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Abstract

Characterization of the containment of a polyhedral set in a closed halfspace, a key factor in
generating knowledge-based support vector machine classifiers [7], is extended to the following:

(i) Containment of one polyhedral set in another.

(ii) Containment of a polyhedral set in a reverse-convex set defined by convex quadratic con-
straints.

(iii) Containment of a general closed convex set, defined by convex constraints, in a reverse-convex
set defined by convex nonlinear constraints.

The first two characterizations can be determined in polynomial time by solving m linear programs
for (i) and m convex quadratic programs for (ii), where m is the number of constraints defining the
containing set. In (iii), m convex programs need to be solved in order to verify the characterization,
where again m is the number of constraints defining the containing set. All polyhedral sets, like
the knowledge sets of support vector machine classifiers, are characterized by the intersection of a
finite number of closed halfspaces.

Keywords set containment, knowledge-based classifier, linear programming, quadratic

programming

1 Introduction

Support vector machine classifiers [15, 1, 12] generate separating planes or surfaces by training on
labeled data, that is data for which the class of each point is given. Knowledge-based classifiers
[13, 14] on the other hand utilize prior knowledge, e.g. an expert’s experience such as a doctor’s
knowledge in diagnosing a certain disease. Recently [7] a precise incorporation of prior knowledge
into a linear support vector machine classifier was achieved by placing nonempty polyhedral sets
representing such knowledge in the correct halfspace determined by a separating plane classifier.
Key to this approach was a dual characterization, using the nonhomogeneous Farkas theorem [11,
Theorem 2.4.8], of the containment of a polyhedral set in a closed halfspace. This characterization
was then used as a constraint in a linear program that determined the linear classifier thereby
incorporating prior knowledge into the classifier. In Section 2 we extend this characterization to
the containment of one polyhedral set in another (Figure 1). In Section 3 we characterize the
containment of a polyhedral set in a reverse-convex constraint [11, Definition 7.3.5] set determined
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by quadratic constraints (Figure 2), and in Section 4 we characterize the containment of a convex
set determined by nonlinear convex functions in a reverse-convex constraint set determined by
nonlinear functions (Figure 3). An interesting aspect of the present results is that, despite the
nonconvexity of the containing set of Sections 3 and 4, the containment problems of these sections
can be solved by a finite number of polynomial-time convex quadratic programs and by a finite
number of convex programs respectively. The case of Section 2, containment of one polyhedral set
in another, can be solved by a finite number of linear programs.

There have been other set containment studies which emphasize the complexity issue of the
problem. Notable among those is the work of Freund and Orlin [6] regarding the containment of
polyhedral sets in balls and vice-versa, and the inner and outer radii of convex bodies by Grtizmann
and Klee [8]. In [4, Lemma, p 140] the nonhomogeneous Farkas theorem was also used for the
optimal scaling of balls and polytopes.

We now describe our notation. All vectors will be column vectors unless transposed to a row
vector by a prime ′. The scalar (inner) product of two vectors x and y in the n-dimensional real
space Rn will be denoted by x′y. The notation A ∈ Rm×n will signify a real m × n matrix. For
such a matrix, A′ will denote the transpose of A, Ai will denote the i-th row of A and A·j will
denote the j-th column of A. The identity matrix of arbitrary dimension will be denoted by I. For
simplicity, the dimensionality of some vectors will not be explicitly given. For a vector function
h : Rn −→ Rk, ∇h(x) will denote the k × n Jacobian matrix of first partial derivatives, and h is
said to be convex on Rn if each of its k components are convex on Rn.

2 Polyhedral Set Containment

In this section we generalize the nonhomogeneous Farkas theorem [11, Theorem 2.4.8], a result
that we used earlier to generate a knowledge-based support vector machine classifier [7]. The
nonhomogeneous Farkas Theorem gives a dual characterization of the containment of a nonempty
polyhedral knowledge set in a closed halfspace. Proposition 1 below generalizes this latter result,
using linear programming duality, to containment of a nonempty polyhedral set in an arbitrary
polyhedral set depicted in Figure 1, instead of containment in a closed halfspace.

PSfrag replacements

Bx ≤ b
Aix = ai

Figure 1: Containment of the polyhedral set B := {x | Bx ≤ b} in another polyhedral set A := {x | Ax ≥

a}.
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Proposition 2.1 Polyhedral Set Containment Let the set A := {x | Ax ≥ a} and let B :=
{x | Bx ≤ b}, where A ∈ Rm×n, B ∈ Rk×n and let B be nonempty. Then the following are
equivalent:

(i) B ⊆ A, that is:

Bx ≤ b =⇒ Ax ≥ a. (1)

(ii) There exists a matrix U ∈ Rm×k such that:

A + UB = 0, a + Ub ≤ 0, U ≥ 0. (2)

(iii) For i = 1, . . . ,m, the m linear programs are solvable and satisfy:

min
x

{(Aix − ai) | Bx ≤ b} ≥ 0. (3)

Proof ((i) =⇒ (iii)) For i ∈ {1, . . . ,m}, the m linear programs of (3) are feasible because
B 6= ∅ and their objective functions are bounded below by zero and hence attain their nonnegative
minima as asserted by (3).
((iii) =⇒ (ii)) By linear programming duality [3, 11], for i = 1, . . . ,m, each of the m linear
programs that are dual to the m linear programs of (3) are solvable and satisfy:

max
u

{(−b′u − ai) | − B′u = A′

i, u ≥ 0} ≥ 0. (4)

Calling the solution of each of these m dual linear programs ui ∈ Rk, i = 1, . . . ,m, and defining
the m × k matrix U as U ′ = [u1 . . . um], we obtain:

−b′U ′ − a′ ≥ 0, −B′U ′ = A′, U ≥ 0, (5)

which is equivalent to (2).
((ii) =⇒ (i))

Bx ≤ b =⇒ Ax = −UBx ≥ −Ub ≥ a. (6)

�

Remark 2.2 It is interesting to note that even though the validity of the polyhedral set containment
implication of problem (1) can be resolved by the above proposition in polynomial time by solving
the m linear programs (3), it can also be characterized by solving the following minimization of a
piecewise linear concave function on a polyhedral set:

min
x

{ min
i=1,... ,m

{Aix − ai} | Bx ≤ b} ≥ 0. (7)

General piecewise linear concave minimization on a polyhedral set is NP-hard because the general
linear complementarity problem, which is NP-complete, [2] can be formulated as such a problem
[10, Lemma 1].

We turn now to the characterization of the containment of a polyhedral set in a quadratically
determined nonconvex set.

3



3 Containment of a Polyhedral Set in a Nonconvex Set Deter-

mined by Quadratic Constraints

We characterize now the containment of a polyhedral set in a nonconvex set determined by convex
quadratic quadratic constraints generating a reverse-convex [11, Definition 7.3.5] set as depicted in
Figure 2. An interesting aspect of this nonconvex problem is that it is solvable in polynomial time
as a consequence of the following characterization result.

PSfrag replacements

Bx ≤ b

1
2x

′Qix + Aix = ai

Figure 2: Containment of the polyhedral set B := {x | Bx ≤ b} in the reverse-convex quadratic set

A := {x | 1

2
x′Qix + Aix ≥ ai, i = 1, . . . , m}, where Qi are positive semidefinite symmetric matrices.

Proposition 3.1 Polyhedral Set Containment in Reverse Convex Quadratic Set Let the
set B := {x | Bx ≤ b} be nonempty and let A := {x | 1

2x′Qix + Aix ≥ ai, i = 1, . . . ,m}, where
Qi ∈ Rn×n, i = 1, . . . ,m are symmetric positive semidefinite matrices. Then the following are
equivalent:

(i) B ⊆ A, that is:

Bx ≤ b =⇒
1

2
x′Qix + Aix ≥ ai, i = 1, . . . ,m. (8)

(ii) There exist matrices U ∈ Rm×k, X ∈ Rm×n such that:

Ai + UiB + XiQ
i = 0, ai + Uib +

1

2
XiQ

iX ′

i ≤ 0, Ui ≥ 0, i = 1, . . . ,m. (9)

(iii) For i = 1, . . . ,m, the m convex quadratic programs are solvable and satisfy:

min
x

{(
1

2
x′Qix + Aix − ai) | Bx ≤ b} ≥ 0. (10)

Proof ((i) =⇒ (iii)) For i ∈ {1, . . . ,m}, the m quadratic programs of (10) are feasible because
B 6= ∅ and their objective functions are bounded below by zero and hence attain [5] their nonnegative
minima as asserted in (10).
((iii) =⇒ (ii)) By quadratic programming duality [11, Section 8.2], for i = 1, . . . ,m, the m

quadratic programs that are dual to the m quadratic programs (10) are solvable and satisfy:

max
x,u

{(−
1

2
x′Qix − b′u − ai) | Qix + B′u + A′

i = 0, u ≥ 0} ≥ 0. (11)
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Calling the solution of each of these m dual quadratic programs xi ∈ Rn, ui ∈ Rk, i = 1, . . . ,m,
and defining the m × n matrix X as X ′ = [x1 . . . xm], and the m × k matrix U as U ′ = [u1 . . . um],
we obtain that for i = 1, . . . ,m:

−
1

2
XiQ

iX ′

i − b′U ′

i − ai ≥ 0, QiX ′

i + B′U ′

i + A′

i = 0, Ui ≥ 0, (12)

which is equivalent to (9).
((ii) =⇒ (i)) For i = 1, . . . ,m:

Bx ≤ b =⇒ 1
2x′Qix + Aix − ai ≥ −1

2XiQ
iX ′

i − b′U ′

i − ai

=⇒ 1
2x′Qix + Aix − ai ≥ 0

(13)

where the first implication follows from the weak duality theorem [11, Theorem 8.23.], since x is fea-
sible for each of the m primal quadratic programs of (10), while (Xi, Ui), i = 1, . . . ,m, are feasible
for the m dual programs (11). The second implication above follows because − 1

2XiQ
iX ′

i−b′U ′

i−ai ≥
0 by (9) of (ii). The two implications of (13) above result in (8) of (i).

�

We note that an interesting consequence of this proposition, is that the the containment of a
polyhedral set in a nonconvex set determined by quadratic constraints can be solved in polynomial
time by solving the m convex quadratic programs (10) [9].

We turn finally to the containment of a general convex set in a general nonlinear reverse-convex
set.

4 Containment of a General Convex Set in a Nonconvex Set De-

termined by Nonlinear Constraints

We consider a general closed convex set B in Rn and and characterize its containment in a general
nonconvex set A depicted in Figure 3 as follows.

PSfrag replacements

h(x) ≤ 0

gi(x) = 0

Figure 3: Containment of the convex set B := {x | h(x) ≤ 0} in the reverse-convex nonlinear set

A := {x | g(x) ≥ 0}, where g : Rn −→ Rm and h : Rn −→ Rk are convex functions on Rn.

Proposition 4.1 Convex Set Containment in Reverse Convex Set Let be B be a nonempty
closed convex set in Rn defined as B := {x | h(x) ≤ 0}, where h : Rn −→ Rk is a differentiable
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convex function on Rn, and let the the nonconvex set A in Rn be defined as A := {x | g(x) ≥ 0},
where g : Rn −→ Rm is a differentiable convex function on Rn. Then,

(i) ⇐⇒ (iii) ⇐= (ii), (14)

where:

(i) B ⊆ A, that is:

h(x) ≤ 0 =⇒ g(x) ≥ 0. (15)

(ii) For i = 1, . . . ,m, there exist xi ∈ Rn and ui ∈ Rk, such that:

∇gi(x
i) + ui′∇h(xi) = 0, gi(x

i) + ui′h(xi) ≥ 0, ui ≥ 0. (16)

(iii) For i = 1, . . . ,m, the m convex programs satisfy:

inf
x
{gi(x) | h(x) ≤ 0} ≥ 0. (17)

If in addition gi, i = 1, . . . ,m, have bounded level sets on B, that is:

{x | gi(x) ≤ α, h(x) ≤ 0}, i = 1, . . . ,m, are bounded for each α, (18)

and

{x | h(x) < 0} 6= ∅, or h(x) is linear, (19)

then,

(i) ⇐⇒ (iii) ⇐⇒ (ii). (20)

Proof ((i) =⇒ (iii)) If not, then for some i ∈ {1, . . . ,m}, there exists an x such that:

gi(x) < 0, h(x) ≤ 0, (21)

which contradicts the implication (15).
((i) ⇐= (iii)) h(x) ≤ 0 =⇒ gi(x) ≥ 0, i = 1, . . . ,m, which is implication (15) of (i).
((ii) =⇒ (iii)) For i ∈ {1, . . . ,m}, the m points (xi, ui) given by (16) of (ii) are feasible for the
dual problems to (17):

sup
(x,u)∈Rn+k

{gi(x) + u′h(x) | ∇gi(x) + u′∇h(x) = 0, u ≥ 0} ≥ 0, i = 1, . . . ,m, (22)

with dual objective function values that are nonnegative. Hence by the weak duality theorem
of convex programming [11, Theorem 8.1.3], the corresponding m primal problems (17) with the
nonempty feasible region B have infima bounded below by zero which implies (iii).
((iii) =⇒ (ii)) Let αi ≥ 0, i = 1, . . . ,m, be the infima of each of the m problems of (17). Hence
for each i = 1, . . . ,m, there exists a sequence {εi

j} ↓ 0, {xi
j} ∈ B, such that:

αi ≤ gi(x
i
j) < εi

j + αi. (23)

Since the sequence {xi
j} lies in the closed bounded set B ∩ {gi(x) ≤ εi

0 + αi}, it must have an

accumulation point xi ∈ B such that αi = gi(x
i) = inf

x
{gi(x) | h(x) ≤ 0}. Hence, for i = 1, . . . ,m,

gi(x
i) is an attained infimum αi of (17), and since a constraint qualification (19) is satisfied, it

follows by Wolfe’s duality theorem of convex programming [11, Theorem 8.1.4] that the supremum
αi of the dual problem (22) is attained at xi and some ui. Hence (xi, ui), i = 1, . . . ,m, satisfy (16)
of (ii).

�
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5 Conclusion

We have proposed computationally tractable characterizations of set containment properties for
both polyhedral and nonlinear sets. Polyhedral set containment in another polyhedral set is char-
acterized by the solution of a finite number of linear programs. Containment of a polyhedral set in a
reverse-convex set, defined by convex quadratic constraints, is characterized by polynomial time so-
lution of a finite number of convex quadratic programs. Containment of a general closed convex set,
defined by convex constraints, in a reverse-convex set defined by convex constraints, is characterized
by solving a finite number of convex programs. These results, motivated by knowledge-based linear
classification, may possibly lead to general methods of incorporating more complex knowledge into
both linear and nonlinear classifiers and merit further study.
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