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Incremental Support

Vector Machine

Classification

Glenn Fung∗ and Olvi L. Mangasarian†

Abstract Using a recently introduced proximal support vector ma-
chine classifier [4], a very fast and simple incremental support vector
machine (SVM) classifier is proposed which is capable of modifying an
existing linear classifier by both retiring old data and adding new data.
A very important feature of the proposed single-pass algorithm , which
allows it to handle massive datasets, is that huge blocks of data, say of
the order of millions of points, can be stored in blocks of size (n + 1)2,
where n is the usually small (typically less than 100) dimensional input
space in which the data resides. To demonstrate the effectiveness of the
algorithm we classify a dataset of 1 billion points in 10-dimensional input
space into two classes in less than 2.5 hours on a 400 MHz Pentium II
processor.

Keywords incremental classifier, massive data classification, sup-

port vector machines

1 Introduction

Recently [4] a fast simple classification algorithm was proposed that classifies points
by assigning them to the closest of two parallel planes (in input or feature space)
that are pushed apart as far as possible. This formulation, which can be interpreted
as regularized least squares and can be considered in the much more general context
of regularized networks [2, 3], leads to an extremely fast and simple algorithm for
generating a linear or nonlinear classifier that merely requires the solution of a single
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system of linear equations. In contrast, standard support vector machines (SVMs),
which assign points to one of two halfspaces, solve a quadratic or a linear program
that require considerably longer computational time. By taking advantage of the
structure of the (n + 1) × (n + 1) positive definite matrix constituting the system
of linear equations, where n is the usually small dimensional input space of the
proximal SVM classifier [4], we are able to propose an incremental algorithm that
has the following capabilities:

(i) Old data can be easily retired while new data can just as easily be incorporated
into the classifier.

(ii) Storage capacity required is of the order (n + 1)2.

(iii) Computational time is of order (n + 1)3.

(iv) Extremely large datasets, of the order of 109, can be classified incrementally.

(v) Data compression of large data block of size s × n into data block of size
(n + 1)2 is easily carried out for use by the incremental SVM, where s can be
as large as 109.

We briefly summarize the contents of the paper now. In Section 2 we describe the
proximal linear support vector machine and state the Linear Proximal Algorithm
2.1 on which our incremental algorithm is based. In Section 3 we introduce our
Linear Incremental SVM Algorithm 3.1 based on solving the linear proximal SVM
formulation of Section 2 incrementally. Section 4 contains numerical test results
for our linear incremental classification algorithm including the classification of 1-
billion points in 10-dimensional input space in 2 hours and 26 minutes on a Pentium
II 400 MHz machine. Section 5 concludes the paper.

A word about our notation and background material. All vectors will be
column vectors unless transposed to a row vector by a prime superscript ′. For a
vector x in the n-dimensional input space Rn, the sign function sign(x) is defined
as sign(x)i = 1 if xi > 0 else sign(x)i = −1 if xi ≤ 0, for i = 1, . . . , n. The
scalar (inner) product of two vectors x and y in the n-dimensional real space Rn

will be denoted by x′y and the 2-norm of x will be denoted by ‖x‖. For a matrix
A ∈ Rm×n, Ai is the ith row of A which is a row vector in Rn, while A·j is the jth
column of A. A column vector of ones of arbitrary dimension will be denoted by e.
The identity matrix of arbitrary dimension will be denoted by I .

2 The Linear Proximal Support Vector Machine

We consider the problem, depicted in Figure 1, of classifying m points in the n-
dimensional input space Rn, represented by the m × n matrix A, according to
membership of each point Ai in the class A+ or A− as specified by a given m×m

diagonal matrix D with plus ones or minus ones along its diagonal. For this problem,
the standard support vector machine with a linear kernel [13, 1] is given by the
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following quadratic program with parameter ν > 0:

min
(w,γ,y)∈Rn+1+m

νe′y + 1
2w′w

s.t. D(Aw − eγ) + y ≥ e

y ≥ 0.

(1)

As depicted in Figure 1, w is the normal to the bounding planes:

x′w = γ + 1
x′w = γ − 1,

(2)

that bound most of the sets A+ and A− respectively. The constant γ determines
their location relative to the origin. When the two classes are strictly linearly
separable, that is when the error variable y = 0 in (1) (which is not the case shown
in Figure 1), the plane x′w = γ + 1 bounds all of the class A+ points, while the
plane x′w = γ − 1 bounds all of the class A− points as follows:

Aiw ≥ γ + 1, for Dii = 1,

Aiw ≤ γ − 1, for Dii = −1.
(3)

Consequently, the plane:

x′w = γ, (4)

midway between the bounding planes (2), is a separating plane that separates A+
from A− completely if y = 0, else only approximately as depicted in Figure 1. The
quadratic term in (1), which is twice the reciprocal of the square of the 2-norm
distance 2

‖w‖ between the two bounding planes of (2) (see Figure 1), maximizes

this distance, often called the “margin”. Maximizing the margin enhances the
generalization capability of a support vector machine [13, 1]. If the classes are
linearly inseparable, which is the case shown in Figure 1, then the two planes bound
the two classes with a “soft margin” (i.e. bound approximately with some error)
determined by the nonnegative error variable y, that is:

Aiw + yi ≥ γ + 1, for Dii = 1,

Aiw − yi ≤ γ − 1, for Dii = −1.
(5)
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w
Margin= 2

‖w‖

x
′
w = γ − 1

x
′
w = γ + 1

Separating Plane: x
′
w = γ

Figure 1. The Standard Support Vector Machine Classifier in the w-space

of Rn: The approximately bounding planes of equation (2) with a soft (i.e. with some

error) margin 2

‖w‖
, and the plane of equation (4) approximately separating A+ from

A−.

The 1-norm of the error variable y is minimized parametrically with weight
ν in (1), resulting in an approximate separating plane (4) as depicted in Figure 1.
This plane acts as a linear classifier as follows:

sign(x′w − γ )

{

= 1, then x ∈ A+,

= −1, then x ∈ A−.
(6)

To generate our proximal SVM we first modify the standard SVM formulation (1)
in a similar manner to that of [9, 10], where the optimization problem (1) is replaced
by the following problem:

min
(w,γ,y)∈Rn+1+m

ν
2‖y‖

2 + 1
2 (w′w + γ2)

s.t. D(Aw − eγ) + y ≥ e
(7)

Note that no explicit nonnegativity constraint is needed on y, because if any com-
ponent yi is negative then the objective function can be decreased by setting that
yi = 0 while still satisfying the corresponding inequality constraint. Note further
that the 2-norm of the error vector y is minimized instead of the 1-norm, and the
margin between the bounding planes is maximized with respect to both orientation
w and relative location to the origin γ. Extensive computational experience, as in
[8, 9, 10, 6, 5] indicates that this formulation is just as good as the classical for-
mulation (1) with some added advantages such as strong convexity of the objective
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function. The key idea of the proximal SVM is to make a very simple, but funda-
mental, change in the formulation (7), namely replace the inequality constraint by
an equality as follows:

min
(w,γ,y)∈Rn+1+m

ν
2‖y‖

2 + 1
2 (w′w + γ2)

s.t. D(Aw − eγ) + y = e
(8)

This modification, even though very simple, changes the nature of optimization
problem significantly. In fact it turns out that we can write an explicit exact
solution to the problem in terms of the problem data as we show below, whereas it is
impossible to do that in standard SVM formulations because of their combinatorial
nature. Geometrically the formulation (8) is depicted in Figure 2 which can be
interpreted as follows. The planes x′w− γ = ±1 are not bounding planes anymore,
but can be thought of as “proximal” planes, around which the points of each class
are clustered and which are pushed as far apart as possible by the term (w′w + γ2)
in the objective function which is nothing other than the reciprocal of the 2-norm
distance squared between the two planes in the (w, γ) space of Rn+1.
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[

w
γ

]

Margin= 2

‖[wγ]‖

x
′
w − γ = −1

x
′
w − γ = +1

Separating Plane: x
′
w − γ = 0

Figure 2. The Proximal Support Vector Machine Classifier in the (w, γ)-

space of Rn+1: The planes x′w − γ = ±1 around which points of the sets A+ and A−

cluster and which are pushed apart by the optimization problem (8).

Substituting for y from the constraint in terms of
[

w
γ

]

, we have the uncon-
strained optimization problem:

min
(w,γ)∈Rn+1

ν
2‖D(Aw − eγ) − e‖2 + 1

2 (w′w + γ2). (9)
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Setting the gradient with respect to
[

w
γ

]

gives:

νA′D(D(Aw − eγ) − e) + w = 0,

−νe′D(D(Aw − eγ) − e) + γ = 0.
(10)

Noting that DD = I and solving for
[

w
γ

]

gives:

[

w

γ

]

=

[

A′A + I
ν

−A′e

−e′A 1
ν

+ m

]−1 [

A′De

−e′De

]

=
[

I
ν

+
[

A′

−e′

]

[A − e]
]−1

[

A′De

−e′De

]

. (11)

Defining

E = [A − e], (12)

the solution given in (11) can be written as:

[

w

γ

]

= (
I

ν
+ E′E)−1E′De. (13)

This expression for
[

w
γ

]

involves the solution of a system of linear equations

determined by the small dimensional (n + 1) × (n + 1) matrix, I
ν

+ E′E. For
concreteness we explicitly state our simple algorithm.

Algorithm 2.1. Linear Proximal SVM Given m data points in Rn represented
by the m × n matrix A and a diagonal matrix D of ±1 labels denoting the class of
each row of A, we generate the linear classifier (6) as follows:

(i) Define E by (12) where e is an m × 1 vector of ones. Compute
[

w
γ

]

by (13)

for some positive ν. Typically ν is chosen by means of a tuning (validating)
set.

(ii) Classify a new x by using (6) and the solution
[

w
γ

]

from Step (i) above.

For standard SVMs, support vectors consist of all data points which are the
complement of the data points that can be dropped from the problem without
changing the separating plane (4) [14, 7]. Thus, for the standard SVM formulation
(1), support vectors correspond to data points for which the Lagrange multipliers are
nonzero because, solving (1) with these data points only will give the same answer
as solving it with the entire dataset. In our proximal formulation (8) however,
the Lagrange multipliers u (which are not computed explicitly here because the
constraint is eliminated before solving the problem) can be shown [4, Equation
(11)] to be merely a multiple of the error vector y, that is, u = νy. Consequently,
because all components of y are typically nonzero, since none of the data points
usually lie on the proximal planes x′w = ±1, the concept of support vectors was
modified in [4] as follows. We define the concept of ε-support vectors as those data
points Ai for which error vector yi is less than ε in absolute value. We typically pick
ε small enough such that about 1% of the data are ε-support vectors. Re-solving
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our proximal SVM problem (8) with these data points and a ν adjusted (typically
upwards) by a tuning set gives test set correctness that is essentially identical to
that obtained by using the entire dataset.

We turn our attention now to our incremental algorithm that is based on the
proximal SVM formulation described above.

3 Incremental SVM Classification

We describe now how a simple procedure can be applied to the proximal SVM,
described in the previous section, that will allow it to generate a new linear classifier
(6) by retiring old data while simultaneously adding new data. To do that let us
augment the input vector x ∈ Rn by −1 and define an augmented input vector
z ∈ Rn+1 as follows:

z :=

[

x

−1

]

. (14)

Coupling this definition with the solution expression for
[

w
γ

]

given by (13), the linear

classifier (6) can be written explicitly in terms of the input data as follows:

sign(z′(
I

ν
+ E′E)−1E′De )

{

= 1, then x ∈ A+,

= −1, then x ∈ A−,
(15)

where, as before, E = [A − e]. Two key properties of the classifier (15) are:

(i) The size of the data to be stored is of order of (n + 1)2 for E′E and of order
(n+1) for E′De, even if the number of data points is of the order of millions.

(ii) Time to solve the system of linear equations determined by the positive defi-
nite matrix I

ν
+ E′E is of order (n + 1)3.

Since n is typically less than 100 and often around 10, the above classifier is ex-
tremely effective for massive datasets with millions of data points. Based on these
simple facts we describe an incremental algorithm that is capable of retiring any
desired portion of the data while at the same time adding new data to generate
an appropriately altered classifier. To keep the notation simple assume that the
current classifier is based on an input dataset E ∈ Rm×(n+1) and a corresponding
diagonal matrix D ∈ Rm×m of ±1. Suppose that an “old” subset of this data
represented by the submatrix E1 ∈ Rm1×(n+1) of E and a corresponding diagonal
submatrix D1 ∈ Rm1×m1

of ±1 of D needs to be retired and removed from the
characterization of our classifier, leaving its complement in E to determine the new
classifier together with new data. The “new” set of data points is represented by
a new matrix E2 ∈ Rm2×(n+1) and a corresponding diagonal matrix D2 ∈ Rm2×m2

of ±1 that needs to be added to the characterization of our new classifier. The
classifier (15) can be updated to reflect the retirement of E1 and the addition of E2

as stated below in our incremental algorithm.



“tr”
2001/9/19
page 8

i

i

i

i

i

i

i

i

8

Algorithm 3.1. Linear Incremental SVM Given m data points in Rn rep-
resented by the m × n matrix A and a diagonal matrix D of ±1 labels denoting
the class of each row of A, we generate an incremental linear classifier by retiring
old data represented by the submatrix E1 ∈ Rm1×(n+1) of E = [A − e] and a

corresponding diagonal submatrix D1 ∈ Rm1×m1

of D of ±1 and adding new data
represented by a new matrix E2 ∈ Rm2×(n+1) and a corresponding diagonal matrix
D2 ∈ Rm2×m2

of ±1 as follows:

sign(z′(
I

ν
+ E′E − E1′E1 + E2′E2)−1(E′De − E1′D1e + E2′D2e ))

{

= 1, then x ∈ A+,

= −1, then x ∈ A−.

(16)

Note that for each block of data, say Ei ∈ Rmi×(n+1), all we need to store
is the relatively small (n + 1) × (n + 1) matrix Ei′Ei and the (n + 1) × 1 vector

Ei′Die. These quantities, which are of order than (n + 1)2 and n + 1 respectively,
allow us to retire and add data to classifiers as often as we wish. Furthermore, this
incremental process allows us to handle arbitrarily large datasets, by successively
adding blocks of data in the form of Ei′Ei and Ei′Die, as will be demonstrated by
the numerical results of the next section. Note also that Ei′Ei which is of order
(n+1)2 can be considered to be a compression of the much larger dataset E i which
is of order mi(n + 1). Since it takes 2(n + 1)2mi operations to compute Ei′Ei

and 2(n + 1)mi operations to compute Ei′Die, the amount of computation of the
incremental algorithm only grows linearly in the number of data points m =

∑

mi

as shown in Figure 4.

4 Numerical Testing

All our computations were performed on the University of Wisconsin Data Mining
Institute “locop1” machine, which utilizes a 400 Mhz Pentium II and allows a
maximum of 2 Gigabytes of memory for each process. This computer runs on
Windows NT server 4.0, with MATLAB 6 installed. Even though “locop1” is a
multiprocessor machine, only one processor was used for all the experiments since
MATLAB is a single threaded application and does not distribute any load across
processors [11].

Because we are principally interested in massive problems, we focus our numer-
ical tests on two datasets synthetically generated and totally stored on disk. These
sets are generated by Musicant’s NDC (normally distributed clustered) dataset gen-
erator [12]. The data is generated as clusters of normally distributed points in Rn

with an adjustable linear separability.
The first dataset consists of 1 billion points in 10-dimensional input space.

The purpose of this dataset is to demonstrate the capability of our incremental
SVM algorithm to obtain linear classifier by 500 increments of 2 million points
each. The 1-billion dataset was generated first, and stored in 500 subsets of size
2 million points each. A testing set of size 10 million, was also generated with
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Figure 3. Flow chart for the Linear Incremental Algorithm 3.1.

the same distribution used to generate the 1 billion dataset and hence, resulting in
essentially the same linear separability. It is important to note that every block of
data is read from disk only once, and that once the new block of data is processed,
the only data that has to be kept in memory is a matrix of size 11×11 and a vector
of size 11 × 1 in our case here. Every time a new block is read from disk, new
incoming data is processed by the algorithm, the 11× 11 matrix and 11× 1 vector
are updated, and after this, all the processed data is discarded, leaving the memory
ready for new incoming data. This process is graphically depicted in Figure 3.

The proposed incremental algorithm solved this 1-billion point problem in less
than 2 hours and 26 minutes (8747 seconds). About 43 minutes, slightly less than
30% of the total time, was spent reading data from disk. Training set correctness
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was 90.78 % while testing set correctness was 90.79 %. A graph exhibiting the linear
dependence of computational time of the algorithm on the number of data points
used to generate the solution

[

w
γ

]

of (13) is presented in Figure 4.
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Figure 4. Computational time of the Linear Incremental Algorithm 3.1 as

a function of the number of data points used to compute the solution
�
w

γ � of (13) for

the 1-billion point dataset.

The second dataset of 60 million points in 10-dimensional input space is in-
tended to simulate two months of data. We use this dataset to demonstrate how our
algorithm can incrementally retire 1 million old points and add 1 million new points
in 30 successive steps which simulate daily retirement of the oldest data and addi-
tion of the newest data. In the previous experiment all the data was assumed to be
on disk from the beginning and just one final separating hyperplane was required.
In this case at the beginning we assume that we just have 30 days of data and every
day the oldest block of data has to be retired (1-million points) and one new block
of data (1-million points) corresponding to the new data just collected has to be
added. Furthermore, we assume that at every time that an update of the data is
made, a new separating hyperplane has to be calculated. The data was generated
in such a way that the starting and final separating hyperplanes differ considerably.
This means that the incoming data is constantly changing and the separating cri-
teria to be learned changes dynamically with respect to time. A gradual change in
the resulting hyperplane after incrementally retiring 1 million old points and adding
1 million new points can be observed. In order to show this gradual change, we
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Figure 5. Normals to the separating hyperplanes x′wi = γi, i = 1, . . . , 30,

corresponding to 5-day intervals.

measure the differences between planes by calculating the angle α between their
normals. Thus, given two hyperplane normals wi, wj ∈ Rn we compute:

cos α =
|wi′wj |

‖wi‖‖wj‖

A plot showing the angles between the normals to the hyperplanes as the data
changes is depicted in Figure 5.

5 Conclusion

We have proposed a very fast and simple incremental support vector machine clas-
sifier based on proximity of each class of points to one of two parallel planes that
are pushed apart appropriately. The principal features of the proposed algorithm
are its ability to retire old data and add new data very easily, its effectiveness and
speed in handling massive datasets incrementally, and its ability to compress large
datasets in a compression ratio of order mn

n2 = m
n

, where m can be of the order of
millions, and n is of the order 10 to a 100. These features coupled with its simplicity
will hopefully make it a useful classification tool.
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