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Abstract

The Gamma Knife is a highly specialized treatment unit that pro-
vides an advanced stereotactic approach to the treatment of tumors,
vascular malformations, and pain disorders within the head. Inside a
shielded treatment unit, multiple beams of radiation are focussed into
an approximately spherical volume, generating a high dose shot of ra-
diation. The treatment planning process determines where to center
the shots, how long to expose them for, and what size focussing hel-
mets should be used, in order to cover the target with sufficient dosage
without overdosing normal tissue or surrounding sensitive structures.
We outline a new approach that models the dose distribution nonlin-
early, and uses a smoothing approach to treat discrete problem choices.
The resulting nonlinear program is not convex and several heuristic ap-
proaches are used to improve solution time and quality. The overall
approach is fast and reliable; we give several results obtained from use
in a clinical setting.
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1 Introduction

The Gamma Knife (see Figure 1(a)) is a highly specialized treatment unit
that provides an advanced stereotactic approach to the treatment of tumor
and vascular malformations within the head [6]. The Gamma Knife delivers
a single, high dose of radiation emanating from 201 Cobalt-60 unit sources.
All 201 beams simultaneously intersect at the same location in space to
form an approximately spherical region that is typically termed a shot of
radiation. A typical treatment consists of a number of shots, of possibly
different sizes and different durations, centered at different locations in the
tumor, whose cumulative effect is to deliver a certain dose to the treatment
volume while minimizing the effect on surrounding tissue.

(a) The patient lies on the couch (b) A focussing helmet is attached to the
and is moved back into the shielded frame on the patients head
treatment area

Figure 1: The Gamma Knife Treatment Unit

Gamma Knife radiosurgery begins (after administering local anesthesia)
by fixing a stereotactic coordinate head frame to the patient’s head using
adjustable posts and fixation screws. This frame establishes a coordinate
frame within which the target location is known precisely and also serves to
immobilize the patients head within an attached focussing helmet during the
treatment (see Figure 1(b)). An MRI or CT scan is used to determine the
position of the treatment volume in relation to the coordinates determined
by the head frame. Once the location and the volume of the tumor are
identified, the neurosurgeon, the radiation oncologist, and the physicist work
together in order to develop the patient’s treatment plan. Multiple shots



are often used in a treatment using a Gamma Knife due to the irregularity
and size of tumor shapes and the fact that the focussing helmets are only
available in four sizes (4, 8, 14 and 18mm).

The determination of plans varies substantially in difficulty. For exam-
ple, some tumors are small enough to apply one shot of radiation. On the
other hand, when the shape of the tumor is large or has an irregular shape
or is close to a sensitive structure, many shots of different sizes could be
needed to achieve appropriate coverage of the tumor while sparing the sur-
rounding tissue. The treatment planning process can be very tedious and
time consuming and due to the variety of conflicting objectives, the quality
of treatment plan produced depends heavily on the experience of the user.
Therefore, a unified and automated Gamma Knife treatment process is de-
sired. Further description of the treatment process, along with some more
explanatory figures can be found in [5].

The plan aims to deliver a high dose of radiation to the intracranial
target volume with minimum damage to the surrounding normal tissue. The
treatment goals can vary from one neurosurgeon to the next, so a planning
tool must be able to accommodate several different requirements. Among
these requirements, the following are typical, although the level of treatment
and importance of each may vary.

1. A complete 50% isodose line coverage of the target volume. This means
that the complete target must be covered by a dose that has intensity
at least 50% of the maximum delivered dosage. This can be thought
of as a “homogeneity” requirement.

2. To minimize the non-target volume that is covered by a shot or the
series of delivered shots. This requirement is clear and can be thought
of as a “conformity” requirement.

3. To limit the amount of dosage that is delivered to certain sensitive
structures close to the target. Such requirements can be thought of as
“avoidance” requirements.

There are standard rules established by various professional and advisory
groups that specify acceptable homogeneity and conformity requirements.
In addition to these requirements, it is also preferable to use a small number
of shots to limit the treatment times and thus increase the number of patients
that can be treated.

The approach for treatment planning that will be used here is based on
an optimization model of the physical system. Three characteristics are im-
portant in the optimization technique for Gamma Knife treatment planning:



speed, flexibility, and robustness. A fast treatment plan is desired primarily
for patient comfort. The system must be flexible because the treatment goals
vary from patient to patient and neurosurgeon to neurosurgeon. The system
also must be robust so that it produces a high quality solution regardless of
the size and the shape of the target volume. The solution produced by the
optimization must also be practical and implementable.

We assume throughout this work that the number of shots that will be
delivered is specified to the optimization tool. While other approaches may
try to minimize this number, it is typically straightforward to estimate this
number and then develop a plan to optimize other important features for
the treatment. In the model we propose, there are three types of decision
variables:

1. A set of coordinates (rs,ys, zs): for each shot the position of the shot
centers is a continuous variable to be chosen.

2. A discrete set of collimator sizes: currently four different sizes of fo-
cussing helmets are available (4mm, 8mm, 14mm, 18mm).

3. Radiation exposure time: the dose delivered is a linear function of the
exposure time.

A number of researchers have studied techniques for automating the
Gamma Knife treatment planning process [15, 9]. One approach incorpo-
rates the assumption that each shot of radiation can be modeled as a sphere.
The problem is then reduced to one of geometric coverage, and a ball pack-
ing approach [13, 12, 15] can be used to determine the shot locations and
sizes. The use of a modified Powell’s method in conjunction with simulated
annealing has also been proposed [9, 16]. A mixed integer programming and
a nonlinear programming approach for the problem is presented in [5, 11].
A mixed integer programming approach for linear accelerator(LINAC) ra-
diosurgery treatment is presented in [8], and a nonlinear approach in this
case is given in [10].

This paper is based on the approach outlined in [5], whereby the actual
dose distribution is modeled and a formal constrained optimization model
is solved to determine the treatment plan. The remainder of this paper is
organized as follows. Section 2 reviews the nonlinear programming formula-
tion of the problem used in [5, 11] and details some of the changes that were
necessary for implementation of the optimization scheme in the clinic. In
particular, a new dose model is described that allows the shots to be modeled
as ellipsoids, along with a new conformity estimation problem and a con-
tinuation approach to solve the nonlinear program. Section 3 presents the



application of the new techniques to several three dimensional real patient
cases. Finally, Section 4 concludes the paper with some remarks concerning
future directions.

2 Nonlinear Programming Model

2.1 Original formulation

A nonlinear programming approach for solving the treatment planning prob-
lem is described in [5]. The input to the nonlinear program consists of several
pieces of information, namely the number of shots that are to be used and
the widths of shots that are considered appropriate for the target volume,
the required isodose level and the target volume itself. The initial locations
of the shots are placed randomly within the target, and the initial levels for
the exposure time are fixed appropriately.

Given the shot locations and exposure time, the dose distribution for
each shot at a given voxel (volume element) on a three dimensional grid is
calculated based on a spherical algebraic model. A standard least squares
model is used to determine the weights on particular basis functions that
are used in the dose model, based on suggestions from the literature. It is
assumed that the dose model does not change due to movement of the shot
center.

Once a description of the dose is determined, the optimization model can
be formulated. The basic variables of the optimization we consider include
the coordinates of the center location of the shot (x,ys, 2s), the width of
the shot w, and the time ¢, , that each shot is exposed. In practice, we
consider a grid G of voxels. There are two types of voxels: 7 represents
the subset of voxels that are within the target and N represents the subset
of voxels that are out of the target. Since the number of voxels out of the
target is vast, we typically use just a small subset of them, generated close
to the target volume or in a sensitive structure.

Isodose line coverage. Neurosurgeons commonly use isodose curves as
a means of judging the homogeneity of a treatment plan. The 50% isodose
curve is a curve that encompasses all of the voxels that receive at least
50% of that maximum dose that is delivered to any voxel in the patient.
A treatment plan is normally considered acceptable if a certain percentage
isodose curve (typically 50%) encompasses the tumor. We model such a
constraint by imposing strict lower and upper bounds on the dose allowed



in the target, namely for all (i,j,k) € T
0 < Dose(i,j5,k) <1 (1)

In this way, the 1000% isodose curve is guaranteed to cover the target. Other
isodose curves can be generated by simply modifying the numerical value 6.

Choosing shot widths. The number of shots to be used is given to the
optimization model, and the location of the shot center is chosen by a contin-
uous optimization process. Choosing the particular shot width at each shot
location is a discrete optimization problem that is treated by approximating
the step function

1 ift>0

H(t) =
0 ift=0

by a nonlinear function,

H(t) ~ Ha(t) — 2arctin(at)
For increasing values of «, H, becomes a closer approximation to the step
function H. This process is typically called smoothing.
The set of shot widths for a given number of shots n is chosen by imposing
the constraint:

n= > Ho(tsw) (2)

(s,w)e{1,...,n}xW

This states that the total number of shot/width combinations that are to be
used is n. In practice, we solve a sequence of models, each time increasing
the value of a to improve the approximation. Note that the optimization
may place two shots of different widths at the same location, and hence
none at another location. Typically, we relax the requirement for exactly n
shot /widths, and instead impose a range constraint forcing lower and upper
bounds on the number of shot/width combinations.

We have tested several optimization formulations. The most obvious
model is to minimize the dose outside of the target subject to a constraint



on the minimum isodose line that must surround the target:

min Z Dose(i, 7, k)
(i,4,k)EN
subject to  Dose(i, j, k) = Z tswDw(Ts, Ys, 25,4, J, k)
(s,w)eESXW
6 < Dose(i, j,k) <1, V(i,j,k) €T (3)

n = Z Ha(ts,w)

(s,w)e{l,...,n}xW
o > 0.

The most critical problem is that due to the large number of voxels that
are needed when dealing with large irregular tumors (both within and out-
side of the target) the computational time to complete this treatment plan is
too long. To make the solution process faster, we can remove a large number
of the non-target voxels from the model. While this improves computational
time, this typically weakens the conformity of the dose to the target. How
can we maintain conformity without vastly increasing computational time?
The second formulation uses a constraint to control the conformity of the
plan. The constraint specifies that at least P% of the total dose must be
deposited in the target.

It is known how to simulate the delivery of a shot of width w € W
centered at the middle of the head of a previously scanned patient on the
Gamma Knife. For each shot width we use this to estimate the total dose
delivered (at unit intensity) to the complete volume and term this constant
D,,. This is then used to determine an estimate of the total dose delivered
to the complete volume by the collection of shots as

> Dutsuw, (4)

(s,w)eESXW

without having to calculate the dose at any voxel external to the target.
This expression can be used as the denominator of an of the conformity of
a given plan without evaluating dose at voxels outside of the target. The
numerator would obviously just be the total dose delivered to the target.
We update the basic model to force more conformity at the expense of
relaxing homogeneity. Instead of enforcing the strict lower bound of 6 on the
dose in the target, we instead calculate the amount of dose under this value
at every voxel in the target, and sum the “underdose” to form our objective.
More formally, a voxel is considered to be underdosed if it receives less than



the prescribed isodose, which for the example formulation is assumed to be 6.
We actually use the optimization process to model UnderDose. UnderDose
is constrained to be greater than or equal to max(0, 0 — Dose) at every voxel
in the target. Since we minimize UnderDose, it will take on the maximum
of these two values at optimality. An upper bound is still placed on the
dose in the target, and the lower bound on dose is relaxed. The complete
formulation is:

min Z UnderDose(i, j, k)
(4,5,k)eT
subject to  Dose(i,j, k) = Z tswDw(Ts, Ys, 25,1, J, k)
(s,w)eSxW

0 < Dose(i,j,k) <1
0 < UnderDose(i, j, k)
0 — UnderDose(i, j, k) < Dose(i,j,k), Y(i,j,k) € T (5)
Z Dose(i, j, k)
(4,4,k)eT
> Dutew
(s,w)eSxW
n= Z H(tsw)
(s;w)€{L,....n} xW
tow > 0.

P <

In this formulation, P is the fraction of the total dose that must be deposited
in the target. For solution purposes, we rearrange the equation involving P
so that it is a purely linear equation (i.e. multiply both sides by the term in
the denominator). While this approach is much more feasible, it is unclear
in many patient cases what is an appropriate value to choose for P.

While the results generated using the above approach are typically very
good, there are a number of difficulties that are manifested when imple-
menting this approach in the clinic.

1. In reality, the dose delivered by the Gamma Knife is not symmetrical
and is quite different when the patient is prone or supine.

2. How do we estimate the conformity value P automatically?

3. The treatment plan can only be input on the Gamma Knife at a par-
ticular specificity. How can we translate the optimization output onto
the Gamma Knife?



4. Given the nonconvexity of our approach, how do we guarantee that
the solutions we generate are both reasonable and close to the opti-
mal values possible? Furthermore, how do we carry out the complete
approach quickly?

In the following sections we will treat each of these issues in turn.

2.2 A new dose distribution model

The complete dose distribution can be calculated as a sum of contribu-
tions from each shot delivered, once the location of the center of that shot
(xs,Ys, zs) is known, and the length of time of delivery ¢, is known. In
practice this means that for all (i, j, k)

Dose(i,j, k‘) = Z ts,wa(xsaySazSyiaj7 k)a (6)
(s,w)eSXW

where D, (x5, ys, 2s, 1, J, k) is the dose delivered to the voxel (i, j, k) by the
shot of width w centered at (zs, ys, 2s).

In previous work [5], we simulated the delivery of a shot of width w € W,
centered at the middle of the head of a previously scanned patient on the
Gamma Knife. For each shot width, we determined the dose delivered in
the z, y and z directions at given distances from the center of the shot from
the simulation. The three values were then averaged to give a value of dose
(for each width of shot) at a particular distance from the center. However,
we observed that the actual dose delivered was ellipsoidal in nature rather
than spherical, so we determined the principal axes and measured the values
of dose D,, along them. In practice, the axis location depended on whether
the patient was lying prone or supine, and thus we rotate the target so its
coordinate axes lie along the ellipsoid’s principal axes in either case.

The problem is thus reduced to determining a functional form for the
dose delivered at a voxel (7,7, k) from the shot centered at (zs,ys,2s). A
sum of error functions has been noted in the literature to approximate this
dose distribution [2, 7, 14]. We therefore used the following functional form

Dw(w&ywz&ivj? k) =

2 V=20 + 1B = 90 + i3k — 2)2 =7
[ 1-ef (7)
p=1 o

and fit the ten parameters \p, uj, oy, Tp and oy to the data described above
via least-squares, with different values for each shot width. The notation



erf (x) represents the integral of the standard normal distribution from —oo
to x. The resulting nonlinear optimization problem

2 g 2
D2 () —Z)\p (1—erf< (i = ) —rp>)

p=1 Ip
2 T/ 2
Sy Vip(d—ys)?—r
miny g ||| D) - > (1 — erf < P - p)>
p=1

N;Zz(k — 25)? — Tp

Op

Dz (k) — Z)\p 1 —erf

p=1

was solved using CONOPT. These values were then fixed in the nonlinear
models used throughout the remainder of this paper.

2.3 Conformity estimation

How do we estimate a good value for the conformity P required in a given
plan. Note that if the target is close in size to one of our given shots and
ellipsoidal in nature, we can expect good conformity for our plan. For odd
shaped targets with a limited number of avaliable shots, the conformity we
can expect is likely to be much lower. In fact, for larger treatment volumes
it is very hard to estimate a reasonable value for P, so we use optimization
to accomplish this.

We propose to solve an additional optimization problem to obtain a good
conformity estimate for each particular patient. As outlined in (4), we can
use the simulated data D,, to derive an accurate estimate for the total dose
delivered to the complete volume. We choose to minimize this quantity,
subject to the standard constraints of maintaining an appropriate isodose
line around the target, and a limit on the number of shots of different widths
and locations.

min Z Dwts,w
(s,w)eSxXW
subject to 0 < Dose(i,j, k) <1, V(i,j, k) €T
n= Z Ha(tS,w)
(s,w)eSxXW
tsw >0

Note that this model uses the data D,, instead of calculating the dose
outside the target and thus is a much smaller optimization model even if
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the number of voxels in the complete volume is large. We have to be careful
to ensure that the value calculated for P is fairly insensitive to changes in
the starting point given to the model; this is shown in Section 3. Some
care is taken to choose the value of a appropriately. For large treatment
volumes we typically only evaluate the bound constraints in (8) on a small
but representative subset of the voxels in the target.

Given this estimate of achievable conformity under the strict homogene-
ity constraint, we allow the modeler to specify a scaling parameter to increase
the conformity P required in the final solution.

2.4 A continuation solution process

After generating a value for P, we then solve (5) four times to produce the
treatment plan. We first solve (5) with a coarse grid G and o = 7. That
is, instead of evaluating the constraints at all voxels in 7, we use a larger
grid spacing and enforce the constraints only at G (7. We then calculate
which constraints are violated on a finer grid and add these grid points into
our optimization model. The solution we obtain from the finer grid usually
uses more shots than are available. Therefore, we impose a higher value
of @ = 100 on the refined grid problem and resolve to further limit the
shot/width combinations used.

The computed solution may not be implementable on the Gamma Knife
since the coordinate locations cannot be keyed into the machine. One ap-
proach to refine the optimization solution to generate implementable coor-
dinates for the shot locations is to round the solution. Typically, simple
rounding degrades the solution and can severely detract from the perceived
quality of our results. To overcome this, we round and fix the shot center
coordinate values from our process, and then reoptimize the intensity values
t to generate a feasible solution. This is always better than simple rounding
and recovers a similar quality but precisely implementable solution.

The optimization models are written in the GAMS [1] modeling language
and solved using CONOPT [3]. Note that our solution technique does not
guarantee that the shots are centered at locations within the target. In the
previous work we generated random starting values for (z, ys, zs) within the
target to encourage the final shot locations to also lie within the target.

3 Computational Results on Patient Data

The tool that implements the process described in this paper is in use at the
University of Maryland Medical School. We have tested our techniques on
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Table 1: Average run time for different sizes of tumors

Average Size of tumor
Run Time Small Medium Large
Random |2 min33s | 17 min 20s | 373 min 2 s
(std.dev) (40 s) (3 min 48 s) | (90 min 8 s)
SLSD 1min 2s | 15 min 57 s | 23 min 54 s
(std.dev) (17 s) (3 min 12 s) | (4 min 54 s)

three targets arising from real patient cases. The three targets are radically
different in size and complexity. The first patient has a small tumor, the
second is medium sized, whereas the third is considered very large for this
type of treatment. The small tumor contains 4006 voxels, 10061 voxels
for the medium size, and 36088 voxels for the large size tumor. Since our
problems are not convex, the choice of parameters in their solution can also
have dramatic effects. In this section, we demonstrate how to choose good
parameters for the NLP models. Some further description of the medical
implications of these results are given in [11].

We generate good initial shot center locations and widths by running
a shot location and size determination (SLSD) technique that is described
elsewhere [4].

In Figure 2, we show how the conformity parameter P affects the final
solution in the small patient case. As we increase P, the solution becomes
more conformal, but at a cost in homogeneity, that we measure via the
objective function in (8). The conformity estimation problem generates an
average value for P of 0.248, with a standard deviation of 0.012 when we
run the process 50 times with slightly perturbed starting values. Recall that
the planner can specify a scale parameter increase of this value to achieve
higher conformity if desired.

We run the optimization multiple times on all three patient cases to
test the robustness of our approach. Table 1 shows average run time of
the entire model for three different sized tumors, based on runs where we
perturbed the initial solution (30% of the voxel locations and 60% of the
weights were perturbed by small amounts). We made 50 runs for the small
tumor and 25 runs for the medium and large tumors. The solutions used
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Figure 2: 90% confidence interval for the objective value of (8) as a function
of conformity value P
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Table 2: A comparison of two different schemes

18 mm only 14 and 18 mm
P Obj.Val | Run Time P Obj.Val | Run Time
Mean | 0.205 | 33.98 | 15 minb7s | 0.232 | 17.62 | 5 min43s
Std.dev. | 0.002 3.42 3 min 12 s | 0.005 6.55 1 min 15 s

five 8mm and two 14mm shots for the small tumor, seven 18mm shots for
the medium, and twelve 18mm shots for the large tumor. As we can see, we
solve the small size problem in about 1 minute, the medium size problem
within 16 minutes with 3 minutes of standard deviation, and 24 minutes with
a standard deviation of 5 minutes for the large tumor. Although the gain
in speed using SLSD depends on the shape and size of the tumor, the table
shows that the SLSD solutions outperform the random starting solutions
regardless of the size of tumor. Note that random starting solutions often
fail to solve the large problem in a clinically acceptable time limit (typically
20 - 40 minutes).

It is interesting to observe that in the medium size case that SLSD does
not provide a distinct advantage over random starting points. In practice,
the planners limit the number of different helmets that can be used in plan-
ning as a mechanism to improve solution times. In Table 1 we used these
prescribed numbers in all cases. However, if more helmet sizes are allowed,
sometimes better solutions can be found more quickly. Table 2 shows the
performance when two different helmet sizes are allowed, 14mm and 18mm
for the medium sized tumor. First of all, we get more conformal solution
without losing the target coverage. In fact, we get better coverage, i.e.
smaller objective value. We also get a substantial gain from its speed when
two different helmet sizes are allowed. The run time was reduced from 16
minutes to 6 minutes on average. Clearly, the advantage of using SLSD
is its ability to choose a set of reasonable shot center locations and their
appropriate helmet sizes.

Finally, Figure 3 shows several pictures of the large tumor solutions that
are used by the planners to understand the quality of the solutions. While
these figures show the SLSD solution is much more conformal in this slice,
and seems much better in quality, it is hard to make a definitive judgement
from these figures. Radiation oncologists often use a cumulative dose volume
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(a) Random starting point solution. (b) SLSD starting point solution.
Note that the target and the 50% Note that the target and the 50%
isodose curve do not match closely. isodose curve match closely.

Figure 3: Large patient example. Three contours drawn represent target,
50% and 30% isodose curves respectively in decreasing greyscale
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Figure 4: A dose volume histogram depicting the percentage of dose deliv-
ered to the target volume by the random and SLSD (skeleton) solutions.

histogram as a means of determining the quality of a treatment plan (see
Figure 4). A cumulative dose volume histogram displays the fraction of
the patient that receives at least a specified dose level. Since the SLSD
solution lies entirely to the right of the random solution, the SLSD solution
is uniformly better.

4 Conclusion and Future Directions

Automation of the planning process for Gamma Knife radiosurgery is highly
desired since it has the potential to produce more uniform and better quality
plans. The key to the success of an automated approach depends on how
quickly and accurately the solution can be generated, and how reliable the
method is in various problem settings. Our approach is fast to generate
good quality solutions. It is flexible because it provides problem-dependent
initial solutions for the NLP model which can then be solved using standard
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optimization tools. It takes no more than 7 seconds to generate the starting
solution for any size (the biggest tumor size tried has length 7.2 ¢cm) and
regardless of shape of the tumor.

Note that a user of this procedure has only to provide the following
information: the target volume, an estimate of the number of shots to use,
the isodose prescription level, the conformity relaxation parameter, whether
the patient is supine or prone and the helmet sizes that should be used
(optional).

There are a variety of research questions whose solution would make the
current tool even more useful. Many of these are related to the speed and
robustness of the solution process. Is there a better continuation process
for solving the nonlinear program? Are there other methods to generate a
good starting solutions for NLP model? Can we improve the quality of the
starting solution by taking into account the exposure times? The solution
of these and related questions are the topic of future research.
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