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Abstract

We investigate the use of interior point methods for solving quadratic
programming problems with a small number of linear constraints where
the quadratic term consists of a low-rank update to a positive semi-definite
matrix. Several formulations of the support vector machine fit into this
category. An interesting feature of these particular problems is the vol-
ume of data, which can lead to quadratic programs with between 10 and
100 million variables and a dense @@ matrix. We use OOQP, an object-
oriented interior point code, to solve these problem because it allows us
to easily tailor the required linear algebra to the application. Our linear
algebra implementation uses a proximal point modification to the under-
lying algorithm, and exploits the Sherman-Morrison-Woodbury formula
and the Schur complement to facilitate efficient linear system solution.
Since we target massive problems, the data is stored out-of-core and we
overlap computation and I/O to reduce overhead. Results are reported
for several linear support vector machine formulations demonstrating the
reliability and scalability of the method.
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1 Introduction

Interior point methods [25] are frequently used to solve large convex quadratic
and linear programs for two reasons. Firstly, the number of iterations taken is
typically either constant or grows very slowly with the problem dimension. Sec-
ondly, the major computational component is in solving (one or) two systems
of linear equations per iteration, for which many efficient, large scale algorithms
exist. Thus interior point methods become more and more attractive as the scale
of the problem increases. General-purpose implementations of these methods
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can be complex, relying upon sophisticated sparse techniques to factor the ma-
trix at each iteration. However, the basic algorithm is straightforward and can
be used in a wide variety of applications by simply tailoring the linear algebra
to the specific application.

We are particularly interested in applying an interior point method to a class
of quadratic programs with two properties: each model contains a small num-
ber of linear constraints and the quadratic term consists of a low-rank update
to a positive semi-definite matrix. The key to solving these problems is to ex-
ploit structure using the Sherman-Morrison-Woodbury formula and the Schur
complement. One source of massive problems of this type is the data min-
ing community where several formulations of the linear support vector machine
[24, 1, 2, 16] fit into the framework. A related example is the Huber regression
problem [14, 17, 26] which can also be posed as a quadratic program of the type
considered.

Essentially, the linear support vector machine attempts to construct a hyper-
plane partitioning two sets of observations where an observation is a point in a
low dimensional space consisting of feature measurements. An interesting char-
acteristic of these models is the volume of data, which can lead to quadratic
programs with between 10 and 100 million variables and a dense () matrix.
These problems are becoming increasingly important in data mining and ma-
chine learning because of the large number of practical applications [4, 23].

Sampling techniques [3] can be used to decrease the number of observa-
tions needed to construct a good separating surface. However, if we consider a
“global” application and randomly sample only 1% of the current world popula-
tion, we would generate a problem with around 60 million observations. Recent
work [9] has shown that a random sampling of 20% - 30% is sufficient for many
applications, but that even sampling 70% - 80% leads to statistically significant
differences in the models. Furthermore, for comparative purposes, a researcher
might want to solve the non-sampled problem to validate the choice of sampling
technique. Therefore, solving realistic, large scale models of this form is an
important research area.

Codes targeting massive problems need to effectively deal with the required
data volume. For example, one dense vector with 50 million double precision
elements requires 400 MB of storage. If all of the data were to be kept in-core,
we would rapidly exhaust the available memory resources of most machines. We
therefore propose storing all of the data out-of-core and overlapping computa-
tion and I/O to reduce overhead.

As mentioned above, the crucial implementation details are in the linear
algebra calculations. Rather than re-implement a standard predictor-corrector
code [20], we have opted to use OOQP [10] as the basis for our work. A key prop-
erty of OOQP is the object-oriented design which enables us to easily tailor the
required linear algebra to the application. Our linear algebra implementation
exploits problem structure while keeping all of the data out-of-core. A prox-
imal point modification [22] to the underlying algorithm is also implemented
within the linear algebra to improve robustness on the particular formulations
considered.



We begin in Section 2 by formally stating the general optimization problem
we are interested in solving and show specializations of the framework for linear
support vector machines and Huber regression. We then describe the interior-
point method and linear algebra requirements in Section 3. The basic proximal
point idea is discussed and we demonstrate the use of the Sherman-Morrison-
Woodbury formula and the Schur complement to exploit problem structure. The
implementation of the linear algebra using out-of-computations is then given in
Section 4 along with some numerical considerations made for massive problems.
Finally, in Section 5, we present experimental results for several linear support
vector machine formulations on a large, randomly generated data set. These
results indicate that the method is reliable and scalable to massive problems.

2 Quadratic Programming Framework

The general optimization problem considered has a quadratic term consisting
of a low-rank update to a positive semi-definite matrix and a small number of
linear constraints. To fix notation, we will consider problems with m variables,
n constraints, and a rank k update. Let @ € R™*™ be of the form

Q=S+ RHR"

where S € R™*™ is symmetric, positive semi-definite, H € #*** is symmetric,
positive definite and R € R™**. Note that S is typically a very large matrix
while H is small. We are concerned with solving the convex problem:

ming, %xTQx +clx
s.t. Bz =1b (1)
z>0

for given B € R™*™ with full row rank, b € R, and ¢ € R with k +n < m.
That is, the rank of the update and the number of constraints must be small
in relation to the size of the problem. While general bounds, [ € R™ U {—oc0}™
and v € R™ U {400}™ with | < u, can be used in the formulation, we only
discuss the model with a simple non-negativity constraint in the sequel for ease
of exposition.

To solve instances of this problem, we will exploit structure in the ma-
trices generated by an interior-point algorithm using the Sherman-Morrison-
Woodbury formula and the Schur complement [11]. The underlying operations
will be carried out in the context of the machine learning applications outlined
below. As will become evident, in addition to the assumptions made concerning
the form of the quadratic program, we also require that the matrices H and
S 4+ T be easily invertible for any positive diagonal matrix 7. These assump-
tions are satisfied in our applications because H and S will be diagonal matrices.
However, general cases satisfying the criteria clearly exist.



2.1 Linear Support Vector Machines

The linear support vector machine attempts to construct a hyperplane {z |
w’x = v} correctly separating two point sets with a maximal separation margin.
Several quadratic programming formulations exist in the data mining literature
[24, 1, 2, 16] for these problems, which are becoming increasingly important due
to the large number of practical applications [4, 23]. The common variation
among the optimization models is in the choice of the subset of the variables
(w and 7) selected to measure the separation margin and the norm used for the
misclassification error.

We first introduce some notation chosen to be consistent with that typically
used in the data mining literature. We let A € R™** be a (typically dense)
matrix representing a set of observations drawn from two sample populations
where m is the total number of observations and k the number of features
measured for each observation with k¥ < m. D is a diagonal matrix defined as

D;; =

+1 ifie Py
{ -1 ifie P
where P, and P_ are the indices of the elements in the two populations. We
use the notation e to represent a vector of all ones of the appropriate dimension.
The standard support vector machine [24, 4] is the following optimization
problem:

: 2

MMy, y,y 3 lwllz +vely

subject to D(Aw —ey)+y>e (2)
y=>0

The essential idea is to minimize a weighted sum of the 1-norm of the mis-
classification error, Ty, and the 2-norm of w, the normal to the hyperplane
being derived. The relationship between minimizing ||w||, and maximizing the
margin of separation is described, for example, in [19]. Here, v is a parameter
weighting the two competing goals related to misclassification error and margin
of separation. The constraints just implement the misclassification error.

Various modifications of (2) are developed in the literature. The motivation
for many of them is typically to improve the tractability of the problem and to
allow novel reformulation in the solution phase. For example, one alternative
incorporates v into the objective function:

. 2

My, y,y % [lw,Y[I5 + vely

subject to D(Aw —ey)+y >e (3)
y=>0

This formulation is described in [18] to allow successive over-relaxation to be
applied to the (dual) problem.

A different permutation replaces the 1-norm of y in (3) with the 2-norm
and noticing that the non-negativity constraint on y becomes redundant. The



resulting problem, first introduced in [19], is then:

3 1 2 v 2
My ~,y 5 Hwa'}’Hg +3 ||y||2 (4)
subject to D(Aw —ey)+y >e

Again using the Wolfe dual (see (8)), an active set method has been proposed
for solution. Concurrent to work described herein, Mangasarian and Musicant
have advocated the use of the Sherman-Morrison-Woodbury formula in their
active set algorithm.

The final variant considered appears to be new, but is a trivial modification
of (4).

3 1 2 v 2
My -,y 3 llwllz + 5 [yl (5)
subject to D(Aw —ey)+y>e

As stated, these problems are not in a form matching (1). However, the
Wolfe duals [15] of (2) - (5) are respectively:

min, %ITDAATDTZE —eTy
subject to e’ DTz =0 (6)
0<z<ve
min,, %xTDAATDTx + %xTDeeTDT:E —eTy (7)
subject to 0<z<ve
min, 21—VxT3: + %xTDAATDTx + %xTDeeTDTx —eTy (8)
subject to x>0
min, %xTx + %xTDAATDTx —eTy
subject to e’ DTz =0 9)
x>0

which are of the desired form. In addition to the papers cited above, several
specialized codes have been applied to solve (6), for example, see [21]. Once the
dual problems above are solved, the hyperplane in the primal problems can be
recovered with:

e w=ATDTg and v is the multiplier on e? DTz = 0 for (2) and (5).
o w=ATDTg and v = —eT DTz for (3) and (4).

Clearly, (6) - (9) are in the class of problems considered. Rather than become
embroiled in a debate over the various formulations, we show that our method
can be successfully applied to any of them, and leave the relative merits of each
to be discussed by application experts.



2.2 Huber Regression

A related problem to the support vector machine is to determine a Huber M-
estimator as discussed in [14, 17, 26]. For an inconsistent system of equations
Aw = b, an error residual is typically minimized, namely > .~ p((Aw —b);). In
order to de-emphasize outliers and avoid non-differentiability when p(-) = | - |,
the Huber M-estimator [13] has been used, which is a convex quadratic for small
values of its argument, and is linear for large values.

The corresponding optimization problem is a convex quadratic program:

My, ¢ 3 05 + veTy
subject to —y<Aw—-b—t<y

whose dual has the form

min, o ||:c||§ + b7
subject to ATy =0
—e<zx<e

Again, this dual has the structure considered whenever the number of observa-
tions m is enormous, and the number of features k is small. The aforementioned
references indicate how to recover a primal solution from the dual.

3 Interior Point Method

Since (1) is a convex quadratic program, the Karush-Kuhn-Tucker first order
optimality conditions [15] are both necessary and sufficient. These optimality
conditions can be written as the mixed complementarity problem:

S+ RHRT —BTHx]JF{C]L‘TZO (10)

B 0 A —b A free
where we define the | notation component-wise using
ealb>0ifand onlyifa>0,b>0, and ab=10
e a | b free if and only if a = 0.

General lower and upper bounds on z are also easily handled as detailed in [5].
The basic idea of an interior point method for (10) is to solve the nonlinear
system of equations:

(S+RHRT)x — BT\ +c¢ = =z
Bx = b (11)
XZe = 0

with > 0 and z > 0. X and Z are the diagonal matrices formed from z and
z, and z represents the complementary variable to xz. Letting 2* > 0, A*, and



2 > 0 be the current iterate, assumed interior to the feasible region, a direction
(Az, AX, Az) is calculated by solving the linearization:

(S+RHRT)Az — BTAN - Az = 2'—(S+RHRT)x'+ BT\ —¢
BAx = b— Ba! -
ZiAx + XAz = —XiZie—I—a%
where o € [0,1] is a chosen parameter. The new iterate is 1 = 2 +
alAz, X1 = X + aA)\, and 2"t! = 2' + aAz where a is chosen so that

(1 XL 21 s in the interior of the feasible region. Note that for o = 0 we
are calculating a Newton direction for the nonlinear system of equations (11).
When using the Newton direction, « is typically small because the iterates
rapidly approach the boundary of the feasible region. Therefore, the direction
is biased towards the interior of the feasible region by choosing an alternate o.
Convergence results for these methods can be found in [25] and are not discussed
here.

The Mehrotra predictor-corrector method is a specific implementation of
this basic approach. For the remainder if this section, we will look at the
linear algebra necessary to calculate the direction at each iteration. We initially
develop the case where S is positive definite and we only have simple bounds.
We then discuss the modification made for arbitrary linear constraints. We
finish with the most general case where S is not assumed to be positive definite.

3.1 Simple Bound Constrained Case

We first describe the method in the simplest context, that of the support vector
machine formulation in (8). In this case, S = %I is positive definite, R =
D [ A —e ], H =1, and B is not present. For each iteration of the primal-
dual method, we solve two related systems of equations. During the predictor
phase, we calculate the Newton direction by solving the system:

- —XZe

S+ RHRT -JI AZ
VA Xt AZ

[ 20— (S+ RHRT)x' — ¢ ]

The corrector moves the iterate closer to the central path by solving the system:

S+RHR" —I17[ Ax] _ 0o
A X! Az | | ope—AXAZe

for some chosen o and p. Note that these are the same system but with differing
right hand sides. In explaining how to solve these systems, we ignore details
concerning the right hand side, and just use Az and Az to label the solution
variables in both cases above.

Since we are using an interior point code, X and Z are positive diagonal
matrices and we can use the second equation to eliminate Az. Writing

V=(Z)"'X"+8,



we are then faced with a system of equations:
(V+RHR")Az =r (12)

for appropriately defined r. While the matrices R and H are constant over
iterations, the matrix V is iteration dependent.

(12) is a rank-k update to an easily invertible matrix. Therefore, we can use
the Sherman-Morrison-Woodbury [11] update formula

(V+RHRN) 1 =v ! -V IRH 1+ RV IR)'RTV!

to solve for Az and then recover Az. Note that it is trivial to form V~! and
H~! since they are both positive definite diagonal matrices and that the matrix
H='+ RTV~1Ris a (small) symmetric k x k matrix, that once formed can be
inverted (factor/solved) using standard dense linear algebra subroutines. Since
this matrix is independent of the right hand side vector, r, we only have to form
and factor this small dense matrix once per iteration. That is, we can use the
same factors in both the predictor and the corrector steps. To summarize, in
applying the inverse to the vector r we carry out the following steps, which we
term

Algorithm SMW:
1. Calculate t' = RTV 1y
2. Solve (H~! + RTV-IR)t? = t!;
3. Determine Az as the difference between V=17 and V1 Rt%.

Note that ¢! and t? are small k-vectors. Furthermore, the calculation in 1 can
be carried out at the same time that the matrix required in 2 is being formed.
Thus, a complete solve requires two passes through the data stored as R, namely
one for steps 1 and 2, and one for step 3. This feature is important to note for
the out-of-core implementation discussed in Section 4.

3.2 Constrained Case

We now turn to the case where the quadratic program under consideration still
has a positive definite () matrix but the problem has a small number of linear
constraints. For example, the problem (9) falls into this class, where S = %I
is positive definite, R = DA, H = I and B = ¢ DT. Note that Bisa 1 x m
matrix with full row rank.

Using the same notation as above, the primal-dual interior point method
requires the solution of the following two systems at each iteration:

S+RHR" —-BT —11[ Az Z—(S+ RHR)z' — ¢
B 0 0 AN | = b— Bz
zi 0o X Az —XiZie



and

S+ RHRT —-BT —I Ax 0
B 0 0 AN | = o
Z¢ 0 X! Az ope — AXAZe

for some chosen o and pu.
Eliminating Az as before, we generate the following system:

(13)

B 0 AN r2

V+RHRT —-BT } [ Az } B { 7l }
for appropriately defined r! and r2.

However, we have already shown how to apply (V + RHRT)~! using the
Sherman-Morrison-Woodbury formula in Algorithm SMW. We use this ob-
servation to eliminate Ax = (V+RHRT)~1(r1+ BT A)) from (13), and generate
the following system in A\:

AN = (B(V + RHR")"'B")"'(+* + B(V + RHR")"'r") (14)

Note that, in effect, we have just applied the Schur complement to system (13).

Since B has full row rank and V + RHR” is symmetric positive definite, we can

conclude that B(V + RHRT)~!BT is symmetric and positive definite. Hence,

it is invertible. Therefore, the linear system (14) is solvable for any r* and 2.
To form (14) we must solve the system

(V+RHR")[ T" ¢ ]=[B" r']

essentially the same system, but with multiple right hand sides, corresponding
to the columns of BT and r'. However, we never need to explicitly form or factor
(V+RHRT), since we can solve for all the right hand sides simultaneously using
Algorithm SMW of the previous section, only incurring the cost of storing
the result (V + RHRT)™1BT an an m x n matrix. Note that in our support
vector machine examples n = 1.

Let us review the steps needed to solve (13).

1. Form Tt = (V+ RHRT)"'BT and t? = (V + RHRT)~1r! using a simul-
taneous application of Algorithm SMW.

2. Calculate t3 = 2 + Bt? using the solution from step 1.
3. Form the n x n matrix T? = BT'.

4. Solve T?AN = t3, for the solution of (14).

5. Calculate Az as t? + TTAN.

Steps 2 and 3 can be done concurrent with step 1. Specifically, we can accu-
mulate T2 and t* as the elements in 7! and t? become available from step 3



of Algorithm SMW. Note that per iteration, this scheme only requires two
passes through the data in R, all in step 1, and one pass through 7! in step 5.

Furthermore, since the predictor-corrector method requires two solves of the
form (13) per iteration with differing 7! and 72, the extra storage used for T
means that we only need to calculate T once per iteration. In an efficient
implementation, we reuse the factors of V + RHRT in step 2 of Algorithm
SMW and T2 in step 4 of the above algorithm in both the predictor and
corrector steps of the interior point algorithm.

3.3 General Case

Unfortunately, this is not the end of the story since formulations (6) and (7)
do not have a positive definite matrix S, but instead use S = 0. In fact,
these problems also have lower and upper bounds. In this setting, while the
matrix V = Z71X (for appropriately defined Z and X) is positive definite
on the interior of the box defined by the bound constraints, the interior point
method typically runs into numerical difficulties when the solution approaches
the boundary of the box constraints.

Algorithmically, we would like for the optimization problem to have a pos-
itive definite S matrix. In the case where S is already positive definite, no
modification need be made to (1). For example, (8) and (9) have positive defi-
nite () matrices and are strongly convex quadratic programs.

However, when S is only positive semi-definite, we use a proximal point mod-
ification [22]. Proximal point algorithms augment the objective function with a
strongly convex quadratic term and repeatedly solve the resulting quadratic pro-
gram until convergence is achieved. That is, given z?, they solve the quadratic
program:

ming %xTQx—i—cT:v—i— 7 ||x—:vz||§
subject to Bx=b (15)
x>0

for some n > 0, possibly iteration dependent, to find a new z**!. The algo-
rithm repeatedly solves subproblems of the form (15) until convergence occurs.
Properties of such algorithms are developed in [22, 6] where it can be shown
that if the original problem has a solution, then the proximal point algorithm
converges to a particular element in the solution set of the original problem.
Furthermore, each of the quadratic subproblems is strongly convex.

This approach is used when solving (6) and (7) for example. However, rather
than solving each subproblem (15) exactly, we instead solve the subproblems
inexactly by just applying one step of the interior point method before updating
the subproblem. Thus, in effect, we are solving the following two systems of
equations at each iteration:

nl +S+RHRT -1 Az | [ 2= (S+RHR")z' —c
A X Az | ~XZe

10



and

nI+S+RHRT —I Az | o
A X Az | | ope— AXAZe

for some chosen o and u. Therefore, when using the proximal perturbation
algorithm, we use the same interior-point implementation and simply modify
the S matrix.

Note that the linear algebra issues are now entirely the same as the issues
already covered above. The only differences are in the particular values present
in S. The remaining challenge is to solve massive problems. The implementation
is discussed in the next section where we use out-of-core computation to reduce
memory requirements.

4 Implementation

An interesting feature of these particular models is the volume of data, which
can lead to quadratic programs with between 10 and 100 million variables and
a dense @ matrix. Quadratic programming codes explicitly using the ( matrix
will not work well for these problems. Therefore, we need a method for which
we can utilize tailored linear algebra.

We use the Mehrotra predictor-corrector algorithm [20] as implemented in
OOQP [10], as the basis for our interior-point method. The OOQP code is
written in such a way that we can easily specialize the linear algebra to the
application. This feature becomes key when we want to solve large data mining
problems.

The linear algebra outlined in Section 3 is used in our linear algebra imple-
mentation. As mentioned in Section 3 we calculate as much of the data needed
concurrently and reuse appropriate vectors and matrices for the predictor and
corrector steps. However, because of the target size, we must effectively deal
with the volume of data. Potentially, round-off or accumulation errors could
become significant, so we want to minimize these as much as possible. Finally,
we want to use a termination condition independent of the problem size. These
topics are discussed in the following sections. Clearly, the fact that an interior
point algorithms typically require only a small number of iterations is crucial
for performance.

4.1 Data Issues

As mentioned, the target problem contains 10 - 100 million observations. Con-
sider for example a model with 50 million observations and assume there are 35
features, each represented by a 1-byte quantity. Then, the observation matrix
consumes 1.75 gigabytes of storage. If the features are measured as double pre-
cision values, the storage requirement balloons to 14 gigabytes. Furthermore,
the quadratic program has 50 million variables. Therefore, each double preci-
sion vector requires 400 megabytes of space. If we assume 10 vectors are used,

11



an additional 4 gigabytes of storage is necessary. Therefore, the total space
requirement for the algorithm on a problem of this magnitude is between 5.75
and 18 gigabytes. Clearly, an in-core solution is not possible.

Therefore, we must attempt to perform most, if not all, of the operations
using data kept out-of-core, while still achieving adequate performance. One
observation is that all of the linear algebra discussed in Section 3 accesses the
data sequentially. Therefore, while working on one buffer (block) of data, we
can be reading the next from disk. The main computational component is con-
structing the matrix M = H~! + RTV IR (see step 2 of Algorithm SMW).
We begin by splitting R and V! into p buffers of data and calculate

p
M=H"+Y RI(V),R;.

Jj=1

Note that V is a diagonal matrix in the examples considered, but that more
general matrices can be handled with more sophisticated splitting techniques.
To summarize, we perform the following steps to calculate M.

1. Request Ry and (V~1); from disk and set M = H~!.
2. Forj=1top—1do

(a) Wait for R; and Vj_1 to finish loading.
(b) Request R;41 and ijrll from disk.
(c) Accumulate M = M + R] (V~');R;.

3. Wait for R, and V! to finish loading.
4. Accumulate M = M + RI'(V=1),R,.

The code uses asynchronous I/O constructs to provide the request and wait
functionality. The remainder of the linear algebra in Section 3 can be calculated
similarly. The code performs as many of the required steps concurrently with
the reading of the R; buffers from disk.

The amount of data kept in-core is significantly reduced with such a scheme.
The tradeoff is that the code will not be as fast as an in-core implementation.
We quantify the impact of the out-of-core calculation in Section 5.

4.2 Numerical Considerations

Due to the number of variables in the problems solved, we can run into sig-
nificant round-off errors while performing the linear algebra, particularly when
accumulating the matrices. In an attempt to limit the effect of these numerical
errors, we use a hierarchical scheme for the computations.

Consider the construction of the matrix H~' + RTV 'R using the above
technique. Our implementation accumulates the RJ-T(V’l) jR; components in
temporary matrices, M; for [ = 1,...,L and then merges these together as

12



1
My M3
My My M3 My

Figure 1: Accumulation Diagram

M = Zlel M. To do this, the initialization and accumulation steps are updated
from the algorithm above into the final form:

1. Request Ry and (V1) from disk and set My = H~! and M; = 0 for
l=2,...,L.

2. Forj=1top—1do
(a) Wait for R; and Vj_1 to finish loading.
(b) Request R, and ijrll from disk.
(¢) Accumulate M(; mod £y11 = M(; mod £y+1 + R} (V71);R;.

3. Wait for R, and V,! to finish loading.
4. Accumulate M, mod £)+1 = M(p mod L)+1 + Rg(V’l)pRp.
5. Merge M = Zle M.

The merge is implemented by repeatedly adding the % neighbors as depicted in
Figure 1. A similar procedure is used for the vector computations. The code
uses L = 8 for the calculations. We note that the above algorithm is dependent
upon the buffer size read from disk. This dependency is removed in the code
by further partitioning R; and ijl into smaller buffers with 50,000 elements.

4.3 Termination Criteria

Finally, we terminate based on the inf-norm of the Fischer-Burmeister function
[8], with an appropriate modification for the presence of equations [7], for the
complementarity problem (10). The inf-norm is independent of the number
of variables in the problem and can be stably calculated given evaluations of
the linear functions in (10). We further note that the function evaluation is
calculated while determining the right-hand side, 2z — (S+ RHRT)x" —¢, for the

13
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Figure 2: Log residual as a function of iterations for problem (6) with 10 million
observations

predictor step. Therefore, the function calculation does not cost an additional
pass through the data. We use a termination criteria of 107° for the Fischer-
Burmeister function within the code, which is much more stringent than the
default criteria for OOQP. In Figure 2 we plot the (log) residual as a function of
the iteration for problem (6) with 10 million observations. Note the consistency
of the decrease in the residual.

The machine learning community will sometimes terminate an algorithm
based upon conditions other than optimality, such as tuning set accuracy [18].
As Figure 2 shows, using similar criteria would provide benefits to our code as
well.

5 Results

For experimentation, we generated a random data set with 34 features that is
separable. We did this by constructing a separating hyperplane and then creat-
ing data points and classifying them with the hyperplane. The data generated
contains 60 million observations of 34 features where each feature has an integer
value between 1 and 10. Multiplication by D was performed while generating
the data, with De being encoded as an additional column to the observation
set. Each of the feature measurements is a 1-byte quantity.

We limited the size to 60 million observations to avoid problems with the 2
gigabyte file size restriction imposed by various operating systems. To increase
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the size further without changing operating system, we could store the original
data in multiple files.

All of the tests were run on a 330 Mhz SUN Ultrasparc with 2 processors and
768 MB of RAM. The asynchronous I/O routines are implemented using threads.
Thus, both of the processors are used for the tests. Results on a uniprocessor
machine indicate that the impact of the second processor is minimal.

We first quantify the effects of using an out-of-core implementation. We
then look at the scalability of the algorithm.

5.1 Out-of-Core Impact

The impact on performance of using an out-of-core implementation was tested
using the formulation in (8) with v = 1. Since S is positive definite in this case,
no proximal point modification was necessary.

The first property investigated is the effect of out-of-core computations on
performance using asynchronous I/O. To test the performance, we ran problems
varying the size between 200,000 and 1 million observations. A buffer size of
100,000 observations (elements) for each matrix (vector) was used for the out-
of-core computations. We ran each of the tests 5 times and use the median
values in the figures. The average time per iteration is reported in Figure 3 for
in-core, asynchronous I/0, and synchronous I/O implementations. While the
asynchronous I/0O is not as fast as keeping everything in core, we notice only a
14% increase in time over the in core implementation for the chosen buffer and
problem sizes. Synchronous I/0O results in a 16% increase. The conclusion to be
drawn here is that an out-of-core implementation of the algorithm uses limited
space but results in increased time. We believe that the enormous decrease in
the amount of RAM used for a 14% increase in time is a reasonable tradeoff to
make. A case can also be made for using the easier to implement synchronous
I/0. However, we note from the graph that the margin between asynchronous
and synchronous I/O appears to be growing, thus leading us to believe that for
larger problems, synchronous I/O would have a more significant impact.

The next set of experiments was designed to determine the impact of mod-
ifying the buffer size. For these tests, we fixed the problem size to 1 million
observations and varied the buffer size from 50,000 to 500,000 elements. The
average time per iteration is plotted in Figure 4. The results indicate a buffer
size of around 250,000 elements is optimal with an 11% increase in time over the
in-core solution. The total amount of data buffered in main memory is between
114 and 160 megabytes depending upon the problem formulation used.

5.2 Massive Problems

Based on the results in the previous section, we decided to use asynchronous
I/O and a buffer size of 250,000 elements. We are now interested in determining
the reliability of the algorithm on the various formulations and the scalability
of the implementation to massive problems. In order to do this, we varied the
problem size between 1 and 60 million observations. In all of these tests v = 1
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was used and for the models in (6) and (7), a proximal perturbation of n = 100
was used.

Each model was run one time with problem sizes of 1, 5, 10, 20, and 60 million
observations. We plot average time per iteration and number of iterations as
functions of problem size in Figure 5 and Figure 6 respectively. The similarity
in the average time per iteration between formulations (8) and (9) (and also
between (6) and (7)) is indistinguishable. To avoid clutter, we only plot the
results for (6) and (9) in Figure 5. The total times are reported in Figure 7.

The average time per iteration appears to grow almost linearly with the
problem size. This result is to be expected, as the majority of the time taken
per iteration is in constructing H ' + RTV~'R. The floating-point operations
necessary to calculate this quantity grows linearly with problem size m (but
quadratically with the number of features k). The extra time needed for (6) is
due to the treatment of upper bounds.

A surprising result for the constrained formulations, (6) and (9), is that the
number of iterations remains fairly flat as the problem size increases and even
decreases for some of the larger problems. This fact is counter-intuitive and
likely related to the random nature of the model. However, more tests on “real”
datasets need to be performed before drawing any conclusions. As expected, the
number of iterations taken for (8) and (9) increases slowly with the dimension
of the problem.

It would appear that the constrained formulations (6) and (9) are most
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tractable for interior point methods. Both of these formulations solved the 60
million observation problem in a 29 - 36 hours on a standard workstation. We
have not run formulations (7) and (8) for 60 million observations since their
timings are somewhat longer.

We believe the strength of this approach is its scalability and reliability.
While it may be possible to adjust the parameters of the interior point method
or the parameters of the proximal point iteration for improved performance, we
have just elected to go with the same defaults on all problems and have not run
into any numerical problems beyond those that we addressed in Section 4.2.

6 Conclusions

We have developed an interior-point code for solving several quadratic program-
ming formulations of the linear support vector machine. We are able to solve
large problems reasonably by exploiting the linear algebra and using out-of-core
computations. Scalability of the approach has been demonstrated.

We also remark that our framework allows other formulations of the sup-
port vector machine to be explored. For example, using the inf-norm of the
misclassification error we have the problems:

. 1 2
MMy, y,y 7 lwlly +vy
subject to D(Aw —ey)+ey >e
y=>0
with y € R, and
. 2
MMy ,,y % w13 + vy
subject to D(Aw —ey)+ey >e
y=>0
whose Wolfe duals are
min, %ITDAATDTZE —eTy
subject to eTDTx =0
eTe+s=v
z>0,s>0
and
min,, %xTDAATDTx + %xTDeeTDT:E —eTy
subject to efe+s=v
z>0,s>0

respectively, where we have added a slack variable, s, to the general constraints.
Note that the general constraints for these problems have full row rank. There-
fore, they can be effectively solved using the interior-point method developed.

Finally, the linear algebra used can be parallelized, and by distributing the
data across multiple disks further speedups can be realized. More sophisticated
corrector implementations [12] of the interior-point code can be used to further
reduce the iteration count. These are the topics of future work.
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