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RSVM: Reduced Support

Vector Machines

Yuh-Jye Lee∗ and Olvi L. Mangasarian†

1 Introduction

Abstract An algorithm is proposed which generates a nonlinear kernel-based
separating surface that requires as little as 1% of a large dataset for its explicit
evaluation. To generate this nonlinear surface, the entire dataset is used as a con-
straint in an optimization problem with very few variables corresponding to the 1%
of the data kept. The remainder of the data can be thrown away after solving the
optimization problem. This is achieved by making use of a rectangular m×m̄ kernel
K(A, Ā′) that greatly reduces the size of the quadratic program to be solved and
simplifies the characterization of the nonlinear separating surface. Here, the m rows
of A represent the original m data points while the m̄ rows of Ā represent a greatly
reduced m̄ data points. Computational results indicate that test set correctness for
the reduced support vector machine (RSVM), with a nonlinear separating surface
that depends on a small randomly selected portion of the dataset, is better than
that of a conventional support vector machine (SVM) with a nonlinear surface that
explicitly depends on the entire dataset, and much better than a conventional SVM
using a small random sample of the data. Computational times, as well as memory
usage, are much smaller for RSVM than that of a conventional SVM using the entire
dataset.

Support vector machines have come to play a very dominant role in data
classification using a kernel-based linear or nonlinear classifier [23, 6, 21, 22]. Two
major problems that confront large data classification by a nonlinear kernel are:

1. The sheer size of the mathematical programming problem that needs to be
solved and the time it takes to solve, even for moderately sized datasets.
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2. The dependence of the nonlinear separating surface on the entire dataset which
creates unwieldy storage problems that prevents the use of nonlinear kernels
for anything but a small dataset.

For example, even for a thousand point dataset, one is confronted by a fully dense
quadratic program with 1001 variables and 1000 constraints resulting in constraint
matrix with over a million entries. In contrast, our proposed approach would typi-
cally reduce the problem to one with a 101 variables and a 1000 constraints which is
readily solved by a smoothing technique [10] as an unconstrained 101-dimensional
minimization problem. This generates a nonlinear separating surface which depends
on a hundred data points only, instead of the conventional nonlinear kernel surface
which would depend on the entire 1000 points. In [24], an approximate kernel has
been proposed which is based on an eigenvalue decomposition of a randomly selected
subset of the training set. However, unlike our approach, the entire kernel matrix is
generated within an iterative linear equation solution procedure. We note that our
data-reduction approach should work equally well for 1-norm based support vec-
tor machines [1], chunking methods [2] as well as Platt’s sequential minimization
optimization (SMO) [19].

We briefly outline the contents of the paper now. In Section 2 we describe
kernel-based classification for linear and nonlinear kernels. In Section 3 we outline
our reduced SVM approach. Section 4 gives computational and graphical results
that show the effectiveness and power of RSVM. Section 5 concludes the paper.

A word about our notation and background material. All vectors will be
column vectors unless transposed to a row vector by a prime superscript ′. For
a vector x in the n-dimensional real space Rn, the plus function x+ is defined as
(x+)i = max {0, xi}, while the step function x∗ is defined as (x∗)i = 1 if xi > 0
else (x∗)i = 0, i = 1, . . . , n. The scalar (inner) product of two vectors x and y in
the n-dimensional real space Rn will be denoted by x′y and the p-norm of x will
be denoted by ‖x‖p. For a matrix A ∈ Rm×n, Ai is the ith row of A which is a row
vector in Rn. A column vector of ones of arbitrary dimension will be denoted by e.
For A ∈ Rm×n and B ∈ Rn×l, the kernel K(A, B) maps Rm×n × Rn×l into Rm×l.
In particular, if x and y are column vectors in Rn then, K(x′, y) is a real number,
K(x′, A′) is a row vector in Rm and K(A, A′) is an m×m matrix. The base of the
natural logarithm will be denoted by ε.

2 Linear and Nonlinear Kernel Classification

We consider the problem of classifying m points in the n-dimensional real space
Rn, represented by the m × n matrix A, according to membership of each point
Ai in the classes +1 or -1 as specified by a given m × m diagonal matrix D with
ones or minus ones along its diagonal. For this problem the standard support vector
machine with a linear kernel AA′ [23, 6] is given by the following quadratic program
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for some ν > 0:

min
(w,γ,y)∈Rn+1+m

νe′y + 1
2w′w

s.t. D(Aw − eγ) + y ≥ e

y ≥ 0.

(1)

As depicted in Figure 1, w is the normal to the bounding planes:

x′w − γ = +1
x′w − γ = −1,

(2)

and γ determines their location relative to the origin. The first plane above bounds
the class +1 points and the second plane bounds the class -1 points when the two
classes are strictly linearly separable, that is when the slack variable y = 0. The
linear separating surface is the plane

x′w = γ, (3)

midway between the bounding planes (2). If the classes are linearly inseparable
then the two planes bound the two classes with a “soft margin” determined by a
nonnegative slack variable y, that is:

x′w − γ + yi ≥ +1, for x′ = Ai and Dii = +1,

x′w − γ − yi ≤ −1, for x′ = Ai and Dii = −1.
(4)

The 1-norm of the slack variable y is minimized with weight ν in (1). The quadratic
term in (1), which is twice the reciprocal of the square of the 2-norm distance 2

‖w‖2

between the two bounding planes of (2) in the n-dimensional space of w ∈ Rn for
a fixed γ, maximizes that distance, often called the “margin”. Figure 1 depicts
the points represented by A, the bounding planes (2) with margin 2

‖w‖2
, and the

separating plane (3) which separates A+, the points represented by rows of A with
Dii = +1, from A−, the points represented by rows of A with Dii = −1.

In our smooth approach, the square of 2-norm of the slack variable y is mini-
mized with weight ν

2 instead of the 1-norm of y as in (1). In addition the distance
between the planes (2) is measured in the (n+1)-dimensional space of (w, γ) ∈ Rn+1,
that is 2

‖(w,γ)‖2
. Measuring the margin in this (n + 1)-dimensional space instead of

Rn induces strong convexity and has little or no effect on the problem as was shown
in [14]. Thus using twice the reciprocal squared of the margin instead, yields our
modified SVM problem as follows:

min
(w,γ,y)∈Rn+1+m

ν
2y′y + 1

2 (w′w + γ2)

s.t. D(Aw − eγ) + y ≥ e

y ≥ 0.

(5)

It was shown computationally in [15] that this reformulation (5) of the conventional
support vector machine formulation (1) yields similar results to (1). At a solution
of problem (5), y is given by

y = (e − D(Aw − eγ))+, (6)
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Figure 1. The bounding planes (2) with margin 2

‖w‖2
, and the plane (3)

separating A+, the points represented by rows of A with Dii = +1, from A−, the

points represented by rows of A with Dii = −1.

where, as defined in the Introduction, (·)+ replaces negative components of a vector
by zeros. Thus, we can replace y in (5) by (e − D(Aw − eγ))+ and convert the
SVM problem (5) into an equivalent SVM which is an unconstrained optimization
problem as follows:

min
(w,γ)∈Rn+1

ν
2 ‖(e − D(Aw − eγ))+‖

2
2 + 1

2 (w′w + γ2). (7)

This problem is a strongly convex minimization problem without any constraints.
It is easy to show that it has a unique solution. However, the objective function
in (7) is not twice differentiable which precludes the use of a fast Newton method.
In [10] we smoothed this problem and applied a fast Newton method to solve it as
well as the nonlinear kernel problem which we describe now.

We first describe how the generalized support vector machine (GSVM) [12]
generates a nonlinear separating surface by using a completely arbitrary kernel. The
GSVM solves the following mathematical program for a general kernel K(A, A′):

min
(u,γ,y)∈R2m+1

νe′y + f(u)

s.t. D(K(A, A′)Du − eγ) + y ≥ e

y ≥ 0.

(8)

Here f(u) is some convex function on Rm which suppresses the parameter u and ν is
some positive number that weights the classification error e′y versus the suppression



“proceed”
2001/1/31
page 5

i

i

i

i

i

i

i

i

5

of u. A solution of this mathematical program for u and γ leads to the nonlinear
separating surface

K(x′, A′)Du = γ. (9)

The linear formulation (1) of Section 2 is obtained if we let K(A, A′) = AA′, w =
A′Du and f(u) = 1

2u′DAA′Du. We now use a different classification objective
which not only suppresses the parameter u but also suppresses γ in our nonlin-
ear formulation:

min
(u,γ,y)∈R2m+1

ν
2y′y + 1

2 (u′u + γ2)

s.t. D(K(A, A′)Du − eγ) + y ≥ e

y ≥ 0.

(10)

At a solution of (10), y is given by

y = (e − D(K(A, A′)Du − eγ))+, (11)

where, as defined earlier, (·)+ replaces negative components of a vector by zeros.
Thus, we can replace y in (10) by (e − D(K(A, A′)Du − eγ))+ and convert the
SVM problem (10) into an equivalent SVM which is an unconstrained optimization
problem as follows:

min
(u,γ)∈Rm+1

ν
2‖(e − D(K(A, A′)Du − eγ))+‖

2
2 + 1

2 (u′u + γ2). (12)

Again, as in (7), this problem is a strongly convex minimization problem without
any constraints, has a unique solution but its objective function is not twice dif-
ferentiable. To apply a fast Newton method we use the smoothing techniques of
[4, 5] and replace x+ by a very accurate smooth approximation as was done in [10].
Thus we replace x+ by p(x, α), the integral of the sigmoid function 1

1+ε−αx of neural
networks [11, 4] for some α > 0. That is:

p(x, α) = x +
1

α
log(1 + ε−αx), α > 0. (13)

This p function with a smoothing parameter α is used here to replace the plus
function of (12) to obtain a smooth support vector machine (SSVM) :

min
(u,γ)∈Rm+1

ν

2
‖p(e − D(K(A, A′)Du − eγ), α)‖2

2 +
1

2
(u′u + γ2). (14)

It was shown in [10] that the solution of problem (10) is obtained by solving prob-
lem (14) with α approaching infinity. Computationally, we used the limit values of
the sigmoid function 1

1+ε−αx and the p function (13) as the smoothing parameter

α approaches infinity, that is the unit step function with value 1
2 at zero and the

plus function (·)+ respectively. This gave extremely good results both here and in
[10]. The twice differentiable property of the objective function of (14) enables us to
utilize a globally quadratically convergent Newton algorithm for solving the smooth
support vector machine (14) [10, Algorithm 3.1] which consists of solving successive
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linearizations of the gradient of the objective function set to zero. Problem (14)
which is capable of generating a highly nonlinear separating surface (9), retains the
strong convexity and differentiability properties for any arbitrary kernel. However,
we still have to contend with two difficulties. Firstly, problem (14) is a problem in
m + 1 variables, where m could be of the order of millions for large datasets. Sec-
ondly, the resulting nonlinear separating surface (9) depends on the entire dataset
represented by the matrix A. This creates an unwieldy storage difficulty for very
large datasets and makes the use of nonlinear kernels impractical for such problems.
To avoid these two difficulties we turn our attention to the reduced support vector
machine.

3 RSVM: The Reduced Support Vector Machine

The motivation for RSVM comes from the practical objective of generating a non-
linear separating surface (9) for a large dataset which requires a small portion of
the dataset for its characterization. The difficulty in using nonlinear kernels on
large datasets is twofold. First is the computational difficulty in solving the the
potentially huge unconstrained optimization problem (14) which involves the ker-
nel function K(A, A′) that typically leads to the computer running out of memory
even before beginning the solution process. For example for the Adult dataset with
32562 points, which is actually solved with RSVM in Section 4, this would mean
a map into a space of over one billion dimensions for a conventional SVM. The
second difficulty comes from utilizing the formula (9) for the separating surface on
a new unseen point x. The formula dictates that we store and utilize the entire
data set represented by the 32562 × 123 matrix A which may be prohibitively ex-
pensive storage-wise and computing-time-wise. For example for the Adult dataset
just mentioned which has an input space of 123 dimensions, this would mean that
the nonlinear surface (9) requires a storage capacity for 4,005,126 numbers. To
avoid all these difficulties and based on experience with chunking methods [2, 13],
we hit upon the idea of using a very small random subset of the dataset given by
m̄ points of the original m data points with m̄ << m, that we call Ā and use Ā′

in place of A′ in both the unconstrained optimization problem (14), to cut problem
size and computation time, and for the same purposes in evaluating the nonlinear
surface (9). Note that the matrix A is left intact in K(A, Ā′). Computational test-
ing results show a standard deviation of 0.002 or less of test set correctness over
50 random choices for Ā. By contrast if both A and A′ are replaced by Ā and Ā′

respectively, then test set correctness declines substantially compared to RSVM,
while the standard deviation of test set correctness over 50 cases increases more
than tenfold over that of RSVM.

The justification for our proposed approach is this. We use a small random Ā

sample of our dataset as a representative sample with respect to the entire dataset
A both in solving the optimization problem (14) and in evaluating the the nonlinear
separating surface (9). We interpret this as a possible instance-based learning [17,
Chapter 8] where the small sample Ā is learning from the much larger training set
A by forming the appropriate rectangular kernel relationship K(A, Ā′) between the
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original and reduced sets. This formulation works extremely well computationally
as evidenced by the computational results that we present in the next section of the
paper.

By using the formulations described in Section 2 for the full dataset A ∈ Rm×n

with a square kernel K(A, A′) ∈ Rm×m, and modifying these formulations for the
reduced dataset Ā ∈ Rm̄×n with corresponding diagonal matrix D̄ and rectangular
kernel K(A, Ā′) ∈ Rm×m̄, we obtain our RSVM Algorithm below. This algorithm
solves, by smoothing, the RSVM quadratic program obtained from (10) by replacing
A′ with Ā′ as follows:

min
(ū,γ,y)∈Rm̄+1+m

ν
2y′y + 1

2 (ū′ū + γ2)

s.t. D(K(A, Ā′)D̄ū − eγ) + y ≥ e

y ≥ 0.

(15)

Algorithm 3.1 RSVM Algorithm

(i) Choose a random subset matrix Ā ∈ Rm̄×n of the original data matrix A ∈
Rm×n. Typically m̄ is 1% to 10% of m. (The random matrix Ā choice was
such that the distance between its rows exceeded a certain tolerance.)

(ii) Solve the following modified version of the SSVM (14) where A′ only is re-
placed by Ā′ with corresponding D̄ ⊂ D:

min
(ū,γ)∈Rm̄+1

ν

2
‖p(e − D(K(A, Ā′)D̄ū − eγ), α)‖2

2 +
1

2
(ū′ū + γ2), (16)

which is equivalent to solving (10) with A′ only replaced by Ā′.

(iii) The separating surface is given by (9) with A′ replaced by Ā′ as follows:

K(x′, Ā′)D̄ū = γ, (17)

where (ū, γ) ∈ Rm̄+1 is the unique solution of (16), and x ∈ Rn is a free input
space variable of a new point.

(iv) A new input point x ∈ Rn is classified into class +1 or −1 depending on
whether the step function:

(K(x′, Ā′)D̄ū − γ)∗, (18)

is +1 or zero, respectively.

As stated earlier, this algorithm is quite insensitive as to which submatrix Ā

is chosen for (16)-(17), as far as tenfold cross-validation correctness is concerned.
In fact, another choice for Ā is to choose it randomly but only keep rows that are
more than a certain minimal distance apart. This leads to a slight improvement
in testing correctness but increases computational time somewhat. Replacing both

A and A′ in a conventional SVM by randomly chosen reduced matrices Ā and Ā′

gives poor testing set results that vary significantly with the choice of Ā, as will be
demonstrated in the numerical results given in the next section to which we turn
now.
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4 Computational Results

We applied RSVM to three groups of publicly available test problems: the checker-
board problem [8, 9], six test problems from the University of California (UC)
Irvine repository [18] and the Adult data set from the same repository. We show
that RSVM performs better than a conventional SVM using the entire training set
and much better than a conventional SVM using only the same randomly chosen
set by RSVM. We also show, using time comparisons, that RSVM performs better
than sequential minimal optimization (SMO) [19] and projected conjugate gradient
chunking (PCGC) [7, 3]. Computational time on the Adult datasets grows nearly
linearly for RSVM, whereas SMO and PCGC times grow at a much faster nonlinear
rate. All our experiments were solved by using the globally quadratically conver-
gent smooth support vector machine (SSVM) algorithm [10] that merely solves a
finite sequence of systems of linear equations defined by a positive definite Hessian
matrix to get a Newton direction at each iteration. Typically 5 to 8 systems of
linear equations are solved by SSVM and hence each data point Ai, i = 1, . . . , m

is accessed 5 to 8 times by SSVM. Note that no special optimization packages such
as linear or quadratic programming solvers are needed. We implemented SSVM
using standard native MATLAB commands [16]. We used a Gaussian kernel [12]:

ε−α‖Ai−Aj‖
2
2 , i, j = 1, . . . , m for all our numerical tests. A polynomial kernel of de-

gree 6 was also used on the checkerboard with similar results which are not reported
here. All parameters in these tests were chosen for optimal performance on a tuning
set, a surrogate for a test set. All our experiments were run on the University of
Wisconsin Computer Sciences Department Ironsides cluster. This cluster of four
Sun Enterprise E6000 machines, each machine consisting of 16 UltraSPARC II 250
MHz processors and 2 gigabytes of RAM, resulting in a total of 64 processors and
8 gigabytes of RAM.

The checkerboard dataset [8, 9] consists of 1000 points in R2 of black and
white points taken from sixteen black and white squares of a checkerboard. This
dataset is chosen in order to depict graphically the effectiveness of RSVM using
a random 5% or 10% of the given 1000-point training dataset compared to the
very poor performance of a conventional SVM on the same 5% or 10% randomly
chosen subset. Figures 2 and 4 show the poor pattern approximating a checkerboard
obtained by a conventional SVM using a Gaussian kernel, that is solving (10) with
both A and A′ replaced by the randomly chosen Ā and Ā′ respectively. Test set
correctness of this conventional SVM using the reduced Ā and Ā′ averaged, over 15
cases, 43.60% for the 50-point dataset and 67.91% for the 100-point dataset, on a
test set of 39601 points. In contrast, using our RSVM Algorithm 3.1 on the same

randomly chosen submatrices Ā′, yields the much more accurate representations of
the checkerboard depicted in Figures 3 and 5 with corresponding average test set
correctness of 96.70% and 97.55% on the same test set.
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Figure 2. SVM: Checkerboard resulting from a randomly selected 50 points, out

of a 1000-point dataset, and used in a conventional Gaussian kernel SVM (10). The resulting

nonlinear surface, separating white and black areas, generated using the 50 random points

only, depends explicitly on those points only. Correctness on a 39601-point test set averaged

43.60% on 15 randomly chosen 50-point sets, with a standard deviation of 0.0895 and best

correctness of 61.03% depicted above.
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Figure 3. RSVM: Checkerboard resulting from randomly selected 50 points and

used in a reduced Gaussian kernel SVM (15). The resulting nonlinear surface, separating

white and black areas, generated using the entire 1000-point dataset, depends explicitly

on the 50 points only. The remaining 950 points can be thrown away once the separating

surface has been generated. Correctness on a 39601-point test set averaged 96.7% on 15

randomly chosen 50-point sets, with a standard deviation of 0.0082 and best correctness of

98.04% depicted above.
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Figure 4. SVM: Checkerboard resulting from a randomly selected 100 points, out

of a 1000-point dataset, and used in a conventional Gaussian kernel SVM (10). The resulting

nonlinear surface, separating white and black areas, generated using the 100 random points

only, depends explicitly on those points only. Correctness on a 39601-point test set averaged

67.91% on 15 randomly chosen 100-point sets, with a standard deviation of 0.0378 and best

correctness of 76.09% depicted above.
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Figure 5. RSVM: Checkerboard resulting from randomly selected 100 points and

used in a reduced Gaussian kernel SVM (15). The resulting nonlinear surface, separating

white and black areas, generated using the entire 1000-point dataset, depends explicitly on

the 100 points only. The remaining 900 points can be thrown away once the separating

surface has been generated. Correctness on a 39601-point test set averaged 97.55% on 15

randomly chosen 100-point sets, with a standard deviation of 0.0034 and best correctness

of 98.26% depicted above.
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The next set of numerical results in Table 1 on the six UC Irvine test prob-
lems: Ionosphere, BUPA Liver, Pima Indians, Cleveland Heart, Tic-Tac-Toe and
Mushroom, show that RSVM, with m̄ ≤ m

10 on all these datasets, got better test set
correctness than that of a conventional SVM (10) using the full data matrix A and
much better than the conventional SVM (10) using the same reduced matrices Ā

and Ā′. RSVM was also better than the linear SVM using the full data matrix A.
A possible reason for the improved test set correctness of RSVM is the avoidance of
data overfitting by using a reduced data matrix Ā′ instead of the full data matrix
A′.

Tenfold Test Set Correctness % (Best in Bold)
Tenfold Computational Time, Seconds

Gaussian Kernel Matrix Used in SSVM

Dataset Size K(A, Ā′) K(A, A′) K(Ā, Ā′) AA′ (Linear)

m × n, m̄ m × m̄ m × m m̄ × m̄ m × n

Cleveland Heart 86.47 85.92 76.88 86.13
297× 13, 30 3.04 32.42 1.58 1.63
BUPA Liver 74.86 73.62 68.95 70.33
345× 6, 35 2.68 32.61 2.04 1.05
Ionosphere 95.19 94.35 88.70 89.63

351× 34, 35 5.02 59.88 2.13 3.69
Pima Indians 78.64 76.59 57.32 78.12
768× 8, 50 5.72 328.3 4.64 1.54
Tic-Tac-Toe 98.75 98.43 88.24 69.21
958× 9, 96 14.56 1033.5 8.87 0.68
Mushroom 89.04 N/A 83.90 81.56

8124× 22, 215 466.20 N/A 221.50 11.27

Table 1. Tenfold cross-validation correctness results on six UC Irvine

datasets demonstrate that the RSVM Algorithm 3.1 can get test set correctness that

is better than a conventional nonlinear SVM (10) using either the full data matrix A

or the reduced matrix Ā′, as well as a linear kernel SVM using the full data matrix A.

The computer ran out of memory while generating the full nonlinear kernel for the

Mushroom dataset. Average on these six datasets of the standard deviation of the

tenfold test set correctness for K(A, Ā′) was 0.034 and for K(Ā, Ā′) was 0.057. N/A

denotes “not available” results because the kernel K(A,A′) was too large to store.

The third group of test problems, the UCI Adult dataset, uses an m̄ that
ranges between 1% to 5% of m in the RSVM Algorithm 3.1. We make the following
observations on this set of results given in Table 2:

(i) Test set correctness of RSVM was better on average by 10.52% and by as much
as 12.52% over a conventional SVM using the same reduced submatrices Ā and
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Ā′.

(ii) The standard deviation of test set correctness for 50 randomly chosen Ā′ for
RSVM was no greater than 0.002, while the corresponding standard deviation
for a conventional SVM for the same 50 random Ā and Ā′ was as large as
0.026. In fact, smallness of the standard deviation was used as a guide to
determining m̄, the size of the reduced data used in RSVM.

Adult Dataset Size K(A, Ā′)m×m̄ K(Ā, Ā′)m̄×m̄ Ām̄×123

(Training, Testing) Testing % Std. Dev. Testing % Std. Dev. m̄ m̄/m

(1605, 30957) 84.29 0.001 77.93 0.016 81 5.0 %

(2265, 30297) 83.88 0.002 74.64 0.026 114 5.0 %

(3185, 29377) 84.56 0.001 77.74 0.016 160 5.0 %

(4781, 27781) 84.55 0.001 76.93 0.016 192 4.0 %

(6414, 26148) 84.47 0.001 77.03 0.014 210 3.2 %

(11221, 21341) 84.71 0.001 75.96 0.016 225 2.0 %

(16101, 16461) 84.90 0.001 75.45 0.017 242 1.5 %

(22697, 9865) 85.31 0.001 76.73 0.018 284 1.2 %

(32562, 16282) 85.07 0.001 76.95 0.013 326 1.0 %

Table 2. Computational results for 50 runs of RSVM on each of nine

commonly used subsets of the Adult dataset [18]. Each run uses a randomly chosen

Ā from A for use in an RSVM Gaussian kernel, with the number of rows m̄ of Ā

between 1% and 5% of the number of rows m of the full data matrix A. Test set

correctness for the largest case is the same as that of SMO [20].

Finally, Table 3 and Figure 6 show the nearly linear time growth of RSVM on
the Adult dataset as a function of the number of points m in the dataset, compared
to the faster nonlinear time growth of SMO [19] and PCGC [7, 3].

5 Conclusion

We have proposed a Reduced Support Vector Machine (RSVM) Algorithm 3.1 that
uses a randomly selected subset of the data that is typically 10% or less of the orig-
inal dataset to obtain a nonlinear separating surface. Despite this reduced dataset,
RSVM gets better test set results than that obtained by using the entire data. This
may be attributable to a reduction in data overfitting. The reduced dataset is all
that is needed in characterizing the final nonlinear separating surface. This is very
important for massive datasets such as those used in fraud detection which number
in the millions. We may think that all the information in the discarded data has



“proceed”
2001/1/31
page 13

i

i

i

i

i

i

i

i

13

Adult Datasets - Training Set Size vs. CPU Time in Seconds

Size 1605 2265 3185 4781 6414 11221 16101 22697 32562

RSVM 10.1 20.6 44.2 83.6 123.4 227.8 342.5 587.4 980.2

SMO 15.8 32.1 66.2 146.6 258. 8 781.4 1784.4 4126.4 7749.6

PCGC 34.8 114.7 380.5 1137.2 2530.6 11910.6 N/A N/A N/A

Table 3. CPU time comparisons of RSVM, SMO [19] and PCGC [7, 3]

with a Gaussian kernel on the Adult datasets. SMO and PCGC were run on a 266

MHz Pentium II processor under Windows NT 4 and using Microsoft’s Visual C++

5.0 compiler. PCGC ran out of memory (128 Megabytes) while generating the kernel

matrix when the training set size is bigger than 11221. We quote results from [19].

N/A denotes “not available” results because the kernel K(A,A′) was too large to

store.
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Figure 6. Indirect CPU time comparison of RSVM, SMO and PCGC for a

Gaussian kernel SVM on the nine Adult data subsets.

been distilled into the parameters defining the nonlinear surface during the training
process via the rectangular kernel K(A, Ā′). Although the training process, which
consists of the RSVM Algorithm 3.1, uses the entire dataset in an unconstrained
optimization problem (14), it is a problem in Rm̄+1 with m̄ ≤ m

10 , and hence much
easier to solve than that for the full dataset which would be a problem in Rm+1.
The choice of the random data submatrix Ā′ to be used in RSVM does not af-



“proceed”
2001/1/31
page 14

i

i

i

i

i

i

i

i

14

fect test set correctness. In contrast, a random choice for a data submatrix for
a conventional SVM has standard deviation of test set correctness which is more
than ten times that of RSVM. With all these properties, RSVM appears to be a
very promising method for handling large classification problems using a nonlinear
separating surface.
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