
Slice Models in General Purpose Modeling

Systems∗

Michael C. Ferris Meta M. Voelker†

December 14, 2000

Abstract

Slice models are collections of mathematical programs with the same
structure but different data. Examples of slice models appear in Data
Envelopment Analysis, where they are used to evaluate efficiency, and
cross-validation, where they are used to measure generalization ability.
Because they involve multiple programs, slice models tend to be data-
intensive and time consuming to solve. However, by incorporating addi-
tional information in the solution process, such as the common structure
and shared data, we are able to solve these models much more efficiently.
In addition because of the efficiency we achieve, we are able to process
much larger real-world problems and extend slice model results through
the application of more computationally-intensive procedures.

1 Introduction: Slice Models

In a broad sense, a slice model consists of a group of mathematical programs
that are closely related. More specifically, a slice model consists of mathematical
programs which use the same model, but different data. Because of this, the
basic structure in a slice model remains the same from program to program.
Often, the programs are also related through the data: some or most of the
data stay the same between programs, differing only in a few rows or columns.

If we consider all of the data for all of the programs at once, we can define a
specific program by pulling out its appropriate “slice” of data from the full set.

∗This material is based on research partially supported by the National Science Foundation
under grants CCR-9972372 and CDA-9726385, the Air Force Office of Scientific Research
under grant F49620-01-1-0040 and Microsoft Corporation

†Computer Sciences Department, University of Wisconsin – Madison, 1210 West Dayton
Street, Madison, Wisconsin 53706 (ferris,voelker@cs.wisc.edu)

1

For the k-th slice program, this idea can be expressed as follows:

min
θ,x

θ

subject to Ak

(

x

θ

)

= bk

(

x

θ

)

∈ X

(1)

where Ak represents the matrix of constraint coefficients which (along with right-
hand-sides bk) are unique to the k-th program. The set X , on the other hand,
represents the (core) constraints and program structure which remain constant
between programs. Note that the set X can be very complicated, comprising
other general constraints and possibly integrality conditions.

Modeling languages allow us to define slice models easily. Using parameters
for the data, we only need to specify the program once. Then, the program can
be solved multiple times using different data by simply specifying which data to
use for each solve. This has been done for Data Envelopment Analysis models
in [13, 16] by using a loop structure, inside which the data is redefined and the
solve is re-executed. By using subsets, we can further control which individual
programs are actually solved. In addition, because the model is separate from
the solver, the same program structure can be used for linear, mixed integer, or
non-linear programs and solved under different solvers.

Using the loop structure of a modeling language inside a slice model defini-
tion results in multiple model generations and multiple solver calls. But, moving
from program k to program k+1 in a slice model consists only of a change of the
data “slice” — here, the matrix Ak and vector bk. By exploiting this fact, we
can solve slice models more efficiently: rather than starting anew after program
k is solved, modify that program to get program k+1. This approach eliminates
the need to build the same structure over and over, and also enables us to use
solution information from solve k in solve k + 1 in hopes of improving overall
solution time.

We discuss this modeling approach, implemented as an interface between
GAMS and the CPLEX callable library. The interface is general, allowing us to
deal easily with different slice models (including both linear and mixed integer
models). It also appears to significantly outperform slice models implemented
using the looping constructs of the modeling system. Because of this, we are
able to solve very large real-world problems which were previously difficult to
solve within the general framework. In addition, using this modeling approach,
we are able to extend the results to include more information such as confidence
intervals. Furthermore, a variety of other classes of mathematical programming
models can easily be formulated to exploit our interface.

In the next section, we discuss an example of slice models, Data Envelopment
Analysis (DEA) models, which are used for efficiency evaluation. Section 3
describes the implementation of the slice interface in GAMS and gives examples
of its use, including a DEA model for evaluating the efficiency of hospitals and a
cross-validation model for feature selection. Finally, extensions of slice modeling

2

and the slice interface are discussed in Section 4, where we obtain confidence
intervals for the efficiency scores of the hospitals.

2 DEA Models as Slice Models

Data Envelopment Analysis (DEA) is a technique to evaluate the relative perfor-
mance of a number of decision-making-units (DMUs). A DMU can be anything
that takes in inputs and produces outputs; examples include producers, banks,
and even schools. DEA focuses on identifying inefficient DMUs by evaluating
the set of DMUs with respect to the “best” DMU. This “best” DMU can either
be an actual DMU in the set or a composite created from attributes of multiple
DMUs.

The real power behind DEA is its ability to deal with multiple inputs and
multiple outputs, without requiring that these inputs and outputs be related in
any functional form [2]. Originally, DEA was developed by Charnes et al. [5]
as an extension of Farrell’s efficiency analysis techniques [11] to not-for-profit
DMUs, where the data were not related economically. Their first application was
to evaluate the efficiency of the educational program Program Follow Through
[7]. In their evaluation, the inputs included the education level of the mother,
the highest occupation of a family member, parental time spent counseling the
child, and the number of teachers on site; the outputs included reading test
scores, mathematics test scores, and self-esteem measures. Although these data
were difficult to relate to each other and weight directly for evaluation purposes
in the traditional manner, they were easily evaluated under the DEA approach.
Since then, the basic DEA models have been extended and modified for a variety
of applications [8].

To determine the relative performance of a DMU, we first define efficiency
in terms of the inputs and outputs. We let the vector Y

·,k represent the set of
outputs for the k-th DMU and the vector X

·,k represent the set of inputs. Then
efficiency for the k-th DMU can be defined by

efficiency =
weighted sum of outputs

weighted sum of inputs
=

uT Y
·,k

vT X
·,k

.

Under DEA, the inputs (X) and outputs (Y) are data; the weights (u, v) are
variables. For each DMU, a different set of weights may be used; this allows
for different operational organization and/or different valuation of inputs and
outputs [9]. Obviously, each DMU would want to choose its most favorable set of
weights. This raises the questions of (1) determining each DMU’s best weights,
and (2) comparing DMUs effectively based on different choices of weights.

Initially, we take X, Y > 0 — so that every DMU takes in every input and
produces every output. Then, to determine the most favorable set of weights for
the k-th DMU, we define the general fractional CCR model (named for Charnes

3

et al. for their formulation in [5, 6]) by:

max
u,v

h =
uT Y

·,k

vT X
·,k

subject to uT Y
vT X

≤ 1
u, v > 0

(2)

In this model, we maximize the efficiency score of DMU k subject to the con-
straint that the efficiency scores for all DMUs are less than or equal to 1 (maxi-
mum efficiency). Here, u and v are restricted to be positive so that every input
and every output is considered in the analysis [6]. In order to compare DMUs
based on efficiency, a problem of this form must be solved for each DMU in the
set.

To convert the general fractional CCR model to a linear programming model,
we invoke positive homogeneity, set the denominator of h equal to a constant and
multiply the first constraint through by its denominator to remove any fractional
portions. Because fractional portions are removed, the initial assumptions on
X, Y can be relaxed to assuming that every DMU takes in some positive input
and produces some positive output: X, Y ≥ 0 with X

·,k 6= 0, Y
·,k 6= 0 ∀i.

Typically, X, Y are dense matrices. Because there is no longer the possibility
of undefined fractions, we also relax the last constraint, requiring that u, v ≥ 0
only (in doing so we find weak efficiency [8]). These modifications result in what
is commonly referred to as the dual DEA model:

max
u,v

uT Y
·,k

subject to vT X
·,k = 1

uT Y ≤ vT X

u, v ≥ 0

(3)

In this model, we look to maximize efficiency by directly manipulating the
weights.

Taking the dual of (3), we get the primal DEA model:

min
θ,λ

θ

subject to θX
·,k ≥ Xλ

Y λ ≥ Y
·,k

λ ≥ 0

(4)

Here, rather than manipulating the weights directly, we look for a composite
DMU (with inputs Xλ and outputs Y λ) that produces just as much output as
DMU k but that uses at most a fractional amount (θX

·,k) of input.
DEA models fit the definition of slice models: a complete DEA model con-

sists of multiple linear programs (one for each DMU), each of which has the
same structure but different data. In fact, these models are even more closely
related than just structurally — a core set of data remains the same in each pro-
gram. For the dual model (3), only one row and the objective function change

4

(resulting from the condition that all of the efficiency scores must be less than
or equal to 1); in terms of model (1), this implies that

Ak =

[

Y T
·,k 0 −1

0 XT
·,k 0

]

, bk =

[

0
1

]

and

X =











u

v

θ





∣

∣

∣

∣

∣

∣

uT Y ≤ vT X ; u, v ≥ 0







.

For the primal model (4), one column and the right-hand-side change; in terms
of model (1), this implies that

Ak =

[

X I 0 −X
·,k

Y 0 −I 0

]

, bk =

[

0
Y

·,k

]

(5)

and

X =























λ

sx

sy

θ









∣

∣

∣

∣

∣

∣

∣

∣

λ, sx, sy ≥ 0















. (6)

Here, the slices contain most of the data and the core contains very little. If we
introduce two auxiliary variables for Xλ and Y λ, then (5) and (6) become:

Ak =

[

0 I 0 −X
·,k I 0

0 0 −I 0 0 I

]

, bk =

[

0
Y

·,k

]

(7)

X =















































λ

sx

sy

θ

fx

fy

















∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

fx = Xλ; fy = Y λ

λ, sx, sy ≥ 0































. (8)

The data in each slice is then reduced to 3∗ |DMU | non-zeros and the core part
of the model contains all the significant data.

Because many real-world DEA problems have numerous DMUs and multiple
inputs and outputs, the evaluation process can be very data-intensive and thus
very time consuming under general linear programming solvers. Thinking of
DEA models as slice models enables us to keep the core data constant between
individual problems. Defining individual problems then consists of just adding
specific data. This approach reduces problem generation time, and also allows us
to easily include previous solution information (such as basic rows or columns)
for the core data.

5

Specialized DEA solvers, which take advantage of the common structure
between programs, do exist (for example, see [17]). However, these solvers
assume knowledge of the DEA models (models (3) and (4), as well as some other
common ones) and only take in the data X, Y . This works well when the model
to be solved is one of the assumed DEA models, but sometimes the model is an
extension or variation of an assumed form instead. For example, Banker and
Morey [3] explored incorporating into DEA models non-discretionary variables,
which affect output but which the DMUs have no control over. Banker and
Morey [4] also explored the idea of categorical variables, which allow DMUs to
be classified and compared only to others in the same class. When the DMUs can
control their classification, the resulting model becomes a mixed-integer model
[4, 14]. Allen et al. [1] explored some examples where model-specific restrictions
and constraints were added to general DEA models in order to include “prior
knowledge or accepted views” in the model. These examples show that the
ability to not only define the data but also the model is of importance for DEA
applications, thus suggesting the use of a modeling language.

3 The Slice Interface

Solving slice models involves looping over the data slices, including specific slices
in the model. Even if there is no or very little core data, the structure of each
program is the same and so can be held constant. Often with general solvers,
no mechanism is available to store the structure and core data; each program
must be generated and solved from scratch, ignoring completely the common
ties that the programs have with each other. For example, the DEA model
implementations [16, 13] for the GAMS modeling language make use of the
GAMS loop structure within the expression of the model. This loop structure
defines the particular programs which are passed the general solver and includes
the solver call. As a result, multiple calls are made to the general solver, each
accompanied by a new model generation. Some optimal basis information may
be passed on (depending upon option settings), but the structure and data
are entirely regenerated, resulting in huge solution times for models with many
DMUs.

As an alternative, we suggest that similarities between the programs be
considered. To do this, we have built an interface between the GAMS modeling
language and the CPLEX callable library. This slice interface uses the GAMS
dictionary to identify the changes between programs and the CPLEX problem
modification routines to make the changes — all automatically. In this way,
we are able to reuse the common structure and core data without having to
regenerate them for each program.

3.1 Implementation

Unlike the general slice model implementations in [13, 16], all of the informa-
tion for all of the programs is passed into the interface at once. The interface

6

then separates this information into program structure and core rows (X), and
program-specific rows (Ak and bk), based upon the modeler’s instructions. Once
the interface has labeled the constraints and received the data from GAMS, the
core rows and structure are read into a CPLEX problem object. At this stage,
we solve the slice model. This is done in a loop (replacing the loop previously
written in GAMS) over the slice set. At each iteration, specific rows are added
to the core program object. The resulting program is then solved and its results
are printed to a solution file. Next, the specific program is returned to its core
state while some solution information (basis information for linear programs
and starting point information for mixed integer programs) is passed on to the
next solve. Once the last solve is done, we return the last solution to GAMS.
In this way, the slice interface enables us perform the multiple solves needed by
slice models, while at the same time keeping program structure constant and
using advance starting information.

To instruct the interface on which constraints are core constraints and which
are program-specific, the modeler needs to do very little. Figure 1 compares the
general GAMS implementation to the GAMS slice implementation for the dual
DEA model (3), and shows that very little must be changed. First, the set
of DMUs (n) which are being evaluated must be identified. This is done by
associating a special name (slice) with the set through an alias command.
Then, the constraints which contain slice data must be identified (objfcn and
denom). This is done by declaring these constraints over the special alias name;
these constraints can then be defined over any subset of the DMU set. Core
constraints (lime) are declared and defined normally. Note that we do not have
to worry about changing objective functions: in GAMS the objective function is
given as an objective variable — the data associated with the objective function
is actually stored in the constraint matrix (objfcn).

Although a direct translation from the general GAMS implementation is
easy to produce for the GAMS slice implementation, it is not always the best
formulation to use. Under our approach, the entire problem is generated and
passed to the slice interface initially. This works fine for models like model (3)
because the extra constraints that we must generate are few in comparison to
the whole model. However, in other models like model (4), almost all of the
constraints change and so many more constraints are passed initially to the
solver. This results in very high problem generation times, which can destroy
any time-savings the slice interface achieves during the actual solves. Dealing
with this issue involves adjusting the model to fit the way the solver works:
models like model (4) change by column slices (variables and right-hand-side
values); the slice interface, on the other hand, makes use of row slices (con-
straints and objective function coefficients). In modeling using column slices,
many constraints change overall, but the changes within individual constraints
are minor. As a result, we end up regenerating pieces of the model — exactly
one of the problems that we hoped to eliminate by using the slice interface.
However, by storing the pieces of these constraints that remain constant in aux-
iliary variables, as presented in equations (7) and (8), we are able to eliminate
much of this regeneration: we still must generate many more constraints, but

7

sets n ‘DMUs’,

k(n) ‘selected unit’,

i ‘inputs’,

o ‘outputs’;

equations

objfcn(n) ‘efficiency defn’,

denom(n) ‘weighted input’,

lime(n) ‘output/input<1’;

objfcn(k).. sum(o, u(o)*Y(o,k))

=e= eff;

denom(k).. sum(i, v(i)*X(i,k))

=e= 1;

lime(n).. sum(o, u(o)*Y(o,n)) =l=

sum(i, v(i)*X(i,n));

set nloop(n) ‘DMUs to analyze’;

* run over all DMUs

nloop(n) = yes;

k(n) = no;

loop(nloop,

k(nloop) = yes;

solve dea using lp max eff;

k(nloop) = no;

);

sets n ‘DMUs’,

k(n) ‘selected units’,

i ‘inputs’,

o ‘outputs’;

alias(n,slice);

equations

objfcn(slice) ‘efficiency defn’,

denom(slice) ‘weighted input’,

lime(n) ‘output/input<1’;

objfcn(k).. sum(o, u(o)*Y(o,k))

=e= eff;

denom(k).. sum(i, v(i)*X(i,k))

=e= 1;

lime(n).. sum(o, u(o)*Y(o,n)) =l=

sum(i, v(i)*X(i,n));

* run over all DMUs

k(n) = yes;

solve dea using lp max eff;

(a) (b)

Figure 1: DEA model implementation for (3) using (a) the general GAMS
interface and (b) the GAMS slice interface.

8

equations

di(slice,i) ‘input constr’,

do(slice,o) ‘output constr’;

di(k,i).. theta*X(i,k) =g=

sum(n, X(i,n)*lambda(n));

do(k,o).. sum(n, Y(o,n)*lambda(n))

=g= Y(o,k);

equations

di(slice,i) ‘input constr’,

do(slice,o) ‘output constr’,

dfx(i) ‘aux input var’,

dfy(o) ‘aux output var’;

di(k,i).. theta*X(i,k) =g= fx(i);

do(k,i).. fy(o) =g= Y(o,k);

dfx(i).. fx(i) =e=

sum(n, X(i,n)*lambda(n));

dfy(i).. fy(o) =e=

sum(n, Y(o,n)*lambda(n));

(a) (b)

Figure 2: Column-based slice model (4) under (a) direct translation into GAMS
and under (b) auxiliary variables.

these constraints now have few variables in them. Although this increases the
number of variables in the model, these extra variables can be eliminated during
presolve, once they are no longer useful. Figure 2 compares the direct GAMS
translation of model (4) to the improved model formulation with auxiliary vari-
ables (fx and fy). Using auxiliary variables can significantly reduce problem
generation time, since the data X and Y are only generated once.

3.2 Technical Issues

To implement the slice procedure, we first must be able to identify the slices.
This is done using the GAMS dictionary file. Under GAMS, additional informa-
tion about the model is available through the dictionary file. Contained within
the dictionary is the unique element list, which lists and indexes the unique
element names that have been used in the model. Inside this list, alias names
are listed separately, but linked to the index for their corresponding element.
In a similar manner, equation names are linked to the elements which they are
declared over. So, program-specific constraints can be identified by searching
equation declarations for the slice alias. Because constraints are only generated
for sets which they are declared over, we are able to determine which DMUs (if
any) are to be skipped in the analysis simply by examining which constraints
are actually generated.

After implementing our slice interface, we encountered scaling problems

9

within our solution loop. Under default CPLEX scaling, the entire program
is scaled when it is initially read in. However, it is not fully rescaled when
the program is changed. As a result, we encountered numerical errors in some
solutions due to poor scaling. To correct this, we unscale the problem prior to
changing it. This enables us to return the problem to its true core state and
guarantees that when scaling is done (for instance, during the solve), it is done
to the problem being solved and not just pieces of the problem.

Besides these implementation issues, we must also deal with the issue of
solution availability. Under the GAMS loop implementation, solution informa-
tion for each program is accessible from within GAMS because each program’s
solution is returned to GAMS. Under the GAMS slice implementation, only the
solution of the last slice problem is returned to GAMS. However, solution infor-
mation for all of the programs is written to a solution file. To make this solution
information accessible, the solution file is formatted so that the information is
written to GAMS parameter values, indexed by slice. Refer to Figure 3 for an
example of a partial solution file generated by solving model (3). Under defaults,
the model status (modelstat), solver status (solvestat) and objective value
(objval) are given. Other variable and constraint values can also be given, and
are indexed not only by slice, but also by their type (‘prim’ for primal variable,
‘dual’ for dual variable, ‘slack’ for slack, and ‘rc’ for reduced cost) and any
model dependencies. The parameter names are built by appending “val” to the
original name found in the model. This enables us to read the solution informa-
tion directly back into GAMS for further analysis. Time and solution statistics
are also given as GAMS comments at the end of the file.

3.3 DEA Applications

To test the slice interface, we consider a DEA application: measuring the ef-
ficiency of 104 German hospitals from [15]. In this application, the inputs
included the number of beds and the annual cost of care, while the outputs
included the number of cases per hospital department (for the 1992 data used
in [15], 18 hospital departments were considered). To determine efficiency for
each hospital, we used model (4), which resulted in 49 efficient hospitals and 2
very inefficient (efficiency scores less than 10%) hospitals. The time comparison
between the GAMS model under CPLEX 6.6 and the GAMS model under the
slice interface are given in the first row of Table 1. As can be seen from these
results, we were able to solve the DEA model is less time.

Another application truly shows the power of the slice interface. For this
application, we use a variation on the basic DEA models to solve two different
sized problems provided by Walden [22]: a small one involving 60 DMUs and
a large one involving 4888 DMUs. Results comparing the GAMS model under
CPLEX and the GAMS model under the slice interface are given in the second
and third rows of Table 1. In the small problem we see some time improvement,
just as we did for the hospital application. But, in the large problem, we see
a significant improvement in time: 16 hours versus approximately 12 minutes.
This result especially shows the power of the slice interface for DEA models: we

10

parameter modelstat;

parameter solvestat;

parameter objval;

parameter vval;

parameter uval;

parameter effval;

parameter objfcnval;

parameter denomval;

parameter limeval;

modelstat(’1’) = 1;

solvestat(’1’) = 1;

objval(’1’) = 0.82038345;

vval(’prim’, ’1’, ’input1’) = 0.29969728;

uval(’prim’, ’1’, ’output1’) = 0.00524723;

effval(’prim’, ’1’) = 0.82038345;

uval(’rc’, ’1’, ’output3’) = -4.83451060;

limeval(’dual’, ’1’, ’12’) = 0.50353179;

objfcnval(’dual’, ’1’, ’1’) = 1.00000000;

denomval(’dual’, ’1’, ’1’) = 0.82038345;

limeval(’slack’, ’1’, ’1’) = 0.17961655;

modelstat(’2’) = 1;

solvestat(’2’) = 1;

objval(’2’) = 0.94174174;

vval(’prim’, ’2’, ’input1’) = 0.35675676;

uval(’prim’, ’2’, ’output1’) = 0.00624625;

effval(’prim’, ’2’) = 0.94174174;

uval(’rc’, ’2’, ’output3’) = -1.45585586;

limeval(’dual’, ’2’, ’12’) = 0.77537538;

objfcnval(’dual’, ’2’, ’2’) = 1.00000000;

denomval(’dual’, ’2’, ’2’) = 0.94174174;

limeval(’slack’, ’2’, ’1’) = 0.21381381;

*Time to read data: 0

*Calculation time: 0.03

*Time since initialization call: 0.03

*Number of scaling changes for unscaled infeasibilities: 0

*Maximum unscaled (scaled) primal infeasibility: 0 (0)

*Maximum unscaled (scaled) dual infeasibility: 2.13163e-14 (9.23706e-14)

*Maximum unscaled (scaled) primal residual: 2.77556e-16 (1.38778e-17)

*Maximum unscaled (scaled) dual residual: 3.55271e-15 (3.55271e-15)

*Maximum scaled basis condition number: 622.855

Figure 3: Partial solution file for model (3) written by the slice interface.

11

Application Problem General Solver (CPLEX) Slice Interface

Hospital Model (104 DMUs) 7.02 sec 0.51 sec
Small Model (60 DMUs) 4.63 sec 0.43 sec
Large Model (4888 DMUs) 16 hours 717.01 sec

Table 1: Time comparisons between the general GAMS implementations and
the GAMS slice implementations.

Application Problem Advanced Basis Presolve

Hospital Model (104 DMUs) 0.51 sec 0.84 sec
Small Model (60 DMUs) 0.43 sec 0.45 sec
Large Model (4888 DMUs) 717.01 sec 1520.23 sec

Table 2: Time comparisons with advanced basis information (no presolve) and
with presolve (no advanced basis).

can solve general DEA models with many DMUs much more efficiently.

3.4 Solution Options

Under GAMS, solver behavior can be modified through the use of an options file.
Many options are available for the slice interface. One is the choice of solution
algorithm. For linear programs, the slice interface initially chooses the dual
simplex method for minimization models and the primal simplex method for
maximization models. These defaults were chosen based upon the performance
of our interface under test problems, but can be changed in the options file.
Mixed integer problems automatically use the CPLEX MIP solver.

Advanced starting information is also important to the slice interface. When
an advanced starting basis is used, CPLEX (version 6.6) skips the presolve stage.
So, whether an advanced basis is used or not greatly affects how the individual
programs are solved. Under our tests on general linear DEA models, using ad-
vanced basis information (and skipping the presolve stage) in subsequent solves
can greatly improve solution time. Table 2 shows the solution times for the
DEA models from Section 3.3 using advanced basis information and using pre-
solve. These results show time improvement in all three cases, with significant
improvement for the large model, where using advanced basis information cut
the solution time in half. Based on these results, the default option for linear
programs under the slice interface is to use advanced basis information. Because
changing a program destroys advanced starting information, we explicitly copy
the advanced basis from one program to the next in the interface code. The
copy, though, is ignored if use of the advance basis is turned off in the options
file.

Besides affecting the solver, options can also affect the way in which the

12

programs are defined. For the slice interface, a special option, model type,
does this. DEA models require that slices be added to the core model, but
other types of slice models exist. One type, cross-validation models, works
differently. Cross-validation measures a prediction model’s error using the only
the available data set to train and test the model. In k-fold cross-validation
[10], the available data set is divided into k (generally about equal) pieces.
Then the model is trained k times, each time leaving one of the k pieces out
of the training set and using it as the testing set instead. Performing cross-
validation on prediction models involving mathematical programming can be
regarded as another example of slice modeling because the resulting models are
programs with the same structure but different data. But, unlike DEA models
in which slices are added to the core data, cross-validation models require that
slices be deleted from the core (training) data: the k-th individual program can
be defined by deleting the k-th piece. In this case, the “slicing” is done by
elimination: everything except the particular slice is included in the program.
Under the slice interface, this is achieved by setting the model type to deletion.

As an example of cross-validation, we consider the feature selection models
of Ferris and Munson [12], who use 10-fold cross-validation to select the number
of features with the best predictive capability. Under their approach, 10 mixed
integer programs are generated each time they perform cross-validation, each
resulting in 10 separate problem generations and solver calls. To define the
training and testing data, they define dynamic sets inside the GAMS loop,
immediately prior to the solve statement. In order to implement this under
the slice interface, we modify their model to remove the dynamic sets, instead
using the slice set, the number of folds (p), in the constraints. This allows us to
generate all of the constraints at once. Figure 4 shows the main changes between
the original formulation and the slice formulation. In the original formulation
(a), the training sets (a trai and b trai) and testing sets (a test and b test)
are defined inside the GAMS loop. In the slice formulation (b), the testing
sets are indexed by the slice set (p) and are completely defined (in a test and
b test) prior to the solve statement. In effect, for each slice in p, the set
a test extracts some of the rows from the full set a into a testing set. Because
the model makes use of cross-validation, we use the deletion model type and
define the sets by what gets deleted (the testing sets), so we no longer need the
training sets. The sum over the training sets in the objective function (c def) is
replaced by a sum over the full set; any variables which appear in the objective
function and which are related to the testing set will be eliminated by presolve
because they will be defined no where else in the specific program. In addition,
the cardinality calls appearing in the objective function are replaced by scalars
(a card and b card), which are also defined prior to the solve.

For comparison, we ran the cross-validation models on the galaxy data set
with 6, 7, and 8 features. Each model achieved the same objective value and
selected the same features. After solving, we read the solutions from the slice
interface back into GAMS in order to evaluate the misclassification error on
the testing data. The average expected misclassification error is given in Table
3. Table 4 shows the solution times for both the original formulation and the

13

set a_test(a) ‘a testing set’;

set a_trai(a) ‘a training set’;

set b_test(b) ‘b testing set’;

set b_trai(b) ‘b training set’;

c_def..

c =e= (sum(a_trai,a_class(a_trai))/

card(a_trai) +

sum(b_trai,b_class(b_trai))/

card(b_trai));

a_def(a_trai)..

-sum(o, a_data(a_trai,o)*weight(o))

+ gamma + 1 =l= a_class(a_trai);

b_def(b_trai)..

sum(o, b_data(b_trai,o)*weight(o))

- gamma + 1 =l= b_class(b_trai);

alias(p,slice);

set a_test(a,p) ‘a testing set’;

set b_test(b,p) ‘b testing set’;

c_def..

c =e= sum(a,a_class(a))/

a_card +

sum(b,b_class(b))/

b_card;

a_def(a,p)$a_test(a,p)..

-sum(o, a_data(a,o)*weight(o))

+ gamma + 1 =l= a_class(a);

b_def(b,p)$b_test(b,p)..

sum(o, b_data(b,o)*weight(o))

- gamma + 1 =l= b_class(b);

(a) (b)

Figure 4: Cross-validation comparison for (a) dynamic set model and (b) dele-
tion slice model.

14

Features Expected Misclassification

6 1.102041%
7 1.224490%
8 1.183673%

Table 3: Average expected misclassification for the feature selection problem
under the galaxy data set with 6, 7, and 8 features.

slice interface under various options. In all cases, the slice interface is faster by
around 40-50 seconds.

The performance of mixed integer programs can depend a great deal upon
the options that are set. For these types of programs, starting points can be
important: the availability of even a partial starting point can improve solution
time. If a starting point is provided and used, CPLEX checks to see if the
starting point provides an integer feasible solution prior to starting the solve. If
it does, the solver then starts immediately from a feasible point. In table 4, the
times listed include those for solving the models with starting points (SP)(arising
as the solution of the previous problem in the sequence) and without starting
points (NSP). For both the original formulation and the slice formulation, the
use of starting points improved the solution times. These results suggest that
starting points are beneficial to general slice models. Because of this, the slice
interface by default copies the solution values for integer variables to the next
program to use as a (partial) starting point. Although we get improved solution
times, starting points should not be used for cross-validation models in order to
make the solves independent.

Cutoff values can also affect the solution performance. In table 4, the CV
times are the times for solving the models without starting points but using
problem-specific cutoff values. The cutoff values were taken to be the corre-
sponding objective value for the feature selection problem with one less feature.
By using appropriate cutoff values, we were able to obtain times that were
around or better than the times obtained when using starting points (SP). Fur-
ther, because the cutoff values came from a different model and were determined
prior to starting the solution process for the current model, all of the solves were
done independently.

4 Beyond DEA: Sensitivity Analysis

Because of the time improvements over general GAMS implementations, slice
model solutions can be extended through the application of other procedures
to include additional information like confidence intervals. In finding efficiency
scores under DEA, we use the provided DMU data to determine feasible input-
output points (both actual DMU points and composite DMU points). DEA
efficiency scores are then determined based upon these feasible points. Thus,
changes in the DMU data result in changes to the feasible points and to the

15

Features Original Formulation Slice Formulation

6 NSP 487.22 sec 433.05 sec
SP 229.62 sec 189.94 sec
CV 223.26 sec 176.30 sec

7 NSP 306.73 sec 258.39 sec
SP 229.51 sec 191.61 sec
CV 215.73 sec 171.16 sec

8 NSP 251.39 sec 210.07 sec
SP 191.07 sec 151.36 sec
CV 196.04 sec 154.71 sec

Table 4: Time comparisons between the original (dynamic set) formulation [12]
and the slice formulation for the feature selection problem under the galaxy data
set with 6, 7, and 8 features. Times are given for the models without starting
points (NSP), with starting points (SP) and with cutoff values (no starting
points) (CV).

efficiency scores. To determine how sensitive the efficiency scores are to changes
in data, we would like to obtain additional feasible input-output points against
which we can measure the efficiency scores for the original DMUs. Statistical
methods offer some ways in which this can be done.

In [19, 20, 21] Simar and Wilson make use of bootstrap methods for obtaining
additional input-output points by repeatedly resampling from the original data
set. Under their approach, a smooth bootstrap is used to build an estimate for
the probability density function of the original DEA efficiency scores. From this
estimate, new efficiency scores are drawn and are used to obtain corresponding
input-output data. Using this new data, the DEA model for the DMUs is re-
solved. Repeatedly applying this approach results in sampling distributions for
the DMUs’ efficiency scores, which can be used to determine confidence intervals.

Modeling languages offer advantages when applying Simar and Wilson’s
bootstrap approaches. Under a modeling language, all of the models can be
built from one program specification by using parameters in the program to
allow for the changing data. Further, there is no need to go outside in order
to obtain the new data for each model: we can actually build this data inside
the model specification. In building the probability density function estimate
for the original DEA scores, we use a smoothing parameter in the bootstrap;
this smoothing parameter is obtained by maximizing a log-likelihood function,
which can be done under GAMS using one of its non-linear solvers. To actually
draw the samples from the estimated function, we use the algorithm from [18];
this too can be done in GAMS using its predefined probability density functions.
The new input-output data is defined in terms of the old data and the samples;
this turns into simple parameter re-definitions in GAMS. In this way, not only
can the resulting models be solved, but they can also be defined in GAMS.

In their examples from [19, 20], Simar and Wilson draw 1000 samples; how-

16

ever, they note in [21] that 2000 or more samples may be needed for accurate
confidence intervals. Note that each sample involves a DEA loop consisting of
a sequence of linear programs, one for each DMU. Thus, in order to obtain
confidence intervals on the efficiency scores, the complete DEA model must be
solved 1000 or more times, each time with different data. The slice interface
can be used for each of these 1000 samples, making the overall model solution
much more efficient. This significantly reduces the solution time and allows us
to analyze the scores for DEA models involving large numbers of DMUs.

We applied the techniques from [19] to the hospital model from Section 3.3,
considering only hospitals at least 10% efficient. Taking 1000 samples under
the slice interface took 463.41 sec (approximately 8 minutes). Without the slice
interface, the time would have been close to 2 hours, even for this small example.
The results are displayed in Table 5. Of the 49 efficient hospitals, only 6 had
tight confidence intervals, contained within 90%–100%. 29 others had very wide
confidence intervals, with 17 of these spanning over half the efficiency range. The
remaining efficient hospitals had confidence intervals around 75%–100%. These
results suggest that an efficient rating is very data-dependent for many hospitals
in this application. We conjecture that the use of slice modeling within these
applications will make such analyses commonplace.

5 Conclusion

In this paper, we have discussed slice modeling. Using a slice model formulation,
we have shown how defining individual programs from the model by data slices
suggests a new solution technique. By implementing this technique in the slice
interface, we have been able to take advantage of the fact that program structure
and core data stay the same between programs. This has lead to faster solution
times, as we have demonstrated on real-world examples from both DEA and
cross-validation. In addition, we have been able to extend the results of DEA
models to include confidence intervals by the application of the computationally-
intensive bootstrap.

Because the slice interface has been built for a general modeling language, we
have been able to solve very different slice models, from linear DEA models to
mixed integer cross-validation models. But, nothing in the slice interface limits
us to only these types of models; any linear or mixed integer slice model can
make use of the slice interface. For example, determining the effects of particular
scenarios on a robust solution in the framework of stochastic optimization can
be formulated as a slice model and solved under the slice interface (provided the
scenarios are made available in advance for the initial model generation). This
allows us to extend the efficiency we achieve under DEA and cross-validation
models to other areas.

17

Hospital Efficiency 95% CI Hospital Efficiency 95% CI
1 1.0000 0.8009 0.9961 53 1.0000 0.9467 0.9959
2 1.0000 0.4072 0.9958 54 0.8937 0.8434 0.8909
3 0.0759 – – 55 0.8780 0.7222 0.8743
4 1.0000 0.5843 0.9958 56 0.9418 0.8663 0.9378
5 1.0000 0.4315 0.9961 57 0.6271 0.5932 0.6253
6 1.0000 0.7119 0.9962 58 0.8471 0.7971 0.8437
7 1.0000 0.4951 0.9963 59 0.9943 0.9010 0.9901
8 0.9766 0.9103 0.9719 60 0.8953 0.7968 0.8915
9 1.0000 0.6372 0.9958 61 0.9196 0.7825 0.9152
10 0.8486 0.8092 0.8453 62 1.0000 0.8116 0.9960
11 0.9301 0.8588 0.9259 63 1.0000 0.6499 0.9961
12 1.0000 0.7779 0.9963 64 0.9449 0.8958 0.9406
13 1.0000 0.3235 0.9957 65 0.9690 0.9391 0.9665
14 0.9847 0.9378 0.9804 66 0.7712 0.7391 0.7680
15 0.9862 0.8601 0.9822 67 0.9753 0.9327 0.9715
16 1.0000 0.3925 0.9958 68 0.6963 0.6473 0.6944
17 1.0000 0.7746 0.9956 69 1.0000 0.6602 0.9949
18 0.9106 0.8650 0.9082 70 0.9042 0.8670 0.9000
19 1.0000 0.3968 0.9959 71 1.0000 0.4671 0.9960
20 0.6225 0.6017 0.6209 72 0.9485 0.9009 0.9442
21 1.0000 0.8734 0.9960 73 0.6970 0.6411 0.6950
22 0.9045 0.8307 0.9004 74 0.9620 0.9003 0.9578
23 1.0000 0.7786 0.9960 75 1.0000 0.8009 0.9954
24 1.0000 0.9516 0.9957 76 0.9452 0.7538 0.9422
25 0.9834 0.8755 0.9793 77 1.0000 0.6386 0.9960
26 0.9895 0.9144 0.9852 78 1.0000 0.5638 0.9956
27 0.7987 0.7554 0.7960 79 0.5121 0.4424 0.5103
28 0.9049 0.8636 0.9012 80 1.0000 0.8819 0.9959
29 1.0000 0.4157 0.9955 81 0.8067 0.7121 0.8041
30 0.8633 0.7644 0.8598 82 0.9497 0.8396 0.9457
31 0.8462 0.8103 0.8440 83 1.0000 0.2864 0.9955
32 1.0000 0.8894 0.9961 84 0.8727 0.8037 0.8689
33 0.9343 0.8551 0.9300 85 0.8717 0.8154 0.8677
34 1.0000 0.7809 0.9956 86 0.9104 0.8256 0.9063
35 0.7360 0.7039 0.7330 87 1.0000 0.9501 0.9960
36 0.9118 0.8672 0.9081 88 0.8791 0.8363 0.8752
37 1.0000 0.4090 0.9959 89 1.0000 0.5280 0.9960
38 1.0000 0.3226 0.9960 90 0.8148 0.7044 0.8115
39 1.0000 0.4643 0.9962 91 0.8410 0.7944 0.8376
40 0.8321 0.7487 0.8291 92 1.0000 0.6551 0.9958
41 0.9381 0.8564 0.9345 93 1.0000 0.9044 0.9954
42 0.9379 0.8132 0.9339 94 1.0000 0.8561 0.9958
43 1.0000 0.8813 0.9957 95 0.9522 0.8991 0.9485
44 0.2054 0.1991 0.2049 96 0.7874 0.7172 0.7844
45 1.0000 0.3591 0.9956 97 1.0000 0.2958 0.9962
46 1.0000 0.5923 0.9955 98 0.7959 0.7604 0.7938
47 1.0000 0.3534 0.9964 99 1.0000 0.4211 0.9956
48 0.0473 – – 100 1.0000 0.8133 0.9956
49 1.0000 0.8959 0.9962 101 1.0000 0.3027 0.9958
50 0.6349 0.5398 0.6324 102 1.0000 0.6236 0.9960
51 0.9664 0.9046 0.9621 103 1.0000 0.9010 0.9955
52 1.0000 0.7878 0.9957 104 1.0000 0.3961 0.9957

Table 5: Confidence intervals for hospitals at least 10% efficient.

18

Acknowledgements

We would like to thank Alex Meeraus for introducing us to DEA, and Steven
Dirkse for providing us with additional dictionary routines to facilitate our in-
terface. In addition, we would like to thank Stefan Scholtes and John Walden
for providing us with real-world DEA applications.

References

[1] R. Allen, A. Athanassopoulos, R. G. Dyson, and E. Thanassoulis. Weights
restrictions and value judgements in Data Envelopment Analysis: Evolu-
tion, development and future directions. Annals of Operations Research,
73:13–34, 1997.

[2] T. Anderson. A Data Envelopment Analysis (DEA) home page. HTML
document, June 1996. http://www.emp.pdx.edu/dea/homedea.html (1
September 1999).

[3] R. D. Banker and R. C. Morey. Efficiency analysis for exogenously fixed in-
puts and outputs. Operations Research, 34(4):513–521, July–August 1986.

[4] R. D. Banker and R. C. Morey. The use of categorical variables in Data
Envelopment Analysis. Management Science, 32(12):1613–1627, December
1986.

[5] A. Charnes, W. W. Cooper, and E. Rhodes. Measuring the efficiency of
decision making units. European Journal of Operational Research, 2:429–
444, 1978.

[6] A. Charnes, W. W. Cooper, and E. Rhodes. Short communication: Measur-
ing the efficiency of decision-making units. European Journal of Operations
Research, 3:339, 1979.

[7] A. Charnes, W. W. Cooper, and E. Rhodes. Evaluating program and
managerial efficiency: An application of Data Envelopment Analysis to
Program Follow Through. Management Science, 27(6):668–697, June 1981.

[8] W. W. Cooper, L. M. Seiford, and K. Tone. Data Envelopment Analysis:
A Comprehensive Text with Models, Applications, References and DEA-
Solver Software. Kluwer Acaemic Publishers, Boston, 2000.

[9] R. G. Dyson, E. Thanassoulis, and A. Boussofiane. A DEA
(Data Envelopment Analysis) tutorial. HTML document, July
1995. http://www.warwick.ac.uk/~bsrnb/pages/links/dea.htm (1 Septem-
ber 1999).

[10] B. Efron and R. J. Tibshirani. Introduction to the Bootstrap. Chapman
and Hall, New York, 1993.

19

[11] M. J. Farrell. The measurement of productive efficiency. Journal of the
Royal Statiscal Society, Series A (General), 120(3):253–290, 1957.

[12] M. C. Ferris and T. S. Munson. Modeling languages and condor: Meta-
computing for optimization. Mathematical Programming, 88(3):487–505,
September 2000.

[13] GAMS Development Corporaton. Data Envelopment Analysis — DEA
(DEA,SEQ=192). GAMS model. Obtained from the GAMS library call
‘gamslib dea’ (13 September 1999).

[14] W. A. Kamakura. A note on “The use of categorical variables in Data
Envelopment Analysis”. Management Science, 34(10):1273–1276, October
1988.

[15] L. Kuntz and S. Scholtes. Measuring the robustness of empirical efficiency
valuations. Management Science, 46(6):807–823, June 2000.

[16] O. B. Olesen and N. C. Petersen. A presentation of GAMS for DEA.
Computers and Operations Research, 23(4):323–339, 1996.

[17] H. Scheel. Data Envelopment Analysis (DEA) page. HTML document.
http://www.wiso.uni-dortmund.de/lsfg/or/scheel/doordea.htm (23 Octo-
ber 2000).

[18] B. W. Silverman. Density Estimation for Statistics and Data Analysis.
Chapman and Hall, London, 1986. pp. 52–53.

[19] L. Simar and P. W. Wilson. Sensitivity analysis of efficiency scores:
How to bootstrap in nonparametric frontier models. Management Science,
44(1):49–61, January 1998.

[20] L. Simar and P. W. Wilson. A general methodology for bootstrapping in
non-parametric frontier models. Journal of Applied Statistics, 27(6):779–
802, 2000.

[21] L. Simar and P. W. Wilson. Statistical inference in nonparametric frontier
models: The state of the art. Journal of Productivity Analysis, 13:49–78,
2000.

[22] J. B. Walden. Private communication.

20

