exits, so that the user can continue working on it.

There currently is no termWin visi for Paradyn on the Windows platform. On this platform,
application output is directed to aterminal window.

User’s Guide April 13, 2004 Release 4.1

Page 11-1

11 EXPORTING PARADYN DATA

Paradyn profiling, resource, and search data may be saved for external analysis or examination by
pressing the EXPORT button from the Paradyn main control window. This opensthe EXPORT dia-
log, presenting a variety of options for writing Paradyn data to files as shown in Figure 48. You

Export Paradyn Data
W Global Data _| Phase Data
W Where Axis
Performance Consultant: _| Global Search _| Phase Searchies)

Directory: |.ftes ts |

Enter name of Directory for Data/Besource Files

EXPORT | CLEAR | CANCEL | |

Figure 48: Export dialog window
may select one or more types of data to be saved: raw Paradyn performance data, the Paradyn
Where Axis, and/or Performance Consultant Search Data. Depending on your selections, one or
more files will be written into the directory you specify in the dialog window. Next we describe
each specific option in detail.

11.1 Saving Performance Data

Paradyn allows one to save the performance datathat is collected during monitoring of an applica-
tion.

11.1.1 Saving Performance Data From Front-End

To save raw performance data select Global Data or Phase Data in the Export dialog. Global or
Phase correspond to the phase Paradyn was in when the data was collected, which is user speci-
fied, so if you didn’'t start new phases during your Paradyn session there will be only data for the
global phase. Type in the name of the directory to which you want the data written. Then select
“EXPORT.

Two types of files are written into the specified directory. An index file (“index”) is generated,
with one line per data file written, of the form: “filename metric focus’. Then, each existing inter-
nal Paradyn histogram is written to a separate data file into the same directory. If the tunable con-
stant “persistentData’ was set during the Paradyn session, there is one Paradyn histogram for each
metric/focus pair instrumented at any time during the current execution. Otherwise, there is one
Paradyn histogram for each metric/focus pair instrumented at the time the Export button was
pressed. Thefilesare named hist_0, hist_1, ... hist_nwhere nisthe total number of Paradyn histo-
grams.

Each data file starts with a 3-line header containing the following:

User’s Guide April 13, 2004 Release 4.1

Page 11-2

* Line1: dataType metric
e Line2: focus
* Line 3: maxNumBins binSze.

At present, dataType isaways “histogram” for exported Paradyn data. The metric isthe particular
measurement instrumented, such as CPU time (metric “cpu”) or I/O waiting time (metric
“io_wait”). See Section 6.2 for a description of metrics available in Paradyn. The focusis the par-
ticular part of the program run measured, which might be the whole program or perhaps one func-
tion or one process out of many in the whole program.

The header is followed by alist of up to maxNumBins values, one per line. The header and first
few data values of a data file is shown in Figure 49. To calculate the start and end time for each
measured value, use the binSze: each data value represents one binSze unit of time in seconds,
starting at time 0. In the example shown, the bin size is 0.2 seconds, so the first value was mea-

hiztogram cpu

#Code, /Machine, Memory, Process, Synclbject
1000 0,2

Mah

Mah

Mah

MaM

Figure 49: Performance Data File Header and Data For mat

sured for time O to time 0.2, second value was measured for time interval 0.2 to 0.4, etc. Note that
“NaN” indicates that no value was measured for a particular time interval. Since Paradyn instru-
mentation may be inserted and deleted freely during execution, the common case is to have mea
sured values for only a subset of the total number of data bins. Missing values at the start and
middle of the time period are indicated with a“NaN" entry. The total number of bins that can be
stored for the Paradyn histogram, maxNumBins, is indicated in the third row of the Data File
header. There may be fewer than maxNumBins total data values written in the file, since trailing
NaN’s are not written. However, the maximum number of linesin the datafileis 3 (for the header)
plus maxNumBins (one line per data value).

After all datafiles and the index file are successfully written, the UIM status bar is updated as
shown in Figure 50.

User’s Guide April 13, 2004 Release 4.1

Page 11-3

Paradyn Main Control .
_Pira
File Setup Phase Visi Help | 171N
UIHM status : Requested Data Saved
Application name : program: foo, machine: beaufort, user: (self), daemon: def
Application status : RUNNING
Data Hanager : ready
Processes : PID=4555
.heaufort : application running
| PAUSE | EXPORT | EXIT |

Figure 50: The Paradyn Main Window after saving performance data.
11.1.2 Saving Performance Data From the Visis

The previous sub-section describes how to do a"bulk" save of al the performance data being col-
lected at the Paradyn front-end. This section discusses how a user may selectively choose the his-
togram data he wishes to save.

For each of the following visis, Time Histogram, Barchart and Table, a Save function is available
from the FILE menu. When selected, a dialog window like the one shown in Figure 51 pops up.
This dialogue presents a list of al the valid Metric-Focus pairs that the current visi is subscribed
to in the format <Metric:Focus>. The user chooses the Metric-Focus pairs he is interested in and
clicks the * Export* button. A standard TCL dialogue box now pops up alowing the user to select
adirectory in which to save the performance data files. Clicking the OK button on this dialogue
instantiates an exportation of the selected performance data to the chosen directory. The format of
the files is similar to those obtained when doing the bulk data exportation described previously.
Note that saving to an existing directory overwrites any previously stored performance data.

Paradyn Data Export Menn

| B cpu_inclusive:graph.c. | | [F ic seemit inclusiveigraph.c, |

|-' cpu_inclusive: Whole Prograrm | |-' io mmrait dnclusive:Whole Prngrq'

EXFPORT BELECT ALL I CLEAR | GﬂNGELl

Figure51: Vis Menu to Export Paradyn Data

User’s Guide April 13, 2004 Release 4.1

Page 11-4

11.2 Saving the Where Axis

Generate a list of al valid resource nodes for the application session by selecting “Where Axis’
from the Export Menu. The resulting file (named “resources’) is a simple text file with one
resource name per line. The complete Where Axis may be reconstructed from this file. After the
resources are successfully written, the UIM status bar is updated as shown in Figure 52.

Paradyn Main Control .
_Pira
File Setup Phase isi Help | Uit
UIH status : Eesource Hierarchies Saved
BApplication name : program: foo, machine: beaufort, user: (self), daemon: def
Application status : RUNNING
Data Hanager : ready
Processes : PID=4555
beaufort ! application running
| PATUSE | EXPORT | EXIT |

Figure 52: The Paradyn Main Window after saving resource names.

11.3 Saving Perfor mance Consultant Search Data

Save the contents of one or more Search History Graphs by selecting Global Search or Phase
Search(es) from the Export Menu. One file (“shg.txt”) is generated that lists the contents of all
Search History Graphsin the format shown in Figure 53. Note that “#” is used as acomment char-
acter in thefile. Thereis one Search History Graph for each phase that was diagnosed in the Para-
dyn session. If Phase Search(es) was selected, this file will contain data for one Search History
Graph for each phase-level search either in progress or completed. A banner of the form “#
searchNum Performance Consultant Search History Graph” starts each set of search data; the
example shown lists search 0, which is the global search. A banner of the form “*** search his-
tory node ***” starts each search history node listing. Each node listing has the following format:

* Row 1. nodelD

* Row 2: hypothesisName::Focus

* Row 3: experiment defined?

* Row 4: experimentSartTime experimentEndTime currentValue currentThreshold.

NodelD is a unique integer id assigned to each node of a single Search History Graph.
HypothesisName is the Performance Consultant test name as described in Chapter 9, and focusis
the particular part of the program run that was measured, e.g. function foo or process 1. Experi-
mentDefined? is 0 if this search node’s experiment was never activated, for example, if the search
was halted before the instrumentation was inserted; otherwise its 1. ExperimentSartTime and
experimentEndTime are the timestamps on the first and last piece of data received for the experi-

User’s Guide April 13, 2004 Release 4.1

Page 11-5

ment. currentValue is the calculated value, averaged over the interval, of the hypothesis, and cur-
rentThreshold is the value currentValue was compared against to determine a result of true or
false.

After all Performance Consultant datais successfully saved, the UIM status bar is updated as
shown in Figure 54.

0 Performance Conzultant Search History Graph

#k#¥ zearch history node sk

0 #nodelD
topLevelHypothesis: i /Code. /Machine, Memory, Process . Synclbject

0 # experiment defined?

#k#¥ zearch history node sk

1 #nodelD
ExceszziveSyncllaitingTime: :/Code, Machine . Memory, Process, Sunclbject
1 # experiment defined?

-1 000 # experiment start end wvalue threshold

Figure 53: Format for exported search data in shg.txt.

Paradyn Main Conirol .
Pira
File Setup Phase Visi Help 171
UIHM status : Bearch History Graph Saved
Application name : program: foo, machine: beaufort, user: (self), daemon: def
Application status : RUNNING
Data Hanager : ready
Processes : PID=4555
beaufort : application running
| PAUSE | EXPORT | EXH?l

Figure 54: Paradyn Main Window after saving Performance Consultant data.

User’s Guide April 13, 2004 Release 4.1

Page 12-1

12 PARADYN CONFIGURATION LANGUAGE

The Paradyn configuration language (PCL) is used for defining daemons, processes, and visis, set-
ting value of tunable constants, and defining new metrics. Paradyn reads commands from one or
more of the following files (in this order):

1. afile named $PARADYN_ROOT/ par adyn. r ¢, where PARADYN_ROOT is a shell environ-
ment variable defining a path, or if this file is not found, a file named par adyn. r ¢ in the
current working directory (see Section 2.2, and also the Paradyn I nstallation Guide);

2. afile named $HOVE/ . par adynr ¢ in the user’s home directory;

3. aconfiguration file given as a command line argument to Paradyn with the ‘- f * option (e.g.
“paradyn -f foo”).

The remainder of this chapter describes the syntax and semantics of the Paradyn configuration
language.

12.1 Notation

We use an extended-BNF (EBNF) notation to describe the syntax of the language. Nonterminal
symbolsin the grammar are written in italics, termina symbols (tokens) in couri er, and reserved
keywords and symbols are written in boldface.

In the description of the grammar the symbol ::= is used to introduce the definition for a non-
terminal symbol, a vertical bar | represents a choice, braces {} represent zero or more repetitions,
and brackets[] are used to represent an optional item. Parentheses are used for grouping.

12.2 Lexical conventions

The tokens of the language are identifiers (1 dent), integer (I nt eger), floating-point (FI oat), and
string (st ring) constants, and the reserved keywords and symbols enumerated below. White
spaces, tabs, newlines, and comments are ignored, except to separate tokens. A comment is
started by the characters/ /. All characters from the // until the first newline are considered as
part of the comment and are ignored.

Identifiers are a sequence of |etters, digits, and underscore, starting with aletter or underscore.
Identifiers are case sensitive and may be of arbitrary length. Predefined identifiers start with a $
(dollar) sign.

Some identifiers are reserved for use as keywords and cannot be used in any other way.
Figure55 is a list of all keywords in the language (all keywords are case sensitive, except for
“true” and “false”). The four words “setCounter”, “addCounter”, “subCounter”, “functionCall”
are obsolete, but they are reserved so that MDL can detect an old configuration file.

There are six words: “readAddress’, “readSymbol”, “startProcessTimer”, “stopProcess-
Timer”, “startWall Timer”, “ stopWall Timer”, which are not keywords, but are considered as Para-
dyn standard function calls. See Section 12.9.10 for an explanation of their meanings.

User’s Guide April 13, 2004 Release 4.1

Page 12-2

$arg $return addCount er
aggr egat eQper at or append avg

base Cal | conmand
constr ai nt constrai ned count er
daenon def aul t derived
devel oper dir Event Count er
excl ude fal se flavor

fl oat force foreach
functionCal | host i f

is in i nt

itens library limt

list max nmetric

nmn node nodul e

namne nor mal normal i zed
postlnsn prel nsn prepend
procedure process processTi nmer
repl ace resour celLi st Sanpl edFuncti on
set Count er string style
subCount er sum true

t unabl e_const ant units uni t sType
unnor nal i zed user Vi s

voi d wal | Ti mer

Figure55: List of MDL keywords

There are three types of constants: strings, integers, and floating-point. A string is a sequence
of zero or more characters (not containing a newline or a double quote) surrounded by double
guotes. (Note that the usual expansion of control characters does not apply, e.g. “\n” is a string
containing two characters, a‘\’ and a‘n’, not a string containing the newline character.)

Integer and floating-point constants are unsigned and defined as:
Integer =digit { digit }

Fl oat ::=1Integer

| nt eger

The following operators are currently supported. More operators may be added in the future.

&=++=--=/*<><=>===1=&& || () [] .. ++

A statement isteminated with a semicolon, and statements are grouped together with curly braces.
Instrumentation code are inside brackets (* and *), see Section 12.9.12.

12.3 Language structure

A Paradyn configuration file consists of a sequence of zero or more definitions of daemons, pro-
cesses, visis, metrics, values for tunable constants, and functions excluded from shared objects.

DefinitionList ::={ Definition }

User’s Guide April 13, 2004 Release 4.1

Page 12-3

Definition ::=
DaemonDef |
ProcessDef |
TunableDef |
VisiDef |
ExcludeDef |
mdIDef

Each definition introduces a name to an object. The scope of namesis global. A name may be
redefined, in which case the new definition replaces the old one. Thus, all referencesto aredefined
name become a reference to the newest object that is bound to the name, even if the use is made
before the redefinition. However, different types of objects have different name spaces, so a dae-
mon and a process may have the same name, for example. The name and scope rules for metric
definitions differ from the rules for other definitions (see Section for a complete description).

One attribute that can appear in many object definitionsis aflavor. Paradyn may have different
versions that are used on different systems. Currently, there are five versions, one for standard
Unix systems, one for Unix systems running PVM, one for MPI, one for Microsoft Windows and
one for COW (cluster of workstations). Each of these versions is called a Paradyn flavor. A PCL
file can have many object definitions, some of which may make sense only for some flavors of
Paradyn. The flavor of an object tells Paradyn that this object is meaningful only for some subset
of the flavors of Paradyn, and that it should be ignored for al of the other flavors. When we run
Paradyn only those objects that are of the same flavor of the Paradyn that is being used are consid-
ered. The others are ignored.

12.4 Daemon definition
DaemonDef ::= daemon | dent { { DaemonField} }

DaemonField ::=
remoteShell string; |
command string; |
flavor Ident;

A daemon definition defines a new daemon with a given name. The name is used to identify
the daemon in other PCL definitions, such as the process definition. A daemon definition does not
cause the daemon to be started immediately; the daemon only starts when an application process
that uses that daemon is run.

A daemon definition must include at least one field (the commandfield). The other fields are
optional. The commandfield gives the command (that is, the executable file name and command
arguments) that Paradyn uses to start the daemon. The executable path may be a relative path-
name, in which case Paradyn searches for the file like the shell does, using the user’s PATH envi-
ronment variable on the machine where the daemon will run.

The field flavor should be one of pvm uni x, winnt, npi. Defining a daemon to be of a
wrong flavor can have unpredictable results.

User’s Guide April 13, 2004 Release 4.1

Page 12-4

The optiona remoteShell field allows a substitute start-up shell/mechanism to be specified, to
be used instead of the default “rsh” for starting the daemon process.

Example:

daenon pd_daenon {
renot eShel |l “/bin/ssh”;
conmand "/ u/ njrg/ bin/sparc-sun-sol ari s2. 4/ par adynd”;
flavor unix;

}

This PCL command defines a unix daemon named pd_daenon that is started via / bi n/ ssh
with the command “/ u/ nj r g/ bi n/ spar c- sun-sol ari s2. 4/ par adynd”.

Paradyn provides predefined daemons, def d and pvnd, that are defined as follows.

daenon defd {
conmand “par adynd”;
flavor unix;

}

daenmon pvid {
conmand “par adynd”;
flavor pvm

}
12.5 Process definition

ProcessDef ;=
process|dent { { ProcessField} }

ProcessField ::=
command string; |
daemon I dent; |
host string; |
user | dent; |
dir string;

A process definition defines an application program to be run by Paradyn. When the user defines a
process to Paradyn (either through a configuration file or with the graphic user interface), Paradyn
starts the necessary daemons, which read symbol table information from the executable file,
inserts the initial instrumentation, and leave the program in a ready to run state. The application
processes can then be run by using the appropriate commands from the Paradyn main menu. A
process definition is equivalent to the Define a Process command in the Paradyn main menu (see
Section 2.4).

A process definition has five fields. The required command field specifies the command that
Paradyn uses to start the process, including the command arguments, if any. The required daemon
field specifies the daemon that will run that process. The optional host field specifies the name of
the machine where the process will run. If no host field is present, it will default to the default

User’s Guide April 13, 2004 Release 4.1

Page 12-5

host specified with the - def aul t _host command line option (or the local machine, that is, the
machine on which Paradyn is running, if the - def aul t _host option is not used). The optional
user field specifies the user name (login) under which the process will run. The local user, that is
the user that runs Paradyn, must be authorized to login as the designated user in the designated
host. If no user field is present, it will default to the same user name under which Paradyn was
started. The optional dir field specifies the working directory for the process. If no dir field is
present, it will default to user’s home directory on the remote machine.

Example:
process foo {
conmand "/ u/ njrg/bin/nmp3d argl arg2";
daenon defd;

}

This example defines a process named foo that is started by the command np3d with argu-
mentsar g1 ar g2, and is monitored by the daemon def d.

Paradyn only searches for the executable file in the directory specified by the dir field. If this
field is not given, then the path to the executable file must be absolute.

12.6 Tunable constant definition

TunableConstant ::=
tunable_constant Tunableltem |
tunable constant { { Tunableltem} }

Tunableltem ::=
stringlInteger; |
string Float; |
string true; |
string falsg

A tunable constant definition gives avalue for atunable constant. For alist of all available tunable
constants and their values, see Section 4.

Example:
tunabl e_constant "m nCbservationTi ne" 10.0;
tunabl e_constant "suppressSHG' fal se;

In this example, the value of the tunable constant i nCoser vat i onTi me is set to 10.0 and the
value of suppr essSHGis set to false. Alternatively, these two commands could be rewritten as:

tunabl e_constant {
"m nCbservationTi ne" 10.0;
"suppressSHG' fal se;

User’s Guide April 13, 2004 Release 4.1

Page 12-6

12.7 Vis definition
VisiDef ::= visi I dent {{ Visiltem} }

Misiltem ::=
command string; |
dir string; |
user ldent; |
host string; |
forcel nteger; |
limit I nt eger ;

A visi definition gives the command that Paradyn uses to start a new visualization module. The
only required field is command, which gives the file path (and optional arguments) to the visi
program. Paradyn searches for commands according to the shell rules, using the PATH environ-
ment variable. force is interpreted as a boolean value, and any non-zero value will cause the visi
to start without asking the user for metric selections. limit is an upper bound on the number of
metric/focus pairs that the visi can have enabled at one time. If this field is not specified, or if it
has a non-positive value, then there is no upper bound. dir, user and host have the same previ-
ously discussed meaning.

Example:

vi si Hi stogram {
command "rthist";

}
12.8 Exclude definition
ExcludeDef ::= excludestri ng;

The exclude definition specifies a shared object (or dynamically-loaded library) or a function
therein that cannot be included in any focus. Performance data cannot be collected from excluded
functions or modules. Also, the Performance Consultant will not search in excluded functions or
modules. The string that specifies the shared object function or shared object to exclude should be
of the form “/Code/shared library _name/function_name” or “/Code/shared library _name” (for
Paradyn versions 2.1 and above, or of the form “shared library name/function_name’ or
“shared _library name” for versions below 2.1). The “*” character can be used within exclude
definitions as a wildcard which matches zero or more characters in a library name or function
name. Modules and functions from a.out files cannot be excluded.

Paradyn versions 2.1 and above allow exclusion of both statically and dynamically linked
modules and functions. Static and dynamic code is excluded identically, using the mechanism
described above. All modules and functions are included (not excluded), unless otherwise speci-
fied, and accordingly al functions, including those in dynamically linked libraries, appear in the
$procedures variable described in “Metric Definition Language” section below. This behavior is
different from that encountered in older versions of Paradyn in which shared object code was
treated differently than statically linked code with respect to exclusion.

User’s Guide April 13, 2004 Release 4.1

Page 12-7

The Paradyn Control Language files distributed with releases 2.1 and above have been modi-
fied to take these changes into account. Existing unmodified PCL files should be updated as fol-
lows:

1. Names of excluded modules and functions should be proceeded by “/ Code”.

2. All dynamic libraries or functions therein whose members should not be included in $pro-
cedures should be explicitly excluded.

Example (version 2.1 and above):

exclude “/Code/libc.so.1"; #texclude all functions fromlibc.so.1
excl ude “/ Code/li bt hread. so/ read”; #exclude function read fromli bt hread. so

Example (version 2.0 and below):

exclude “libc.so.1"; #exclude all functions fromlibc.so.1
exclude “libthread. so/read”; #exclude function read fromli bthread. so

12.9 Metric Description Language

The metric description language (MDL) is a sub-language of the PCL that is used for defining
new metrics. A metric is atime-varying function that characterizes some aspect of a parallel pro-
gram performance, such as CPU utilization or number of synchronization operations. Metrics can
be computed for the entire program or they can be restricted to program components (called
resources) such as a particular procedure, or a particular processor. Metrics can be computed for
the global phase (from the start of application execution until the present time) or the currently
defined phase. (Phases are described in Section 8.)

A list of resources of interest to the user is called afocus. A metric definition provides atem-
plate (the base metric) that is used to compute the metric, and a list of constraints that are com-
bined with the base metric to restrict it to a particular focus. A constraint defines aflag that is set
whenever a particular resource is active.

For example, consider ametric that counts how many functions are called. The metric declara-
tion must provide code to increment a counter every time afunction is called. The constraints for
this metric can provide ways of restricting the computation to a single function, to a single mod-
ule, or to asingle process. When combined with afocus, such as function f and process p, the met-
ric will count how many times the function f is called in process p.

If there’'s no constraint declaration or replace constraint inside a metric definition, the metric
can only be applied to the whole program.

Metric and constraint definitions are not evaluated until there is a request to compute a partic-
ular set of metrics for particular focus. At this time the requested metrics are evaluated, taking as
input the focus. The result of the metric evaluation is a collection of code blocks that are inserted
into the application code to compute the metric. In the remainder of this section, the phrase “ met-
ric evaluation time” or “metric insertion time” refer to time a metric is evaluated to generate the
code to be inserted into the application, and “metric execution time” or simply “metric execution”

User’s Guide April 13, 2004 Release 4.1

Page 12-8

refer to the time when the generated code is executed.

12.9.1 Metric definition

An MDL definition consists of declarations of one or more MDL objects. resource lists, con-
straints, and metrics:

mdIDef ::=
resourceListDef |
constraintDef |
metricDef

Each definition introduces a new object with a given name, which is used for referencesto that
object. A name may be redefined, in which case the definition of the old object is replaced with
the definition of the new object. The new object is used in all occurrences of the name, including
those that precede the redefinition. Therefore, redefinitions of objects must be done with care, or
unexpected results may occur. For example, the value of f oo at the f or each statement in the
example below is“bar”, because the name nsgFi | t has been redefined after the constraint defini-
tion.

Example:

resourcelList nmsgFilt is procedure {
items { "foo" };
library false
flavor {unix};

}

constraint msgTagConstraint /SyncQObj ect/Message is counter {
foreach func in nmegFilt {

prepend prelnsn func.entry (*

if ($arg[1l] == $constraint[0])
nmsgTagConstrai nt = 1;

*

)

append prelnsn func.return (*
msgTagConstraint = 0;

*

)

}

resourcelList nmsgFilt is procedure {
items { "bar" };
library false
flavor {unix};

}
12.9.2 Variables

There are two classes of variables that can be used in metric descriptions: metric insertion vari-
ables and instrumentation variables. A metric insertion variable is ssmply a name that is bound to

User’s Guide April 13, 2004 Release 4.1

Page 12-9

an object (alist, constraint, or metric). As explained above, the value of these variables can only
be modified by binding the name to a new object. Instrumentation variables are like variables in
an imperative language (that is, they denote a memory location) and can only be used in instru-
mentation blocks, that is, the code to be inserted at the application. Metric insertion variables can
be used at any place in a metric definition, including an instrumentation block. Instrumentation
blocks are delineated in PCL by the (* and *) tokens.

12.9.3 Types

Instrumentation variables can have one of three types. counter, wallTimer, or processTimer. A
counter is equivalent to an integer variable in imperative languages like C or C++. Wall Timer and
processTimer are abstract types used to record time and can only be manipulated with timer spe-
cific functions. A set of predefined functions, that can only be used in instrumentation requests, is
provided for operations with timers: startProcessTimer, stopProcessTimer, startWall Timer, stop-
WallTimer.

Metric insertion variables can have several different types: integer, floating-point, string,
point, procedure, module, memory, and list. The types integer, floating-point, and string have the
usual meaning.

Type: Point

A point is an abstract type that represents a well-defined location in an application code
where instrumentation can be inserted (currently available points are function entry, exit, and indi-
vidual call sites).

Type: Procedure

Pr ocedur e isastructured type that describes a procedure (function) in the application code:

procedure {
string nane;
point list calls;
point entry;
point return;

}

The value of each member isimplicitly initialized by Paradyn, and cannot be modified. Nane
is the name of the procedure, as defined in the symbol table in the application program’s execut-
ablefile. cal I s isthelist of calls made in the procedure code. Ent ry and r et ur n are the entry and
return points of the procedure.

The dot operator “.” is used to access the value of each member of a structured objects like
procedures and modules. If pr oc isaprocedure object, then pr oc. nane gives the name of the pro-
cedure, and pr oc. ent ry givesthe entry point of the procedure.

User’s Guide April 13, 2004 Release 4.1

Page 12-10

Type: Module

Modul e is a structured type with two fields that describe the module name and its functions.
The value of these fields isimplicitly initialized by Paradyn.

nodul e {
string nane;
procedure list funcs;

}
Type: List

Thetypel i st consistsof an ordered collection of elements of the same type. The elements of
alist can be accessed sequentially with the foreach statement, or one particular element may be
obtained with the subscript operator [] .

The foreach statement applies a metric statement to each element in alist. For example,

foreach callsite in proc.calls
<< netric statenent >>

appliesnetric statement (metric statements are defined in Section 12.9.8) to each element of
thelist proc. cal I s. The expression proc. cal | s[1] returnsthefirst element inlist proc. cal I s.

12.9.4 Predefined variables

MDL provides a number of predefined variables, described in Figure 56.

Variable Name Type Explanation
$constraint procedure, module, The list of components in the resource path.
or int Each component can be accessed through an

incremental index, starting from the last ele-
ment; for example $constraint[0] is the last
component, $constraint[1] is the second to
last. Each component can be of a different
type. (see Section 12.9.3).

$arg int The list of arguments to a procedure call. A
specific argument can be selected with index-
ing. for example: $arg[2] .

$return int The return value of afunction.

$start point The entry point of the program (usually
main).

$exi t point The exit point of the program (e.g.

_exithandle for Solaris).
$procedures procedure list The list of functionsin a module.
Figure 56: Predefined variables

User’s Guide April 13, 2004 Release 4.1

Page 12-11

Variable Name Type Explanation

$nodul es module list Thelist of modulesin a program.

$machi ne string The machine where a program is running.
$gl obal I d int An unique identifier to aparticular metric/fo-

cus/phase combination. It can be used by
metrics that need to maintain extra informa-
tion on a per metric instance basis.

Figure 56: Predefined variables
12.9.5 Resourcelists
A resource list statement defines anew MDL variable of type list:

resourceListDef ::=
resour celi st Identi s ListType{
items { SringList } ;
flavor { IdentList } ;
library OptLibrary:

}

ListType::=
string|
procedure |
nodul e |
float |
i nt

StringList ::=string{, string}
|dentList ::= | DENT{ , | DENT}

OptLibrary ::=
true | false

The identifier after the keyword r esour celLi st givesthe MDL variable that will be bound
to the list. ListType specifies the type of the elements of the list. Items give the list of elements.
Library isused when elements are of type procedure, and tells whether the functionsin the list are
library functions or not. Flavor gives the Paradyn flavors of thislist (e.g., unix or pvm).

The elements of alist can be accessed with the foreach statement, described in Section 12.9.8,
or viaindexing (e.g. f oo[1]).

User’s Guide April 13, 2004 Release 4.1

Page 12-12

Example:
resourcelLi st generic_lib_pvmis procedure {
items {"wite", "read"};
library true;
flavor {pvn};

}

declares avariable generic_lib_pvm, of type procedure list, with two elements (wr i t e and r ead),
which are library functions. This definition of the variableisvalid only for PVM.

12.9.6 Constraints

Constraints provide a mechanism to restrict a metric to a subset of the resources in the resource
hierarchy. A constraint definition declares a new counter instrumentation variable that is concep-
tually aboolean flag. Thisflag is set whenever a certain resource, such as a function or amodule,
isactive.

constraintDef ::=
constraint 1 dent matchPath isdefault ;
constraint | dent matchPath iscounter { metricStmt }

matchPath ::={ / I1dent }

A constraint definition creates a new constraint with a given name that can be used in several
metrics. The matchPath specifies the resources to be constrained. A matchPath is a sequence of
resource names, with a*“/” used as adelimiter, and it defines a path in the resource hierarchy. The
resource that is constrained is determined by the last element in the path. For example, a path
/ SyncQbj ect / Message specifiesthat the constraint isto children of this path, in this case a partic-
ular message class instance; / Code specifies that the constraint is applied to modules in a pro-
gram. A wildcard, “*”, is used as a matchPath resource name; for example, / Code/ * specifies that
the constraint is applied to functions in a specific module, which is unknown at the time the con-
straint was created.

At metric insertion time, the selected focus is compared to the matchPath of each constraint in
ametric to determine which constraints to apply. For example, the matchPath / Code matches the
foci / Code/ Mod1 and / Code/ Mod2 where Mbd1 and Mbd2 are modules in the application; and, the
matchPath / Code/ * matches the foci / Code/ Mbd1/ F1 and / Code/ Mod2/ F2 modules where F1
and F2 arefunctionsin the application.

The predefined variable $const r ai nt isinitialized at metric insertion time to the list of com-
ponents in focus. If path is/ Code/ *, and the foci is/ Code/ Mod1/ F1 and / Code/ Mod2/ F2, then
the value of $constraint[0] isaprocedure list with F1 and F2, and $constraint[1] isa
module list with Mod1 and Mbd2.

A default constraint defines a constraint that matches some focus. It does not generate any
instrumentation code. Usually, a metric must provide a constraint for each resource that may be
specified in afocus. If there is no constraint that matches a given resource, then the metric will

User’s Guide April 13, 2004 Release 4.1

Page 12-13

fail. Default constraints are used in cases where no action is needed to constrain a particular
resource.

Example: a constraint for modules must define a counter that is set to one only if afunction in
the module is being executed. The constraint definition must direct Paradyn to insert code to set
the flag to one whenever a function in the module is called, and set it to zero when the function
exits. In addition, we may want to set the flag to zero whenever a function call is made from a
function in the module, and reset it after thisthat call has returned. In this case, the module would
not be considered active when an external function is called. The definition of this metric is the
following:

01: constraint nodul eConstraint /Code is counter ({

02: foreach func in $constraint[0].funcs {
03: prepend prelnsn func.entry (*

04: nodul eConstraint = 1;

05: *)

06: append prelnsn func.return (*

07: nodul eConstraint = O;

08: *)

09: foreach callsite in func.calls {
10: append prelnsn callsite (*
11: nodul eConstraint = O;
12: *)

13: prepend postlinsn callsite (*
14: nodul eConstraint = 1;
15: *)

16: }

17: }

18: }

Line 1in this program declares a constraint nodul eConst r ai nt , Of type count er, that isto be
applied to modules. At metric insertion time, the variable $const rai nt [0] will be set to a partic-
ular module in the application (usually selected from the Paradyn where axis). $con-
straint[0].funcs isthelist of al functionsin the module. Line 3 says that code to set the flag
should be inserted before the entry point of each function in the module, and line 6 says that code
to reset the flag should be inserted before the return point of each function. Lines9, 10, and 13 say
that the flag should be set before any call made inside the function, and reset after the call returns.

12.9.7 Metric definitions

metricDef ::=
metric | dent {

name string ;
units I dent ;
unitsType (normalized | unnormalized | sampled) ;
aggregateOperator (avg | sum | min | max) ;
style (EventCounter | SampledFunction);
flavor { IdentList } ;
{ mode (developer | normal); }

User’s Guide April 13, 2004 Release 4.1

Page 12-14

{ Congtraint }
{ counter 1dent ; }
base is (counter | processTimer | wallTimer)

{ metricSnmt } ;
}
Constraint ::=
constraint Ident ; |
constraint Ident { / ldent } is
replace (counter | processTimer | wallTimer)
{ metricStmt } ;
IdentList ::=

Ident { , Ident }

A metric definition defines a new metric with a given internal name (the identifier following
the metric keyword). A metric definition must specify several fields. The name is a string that
gives the external name of the metric, that is how Paradyn users refer to this metric. Units and
unitsType specifies the label to be used by Paradyn and visis when displaying values of a metric.
Units can be any string and unitsType must be either normalized, unnormalized or sampled.
Figure 57 shows how alabel is displayed, for each unit type.

Units Type Data label Aver age label Total label
normalized units units units_seconds
unnormalized units/sec units/sec units

sampled units units units

Figure 57: Metric labels.

AggregateOperator givesthe operator used to combine values of the metric for different pro-
cesses to compute a single value. The Style field specifies how to interpret the metric value. Cur-
rently, only event counter and sampled function metrics are supported. In an event counter metric,
Paradyn samples the value of ametric at periodic intervals, with the difference since the last sam-
ple asthe reported value. The sampled function metric, however, does not take the difference. One
example is to use the sampled function metric to measure the memory access pattern. The flavor
field gives the flavors of Paradyn for which this metric should be used. The mode field indicates
whether the metric isfor developers. The default isnormal if thisfield is not specified.

Therest of the metric definition gives an optional list of constraints that are used to restrict the
metric to specific resources, an optional list of auxiliary counters that can be used in instrumenta-
tion requests, and the template code for the instrumentation code to compute the metric. A con-
straint declaration either gives the name of a constraint defined elsewhere, or defines a
replacement constraint that replaces the base definition of the metric. If a constraint declaration
matches the focus, the constraint is used to restrict the metric to the specified program component.
If a constraint definition (inside a metric definition, this is called replace constraint) matches the
current focus, the constraint replaces the base statement of the metric.

User’s Guide April 13, 2004 Release 4.1

Page 12-15

12.9.8 Metric statements

There are four metric statements, foreach statement, if statement, single instrumentation request,
and a block of multiple instrumentation requests.

metricStmt ::=
foreach 1dent in MetricExpr metricStmt |
if MetricExpr metricSmt |
InstrRequest |
{ { metricamt } };

The foreach statement evaluates a metric expression that should evaluate to alist, and applies
a metric statement to each element in the list. It defines a new variable with a name given by
| dent and that has the same type as the elements of the list. The scope of this variable is metric-
Smt, and its value is bound at each iteration to one element of the list.

The if statement evaluates a metric expression that must be of type integer, and it executes
metricStmt if the value is non-zero.

A single instrumentation request defines instrumentation to be added to an application code.
Each instrumentation request will generate a mini-trampoline in the application core.

12.9.9 Metric expressions

MetricExpr ::=
Literal |
(1dent){ . Ident } |
Call (“Ident” [, ArgList]) |
I dent ([ArgList]) |
MetricExpr BinOP MetricExpr |
PreUOp MetricExpr |
MetricExpr PostUOp |
Ident AssignOp MetricExpr |
I dent [MetricExpr] |
(MetricExpr)

Literal ::=Integer | string
ArgList ::=
MetricExpr { , MetricExpr }
BinOp ::=
+ | -1 1] | <] >| <= >= == && | ||
PreUOp:=& | -
PostUOp ::= ++

User’s Guide April 13, 2004 Release 4.1

Page 12-16

AssignOp:i==| +=| -=
More operators will be supported in the future.

A literal is an expression of type integer or string, that has the integer or string literal as its
value. An identifier is an expression that has the type and value of the variable bound to the iden-
tifier. If theidentifier is followed by an expression that evaluates to an integer n between brackets,
the identifier must be bound to alist, and the value of the indexed expression is the nth element of
thelist. Thelist elements are numbered from zero, and n must be less than the number of elements
inthelist.

If anidentifier isfollowed by a sequence of dots and identifiers, it must be of a structured type
(procedure or module). The second identifier must be the name of a field in the structure. The
value and type of the expression are the value and type of thisfield.

The arithmetic operators +, -, *, and /, and the relational operators <, >, <=, and >= can be
applied to two binary expressions of type integer or floating-point. The operators have the usual
meaning and associativity rules. Parenthesized expressions may be used to enforce a different
evaluation order. If the two sub-expressions are not of the same type, the values are converted to
floating-point. The logical operators && (and) and || (or) can be applied to a pair of integer
expressions. A zero value denotes false, and any nonzero val ue denotes true.

The & operator returns the address of a variable. The argument reference expression returns
the value of one of the arguments of afunction. For example, ar g[0] returns the value of the first
argument. Only the value of arguments passed in registers can be obtained.

12.9.10 Function calls

The MetricExpr syntax indicates that an metric expression can be a function call. Usualy a
function call is an identifier followed by a list of arguments in parenthesis. If the function name
has conflict with Paradyn’s reserved keywords, the alternative syntax of Call(*Ident”[,Arglist])
can be used, with the Ident being the function name. Note that the name must be quoted. The
function name can be any legal identifier. However, there are six words which, although are not
reserved, are treated as Paradyn standard functions if used as function names. The six words are:
“readSymbol”, “readAddress’, “startProcessTimer”, “stopProcessTimer”, *“startWallTimer”,
“stopwall Timer”.

The expression r eadSynbol ("sym') returns the integer value stored in a memory location
named sym where sym must be defined in the symbol table of the application. For example. if
_intvar isaninteger variable in an application, the expression r eadSynbol (" _i ntvar") returns
the value of _i ntvar. readAddress returns the integer value at a given address (in base 10),
which must be a valid address for the application. startProcessTimer, stopProcessTimer, start-
WallTimer, stopWallTimer start and stop recording time into atimer variable.

The maximum number of arguments that can be passed to a function call may be limited (the

User’s Guide April 13, 2004 Release 4.1

Page 12-17

limit is architecture dependent, and usually is the maximum number of arguments that can be
passed in registers). The return value of afunction is treated as an integer.

12.9.11 Instrumentation requests

An instrumentation request defines a block of instrumentation code to be inserted at a specific
point of an application code:

instrRequest : := position where point [constrai ned] (* { instrumentationCode} *)
position ::= append | prepend

where ::=prel nsn | postlnsn

point ::= metricExpr

Position gives the order in which this instrumentation block will be inserted in the list of
instrumentation blocks for this point, and can be used to control the order of execution of multiple
blocks at a point. If position is append, then the instrumentation block isinserted at the end of the
list of instrumentation blocks at the point. If position is prepend, the instrumentation block is
inserted asthefirst block in the list.

Where gives the place where the instrumentation block will be inserted, either before
(pr el nsn) or after (post I nsn) the instruction at the instrumentation point is executed. For exam-
ple, if the point is a call site, pr el nsn specifies that the instrumentation code is to be inserted
before the call ismade and post | nsn specifies that it should be inserted after the call returns.

Point is a metric expression (Section 12.9.9) that must evaluate to a point; it gives the point in
a program where instrumentation is to be inserted. Currently, the possible points are function
entry and exit points, and function calls.

Constrained determinesif constraints should be applied to this request. If constrained is not
specified, no constraints will be applied to the request.

12.9.12 Instrumentation code

The instrumentation code gives alist of statements to be inserted at a point. A statement is either
an if statement or a simple instrumentation statement.

instrumentationCode ::=
if (metricExpr) instr&mt |
instr St

The if statement evaluates the metricExpr and if it the result is a nonzero vaue, then the
instrStmt is executed.

An instrumentation statement is an MetricExpr terminated by a semicolon.

User’s Guide April 13, 2004 Release 4.1

Page 12-18

The following are examples of valid instrumentation code:
cntr = 1;

cntr += foo(cntr);
cntr += Call (“foo”, cntr);

if (readSynbol (" _foos") == 1) cntr -= readAddress(123456));
startVal | Timer (tnr);
cntr = cntr - $arg[2];

The first example sets the value of counter cntr to 1. cnt r must be a variable of type counter
declared in aconstraint declaration, a metric declaration, or ain a counter declaration. The second
example calls a function f 0o in the application code, passing the value of counter cntr as an
argument, and then adds the value returned by this call to counter cnt r. f 00 must be a function
taking one integer argument and returning an integer value, and it must be defined in the applica-
tion’s symbol table.

The third example reads the value of a global variable f oos (note that if the variable nameis
foosit must be referenced as _f oos) in the application and if the value is equal to 1, subtracts the
integer value at address 123456 in the application address space from counter cnt r. The fourth
example starts recording time in timer t nr, which must be declared in a metric declaration. The
timer will record time until acall to st opval | Ti mer is made on it. The last example subtracts the
value of the third argument to a function call (the function that is being instrumented) from timer
cntr.

12.9.13 Inter action of constraints and metrics

When creating a constraint and metric, one of the things you must do is specify where the primi-
tives (for the constraints) and predicates (for the metrics) are placed. They can go before the
instruction you are placing it a, or after. Then, for each location (prelnsn or postinsn) thereis an
ordered list for the instructions; and, you are able to specify if you want to append or prepend the
instrumented code. The following rules, and patterns, should be adopted when doing this

Constraints:
prepend prelnsn func.entry
append prelnsn func.return

Callsites within constraints (if necessary):
foreach callsite in func.calls {
append prelnsn callsite
prepend postlinsn callsite

}
Metrics:
foreach func in XXX {
append prelnsn func.entry
prepend prelnsn func.return

}

This is done to make sure the metrics and predicates are checked at a time when all the con-
straints and primitives are set with their correct values. This set of rules and patterns have the con-

User’s Guide April 13, 2004 Release 4.1

Page 12-19

straints and primitives be the first thing set when entering a function (prepend prelnsn func.entry)
and then the last thing cleared when returning from a function (append prelnsn func.return).
Along the same lines, the metrics and predicates are the last thing checked when entering a func-
tion (append prelnsn func.entry) and the first thing checked when returning from a function
(prepend prelnsn func.return). For example, if you have ametric M1 using constraint C1, whichis
set when your in a specific function and cleared when you leave that function. With these rules
and patterns, C1 will be the first thing set, before M1 is executed at the beginning of the function;
and, at the end of the function M1 will be executed before C1 is cleared again.

12.9.14 A complete example

This section presents a complete metric definition. We will define a metric called SyncWait that
computes the time spent on by an application on synchronization operations. The first step in the
definition of SyncWait is to identify the synchronization operations (functions) of the application.
These depend on the specific system that is being used. For example, for PVM applications, we
can consider the functions pvm_send and pvm_recv as synchronization functions.

Next, we defined a resource list with the synchronization functions.

resourcelLi st pvmsync_ops is procedure {
items { “pvmsend’, “pvmrecv” };
flavor { pvm};
library true;

}

To compute the synchronization time we must start atimer every time one of the functionsin
pvm_sync_opsiscaled (lines 2 and 3 in the following code block), and stop the same timer when

User’s Guide April 13, 2004 Release 4.1

Page 12-20

the function returns (lines 4 and 5).

01: foreach func in pvmsync_ops {

02: append prelnsn func.entry constrained
03: (* startWall Timer(p_syncWait),; *)
04: prepend postlnsn func.return constrained
05: (* stopWallTimer(p_syncWait); *)
06: }

The complete metric definition must define all of the metric attributes and constraints. The
constraints define how to compute the metric for specific resources, such as a function, or a mod-
ule. To constraint the metric to a function, we need to set a flag when the function is entered (lines
2 and 3 in the code block below), and reset it when the function exits (lines4 and 5). We al so reset
the flag before any function call inside the function, and set it when the call returns (lines 6 to 10).

1: constraint funcConstraint /Code/* is counter {
2: prepend prelnsn $constraint[0].entry

3: (* funcConstraint = 1; *)

4 append postlnsn $constraint[0].return

5: (* funcConstraint = 0; *)

6 foreach callsite in $constraint[0].calls {
7 append prelnsn callsite

8 (* funcConstraint = 0; *)

9: prepend postlinsn callsite

10: (* funcConstraint = 1; *)
11: }

12: }

We can aso define a constraint for message tags, in case we are interested in finding the time
the application is waiting for a particular message tag. At the entry point of each synchronization
function (lines 3 to 5 in the code block below) we must check if the tag of the message (the second
argument inacall to pvm_send or pvm_recv) isequal to the tag specified in the focus (line 4), and
if so set the constraint flag to one (line 5). The flag is set to zero again at the return point of the
function (lines 7 and 8).

1: constraint nmsgTagConstraint /SyncObject/Message is counter {
foreach func in pvmsync_ops {
prepend prelnsn func.entry constrai ned
(* if ($arg[1l] == $constraint[0])
nmsgTagConstrai nt = 1;
*
)
append prelnsn func.return constrained
(* megTagConstraint = 0; *)
}

BOONoORWN

0: }

Finally we must specify the remaining attributes of the metric, such as the name that will
appear in the Paradyn metric selection menu, PVM SyncWai t . The unit is seconds since this
metric measures time, and the unit style is nor malized. Aggregate operator is avg, so when we
aggregate values from different processes, we get the average value. The flavor ispvm

The complete definition of the metric follows. The constraint modul eConst rai nt was

User’s Guide April 13, 2004 Release 4.1

Page 12-21

defined in Section 12.9.6.

nmetric p_syncVWait {
nane “PVM SyncWait”;
uni ts Seconds;
uni tStyl e normalized;
aggr egat eOper at or avg;
styl e Event Counter;
flavor = { pvm};

constraint functionConstraint;
constrai nt nodul eConstraint;
constrai nt nsgTagConstrai nt;

base is wall Timer {
foreach func in pvmsync_ops {

append prelnsn func.entry constrained (*
startWal | Ti mer (p_syncWit);

*

)

prepend prelnsn func.return constrai ned (*
stopVal | Ti mer (p_syncWit);

*

)

}

For useful hints and guidelines for writing metrics, consult the MDL Programmer’s Guide.

User’s Guide April 13, 2004 Release 4.1

	User’s Guide
	1 Overview 1-1
	2 Running Paradyn 2-1
	3 Main Control window 3-1
	4 Tunable Constants 4-1
	5 Selecting resources 5-1
	6 Selecting metrics 6-1
	7 Controlling visis 7-1
	8 Phases 8-1
	9 Performance Consultant 9-1
	10 Standard visi modules 10-1
	11 Exporting Paradyn Data 11-1
	12 Paradyn Configuration Language 12-1
	1 Overview
	1.1 Release notes (version 4.1)
	1.2 Release notes (version 4.0)
	1.3 Release notes (version 3.3)
	1.4 Release notes (version 3.2)
	1.5 Release notes (version 3.1)
	1.6 Release notes (version 3.0)
	1.7 Supported hardware and software platforms
	Figure�1: Platforms on which Paradyn can monitor application processes

	1.8 Currently Unsupported Features
	1.9 Other documentation: Manuals
	1.10 Other documentation: Technical papers
	1. “The Paradyn Parallel Performance Measurement Tools”, Barton P. Miller, Mark D. Callaghan, Jon...
	2. “An Adaptive Cost Model for Parallel Program Instrumentation” Jeffrey K. Hollingsworth and Bar...
	3. “Dynamic Program Instrumentation for Scalable Performance Tools”, Jeffrey K. Hollingsworth, Ba...
	4. “Dynamic Control of Performance Monitoring on Large Scale Parallel Systems”, Jeffrey K. Hollin...
	5. “The Paradyn Parallel Performance Tools and PVM”, Barton P. Miller, Jeffrey K. Hollingsworth, ...
	6. “Mapping Performance Data for High-Level and Data Views of Parallel Program Performance”, R. B...
	7. “A Performance Tool for High-Level Parallel Programming Languages”, R. Bruce Irvin and Barton ...
	8. “Optimizing Array Distributions in Data-Parallel Programs”, Krishna Kunchithapadam and Barton ...
	9. “Integrating a Debugger and Performance Tool for Steering”, Krishna Kunchithapadam and Barton ...
	10. “What to Draw? When to Draw? An Essay on Parallel Program Visualization”, Barton P. Miller. J...
	11. “Binary Wrapping: A Technique for Instrumenting Object Code”, Jon Cargille and Barton P. Mill...
	12. “Finding Bottlenecks in Large-scale Parallel Programs”, Jeffrey K. Hollingsworth, August 1994...
	13. “Performance Measurement Tools for High-Level Parallel Programming Languages”, R. Bruce Irvin...
	14. “MDL: A Language and Compiler for Dynamic Program Instrumentation”, Jeffrey K. Hollingsworth,...
	15. “A Callgraph-based Search Strategy for Automated Performance Diagnosis,” Harold W. Cain, Bart...

	1.11 Contacting the Paradyn developers

	2 Running Paradyn
	2.1 Overview of major steps
	1. Set up Paradyn and daemons (Section�2.2): You need to specify the location of the Paradyn exec...
	2. Prepare your application program (Section�2.3): Generally Paradyn is able to handle unmodified...
	3. Run Paradyn (Section�2.4): Paradyn has several options that you may use during execution, such...

	2.2 Setting up Paradyn and the Paradyn daemons
	2.2.1 Paradyn environment variables
	1. Look for the file paradyn.rc in the directory specified by the environment variable “PARADYN_R...
	2. Look in your current working directory for the file paradyn.rc.
	Figure�2: Files needed to run Paradyn
	Figure�3: Environment variables used when running Paradyn

	2.2.2 Overriding Paradyn’s default fonts

	2.3 Preparing your application program
	2.3.1 Generation of debug information (all platforms)
	2.3.2 Including CodeView debug info in the executable (Windows)

	2.4 Running Paradyn
	1. File: In this menu there is an option to get information on how to start up a daemon (Daemon s...
	2. Setup: This menu has selections to allow you to describe a new application program to run from...
	3. Phase: start and define a new local phase for visualizations and analysis (see Section�8).
	4. Visi: start visualizations of your application performance (see Section�7).
	5. Help: get additional information about Paradyn.
	Figure�4: Starting Paradyn

	2.5 Running applications with Paradyn
	2.5.1 Defining a new process
	Figure�5: Defining a new application process
	1. User: This is your login name on the host on which Paradyn will run your application process. ...
	2. Host: This is the name of the host on which Paradyn will run your application. If you leave th...
	3. Directory: Paradyn runs paradynd and your application as follows. First, it performs a remote ...
	4. Command: The command that will start this instance of your application program. If the Directo...
	5. Daemon: This option allows you to specify which Paradyn daemon to run. For most uses, the defa...

	Figure�6: Paradyn ready to run the application
	1. Application name: This is the name of the application program (foo), the host machine where it...
	2. Application status: This is the overall application status (either PAUSED or RUNNING).
	3. Data Manager: This is the status of Paradyn’s Data Manager.
	4. Processes: This is the process identifier of the controlling process in your application.
	5. brie: There is one status line on each host or node on which you are running your application;...

	2.5.2 Attaching to a process
	Figure�7: Specifying a process to attach to.
	Figure�8: Attach completed and application execution continuing.

	2.6 Architectural issues
	2.6.1 Common Platforms
	2.6.2 MPI
	2.6.3 Microsoft Windows
	Figure�9: Sample Makefile for Windows.

	2.6.4 Multi-threaded

	3 Main Control window
	Figure�10: Paradyn Main Control window
	3.1 Main menubar
	3.1.1 File menu
	3.1.2 Setup menu
	3.1.3 Phase menu
	3.1.4 Visi menu/button
	3.1.5 Help menu

	3.2 Status lines
	3.3 Buttons

	4 Tunable Constants
	4.1 Overview
	Figure�11: The Tunable Constants Window
	Figure�12: Tunable Constants Descriptions Window

	4.2 User Tunable Constants
	4.3 Developer Tunable Constants
	Figure�13: User-level Tunable Constants
	Figure�14: Developer-level Tunable Constants. Use at your own risk!

	5 Selecting resources
	5.1 Resources (The “Where” Axis)
	Figure�15: Where Axis window.
	“Whole Program” has three unexpanded subtrees and one expanded subtree (Code)
	Resources:
	Resource Hierarchy:
	Focus:

	5.2 The Where Axis display
	Figure�16: Showing all resources in the Where Axis display

	5.3 How to select foci using the Where Axis
	Figure�17: A single focus selected
	Figure�18: Multiple foci selection

	5.4 The Where Axis GUI
	Locating a resource
	Selecting a resource
	Listbox expansion
	The navigate menu
	Scrolling

	5.5 Call Graph display
	Figure�19: Callgraph display

	6 Selecting metrics
	6.1 How to select metrics
	Figure�20: Metrics dialog box
	Figure�21: Metrics dialog box with several metrics selected

	6.2 Metric Descriptions
	Figure�22: Metrics defined in Paradyn
	Figure�23: Developer Mode Metrics defined in Paradyn

	7 Controlling visis
	7.1 Starting
	Figure�24: Paradyn Main Control window
	Figure�25: Start A Visualization menu
	Figure�26: Message box indicating instrumentation has been deferred

	7.2 Stopping

	8 Phases
	8.1 Starting a new phase
	Figure�27: Phase Table Display

	8.2 Visualizations and Phases
	8.3 The Performance Consultant and phases
	Figure�28: Time Histogram: Global Phase
	Figure�29: Time Histogram: Local Phase (3)

	9 Performance Consultant
	9.1 The W3 search model
	9.1.1 The Why Axis
	Figure�30: The Why Axis

	9.1.2 The search strategy
	1. One step along the Why Axis:
	2. One step along the Code hierarchy: ��
	3. One step along the Machine hierarchy:

	9.2 Running the Performance Consultant
	9.2.1 The Performance Consultant window
	Figure�31: A sample Performance Consultant window

	9.2.2 Starting and stopping a search
	9.2.3 The Search History Graph display
	Figure�32: The Performance Consultant’s search begins
	Figure�33: The Performance Consultant refines bottleneck to CPUbound
	Figure�34: Search History Graph tunable constants for saving screen space

	9.3 Interpreting the results of callgraph-based search
	9.4 Interpreting the results of module-then-function search
	Figure�35: The Performance Consultant refines bottleneck beyond CPUbound
	Figure�36: The second set of Search History Graph refinements
	Figure�37: Final Search History Graph bottleneck refinement

	9.5 Customizing the search parameters

	10 Standard visi modules
	10.1 Time Histogram visi
	Figure�38: Time Histogram with selected curve
	10.1.1 File menu
	10.1.2 Curve menu
	Figure�39: Time Histogram with unsmoothed and hidden curves

	10.1.3 Panning and zooming
	Figure�40: Zoomed Time Histogram

	10.2 Barchart visi
	Figure�41: Barchart visualization window
	10.2.1 Changing metrics and foci being viewed
	10.2.2 Viewing data
	Figure�42: Barchart showing total values

	10.3 Table visi
	Figure�43: Table visualization window
	10.3.1 Actions menu
	10.3.2 View menu

	Long vs. short names
	Figure�44: Table visualization showing short focus names

	Current vs. average vs. total values
	Sorting metrics
	Sorting foci
	Significant digits
	Figure�45: Table visualization with values shown to two significant digits
	10.4 3D Terrain visi
	Figure�46: 3D Terrain visualization

	10.5 Viewing the application output display
	Figure�47: Application output window

	11 Exporting Paradyn Data
	Figure�48: Export dialog window
	11.1 Saving Performance Data
	11.1.1 Saving Performance Data From Front-End
	Figure�49: Performance Data File Header and Data Format
	Figure�50: The Paradyn Main Window after saving performance data.

	11.1.2 Saving Performance Data From the Visis
	Figure�51: Visi Menu to Export Paradyn Data

	11.2 Saving the Where Axis
	Figure�52: The Paradyn Main Window after saving resource names.

	11.3 Saving Performance Consultant Search Data
	Figure�53: Format for exported search data in shg.txt.
	Figure�54: Paradyn Main Window after saving Performance Consultant data.

	12 Paradyn Configuration Language
	1. a file named $PARADYN_ROOT/paradyn.rc, where PARADYN_ROOT is a shell environment variable defi...
	2. a file named $HOME/.paradynrc in the user’s home directory;
	3. a configuration file given as a command line argument to Paradyn with the ‘-f’ option (e.g. “p...
	12.1 Notation
	12.2 Lexical conventions
	Figure�55: List of MDL keywords

	12.3 Language structure
	12.4 Daemon definition
	12.5 Process definition
	12.6 Tunable constant definition
	12.7 Visi definition
	12.8 Exclude definition
	12.9 Metric Description Language
	12.9.1 Metric definition
	12.9.2 Variables
	12.9.3 Types
	Type: Point
	Type: Procedure
	Type: Module
	Type: List

	12.9.4 Predefined variables
	Figure�56: Predefined variables

	12.9.5 Resource lists
	12.9.6 Constraints
	12.9.7 Metric definitions
	Figure�57: Metric labels.

	12.9.8 Metric statements
	12.9.9 Metric expressions
	12.9.10 Function calls
	12.9.11 Instrumentation requests
	12.9.12 Instrumentation code
	12.9.13 Interaction of constraints and metrics
	12.9.14 A complete example

