
Computational Optimization and Aplications, 28, 185–202 (2004)
c© 2004 Kluwer Academic Publishers, Boston. Manufactured in The Netherlands.

A Feature Selection Newton Method for Support

Vector Machine Classification

GLENN M. FUNG gfung@cs.wisc.edu

Computer Sciences Department
University of Wisconsin
Madison, WI 53706

O. L. MANGASARIAN olvi@cs.wisc.edu

Computer Sciences Department
University of Wisconsin
Madison, WI 53706

Received January 9, 2003; Revised July 31, 2003

Abstract. A fast Newton method, that suppresses input space features, is proposed for a linear
programming formulation of support vector machine classifiers. The proposed stand-alone method
can handle classification problems in very high dimensional spaces, such as 28,032 dimensions,
and generates a classifier that depends on very few input features, such as 7 out of the original
28,032. The method can also handle problems with a large number of data points and requires
no specialized linear programming packages but merely a linear equation solver. For nonlinear
kernel classifiers, the method utilizes a minimal number of kernel functions in the classifier that
it generates.

Keywords classification, feature selection, linear programming, Newton method

1. Introduction

By minimizing an exterior penalty function of the dual of a linear programming
formulation of a 1-norm support vector machine (SVM) [18, 3], for a finite value
of the penalty parameter, an exact least 2-norm solution to the SVM classifier is
obtained. Our approach is based on a 1-norm SVM formulation that is known [3, 28]
to generate very sparse solutions. When a linear classifier is used, solution sparsity
implies that the separating hyperplane depends on very few input features. This
fact, makes this algorithm a very effective tool for feature selection in classification
problems. On the other hand, when a nonlinear classifier is used, a sparse solution
implies that few kernel functions determine the classifier. This makes the nonlinear
classifier easier to store and faster to evaluate. The proposed Newton method
requires only a linear equation solver and can be given in a few lines of a MATLAB
[22] code. We note that a fast Newton method (NSVM) was also proposed recently
in [8] that is based on a quadratic programming formulation of support vector
machines. NSVM however, does not generate sparse solutions and hence does not
suppress features at all. This contrasts sharply with the strong feature suppression
property of the new algorithm proposed here. Feature suppression is very important
in the development of new techniques in bioinformatics that utilize gene microarrays
[5, 23] for prognostic classification, drug discovery and other tasks. Such problems

2 G. M. FUNG AND O. L. MANGASARIAN

typically consist of thousands of gene expression measurements for each patient in
a given study, and where the number of patients is frequently of the order of one
hundred or even less. An excellent overview of the state-of-the-art methods for
feature selection via support vector machines appears in [2].

We outline now the contents of the paper. In Section 2 we formulate the linear
and nonlinear kernel classification problems as a linear programming problem. We
show how an exact solution to the linear programming SVM can be obtained by
minimizing an exterior penalty function of its dual for a finite value of the penalty
parameter. In Section 3 we give our Newton algorithm for solving the exterior
penalty problem and establish its global convergence. In Section 4 we give some
computational results including those for a Multiple Myeloma gene expression prob-
lem with 28,032 variables, solved in seconds, as well as six other publicly available
datasets.

A word about our notation. All vectors will be column vectors unless transposed
to a row vector by a prime superscript ′. For a vector x in the n-dimensional real
space Rn, the plus function x+ is defined as (x+)i = max {0, xi}, i = 1, . . . , n, while
x∗ denotes the subgradient of x+ which is the step function defined as (x∗)i = 1 if
xi > 0, (x∗)i = 0 if xi < 0, and (x∗)i ∈ [0, 1] if xi = 0, i = 1, . . . , n. Thus, (x∗)i is
any value in the interval [0, 1], when xi = 0, and we typically take (x∗)i = 0.5 in
this case. The scalar (inner) product of two vectors x and y in the n-dimensional
real space Rn will be denoted by x′y, the 2-norm of x will be denoted by ‖x‖ and
x ⊥ y denotes orthogonality, that is x′y = 0. The 1-norm and ∞-norm will be
denoted by ‖ · ‖1 and ‖ · ‖∞ respectively. For a matrix A ∈ Rm×n, Ai is the ith
row of A which is a row vector in Rn and ‖A‖ is the 2-norm of A: max

‖x‖=1
‖Ax‖. A

column vector of ones of arbitrary dimension will be denoted by e and the identity
matrix of arbitrary order will be denoted by I . For A ∈ Rm×n and B ∈ Rn×l, the
kernel K(A, B) [27, 4, 18] is an arbitrary function which maps Rm×n × Rn×l into
Rm×l. In particular, if x and y are column vectors in Rn then, K(x′, y) is a real
number, K(x′, A′) is a row vector in Rm and K(A, A′) is an m × m matrix. If f

is a real valued function defined on the n-dimensional real space Rn, the gradient
of f at x is denoted by ∇f(x) which is a column vector in Rn and the n × n

matrix of second partial derivatives of f at x is denoted by ∇2f(x). For a piecewise
quadratic function such as, f(x) = 1

2 ||(Ax − b)+||
2 + 1

2x′Px, where A ∈ Rm×n,
P ∈ Rn×n, P = P ′, P positive semidefinite and b ∈ Rm, the ordinary Hessian does
not exist because its gradient, the n × 1 vector ∇f(x) = A′(Ax − b)+ + Px, is not
differentiable. However, one can define its generalized Hessian [10, 6, 19] which
is the n × n symmetric positive semidefinite matrix:

∂2f(x) = A′diag(Ax − b)∗A + P, (1)

where diag(Ax − b)∗ denotes an m × m diagonal matrix with diagonal elements
(Aix − bi)∗, i = 1, . . . , m. The generalized Hessian (1) has many of the properties
of the regular Hessian [10, 6, 19] in relation to f(x). If the smallest eigenvalue of
∂2f(x) is greater than some positive constant for all x ∈ Rn, then f(x) is a strongly
convex piecewise quadratic function on Rn. Throughout this work, the notation :=
will denote definition.

FEATURE SELECTION NEWTON SUPPORT VECTOR MACHINE 3

2. Linear and Nonlinear Kernel Classification

We describe in this section the fundamental classification problems that lead to a
linear programming problem. We consider the problem of classifying m points in
the n-dimensional real space Rn, represented by the m× n matrix A, according to
membership of each point Ai in the classes +1 or -1 as specified by a given m×m

diagonal matrix D with ones or minus ones along its diagonal. For this problem,
the standard support vector machine with a linear kernel AA′ [27, 4] is given by
the following quadratic program for some ν > 0:

min
(w,γ,y)

νe′y + 1
2w′w

s.t. D(Aw − eγ) + y ≥ e

y ≥ 0.

(2)

As depicted in Figure 1, w is the normal to the bounding planes:

x′w − γ = +1
x′w − γ = −1,

(3)

and γ determines their location relative to the origin. The first plane above bounds
the class +1 points and the second plane bounds the class -1 points when the two
classes are strictly linearly separable, that is when the slack variable y = 0. The
linear separating surface is the plane

x′w = γ, (4)

midway between the bounding planes (3). If the classes are linearly inseparable
then the two planes bound the two classes with a “soft margin” determined by a
nonnegative slack variable y, that is:

x′w − γ + yi ≥ +1,

for x′ = Ai and Dii = +1.

x′w − γ − yi ≤ −1,

for x′ = Ai and Dii = −1.

(5)

The 1-norm of the slack variable y is minimized with weight ν in (2). The quadratic
term in (2), which is twice the reciprocal of the square of the 2-norm distance 2

‖w‖

between the two bounding planes of (3) in the n-dimensional space of w ∈ Rn for
a fixed γ, maximizes that distance, often called the “margin”. Figure 1 depicts
the points represented by A, the bounding planes (3) with margin 2

‖w‖ , and the

separating plane (4) which separates A+, the points represented by rows of A with
Dii = +1, from A−, the points represented by rows of A with Dii = −1.

In a linear programming SVM formulation [18, 3] of the standard SVM (2) the
term 1

2w′w in (2) is replaced by ‖w‖1 which is twice the reciprocal of the ∞-norm
distance [17] between the bounding planes (3). Empirical evidence [3] indicates
that the 1-norm formulation has the advantage of generating very sparse solutions.
This results in the normal w to the separating plane x′w = γ having many zero

4 G. M. FUNG AND O. L. MANGASARIAN

x
x
x
x

x

x
x

xx
x

x
x

x
x

x

x

x

x
x

x
x

x
x x x

x

A+

A−

P
S
fra

g
rep

la
cem

en
ts

w

Margin= 2
‖w‖

x
′
w = γ − 1

x
′
w = γ + 1

Separating Surface: x
′
w = γ

Figure 1. The bounding planes (3) with margin 2

‖w‖
, and the plane (4) separating A+,

the points represented by rows of A with Dii = +1, from A−, the points represented
by rows of A with Dii = −1.

components, which implies that many input space features do not play a role in
determining the linear classifier. This makes this approach suitable for feature
selection in classification problems. We note that in addition to the conventional
interpretation of smaller ν as emphasizing a larger margin between the bounding
planes (3), a smaller ν here also results in a sparse solution. This 1-norm formulation
leads to the linear programming problem:

min
(p,q,γ,y)

νe′y + e′(p + q)

s.t. D(A(p − q) − eγ) + y ≥ e

p, q, y ≥ 0,

(6)

where the following substitution for w has been made:

w = p − q, p ≥ 0, q ≥ 0, (7)

This is a different and a simpler linear program from previous linear programming
SVM formulations [18, 3]. The dual of the linear program (6) is the following:

max
u∈Rm

e′u

s.t. −e ≤ A′Du ≤ e,

−e′Du = 0,

u ≤ νe,

u ≥ 0.

(8)

FEATURE SELECTION NEWTON SUPPORT VECTOR MACHINE 5

The asymptotic exterior penalty problem [7, 1] for this linear program is the fol-
lowing nonnegatively constrained minimization problem:

min
u≥0

−εe′u + 1
2‖(A

′Du − e)+‖
2+

1
2‖(−A′Du − e)+‖

2 + 1
2‖e

′Du‖2 + 1
2‖(u − νe)+‖

2,
(9)

where ε is a positive penalty parameter that needs to approach zero for standard
penalty application for solving the dual linear program (8). However, in our ap-
proach we shall establish the fact that ε will remain finite and we still can obtain
an exact solution to our linear programming SVM (6). To do that we first write
the Karush-Kuhn-Tucker [15] necessary and sufficient optimality conditions for the
penalty problem (9):

0 ≤ u ⊥ (−εe + DA(A′Du − e)+
−DA(−A′Du − e)+
+Dee′Du + (u − νe)+) ≥ 0,

(10)

where, as defined in the Introduction, ⊥ denotes orthogonality. We will now show
that these are also the necessary and sufficient conditions for finding an exact least
2-norm solution to the linear programming SVM (6) without ε approaching zero.
To do that we first formulate the least 2-norm problem for (6) as follows:

min
(p,q,γ,y)

νe′y + e′(p + q) + ε
2 (‖p‖2 + ‖q‖2 + γ2 + ‖y‖2)

s.t. D(A(p − q) − eγ) + y ≥ e

p, q, y ≥ 0,

(11)

with Karush-Kuhn-Tucker necessary and sufficient optimality conditions:

0 ≤ εp ⊥ e + εp − A′Du ≥ 0
0 ≤ εq ⊥ e + εq + A′Du ≥ 0

εγ + e′Du = 0
0 ≤ εy ⊥ νe + εy − u ≥ 0
0 ≤ u ⊥ DA(p − q) − Deγ + y − e ≥ 0.

(12)

It follows, by [20, 14], that for any positive ε such that ε ∈ (0, ε̄] for some ε̄ > 0, any
(p, q, γ, y) satisfying the KKT conditions (12) for some u ∈ Rm, is the exact least
2-norm solution to the linear programming SVM (6). But, if we set in the KKT
conditions (10) for the penalty problem (9):

p = 1
ε
(A′Du − e)+,

q = 1
ε
(−A′Du − e)+,

γ = − 1
ε
e′Du,

y = 1
ε
(u − νe)+,

(13)

and make use of the simple equivalence:

a = b+ ⇐⇒ 0 ≤ a ⊥ (a − b) ≥ 0, (14)

then (13) together with the KKT conditions (10) for the exterior penalty problem
(9), become precisely the KKT necessary and sufficient conditions (12) for the least
2-norm linear programming SVM (11). We have thus proven the following result.

6 G. M. FUNG AND O. L. MANGASARIAN

Proposition 1 (Equivalence of Least 2-norm LP SVM to Dual Exterior
Penalty) A solution u to the dual exterior penalty (DEP) problem (9) for ε ∈
(0, ε̄] for some ε̄ > 0, provides an exact least 2-norm solution to the primal linear
programming SVM (6) as follows:

w = p − q = = 1
ε
((A′Du − e)+ − (−A′Du − e)+),

γ = − 1
ε
e′Du,

y = 1
ε
(u − νe)+.

(15)

We turn now to nonlinear kernel classifiers and use the notation of [18]. For
A ∈ Rm×n and B ∈ Rn×`, the kernel K(A, B) maps Rm×n ×Rn×` into Rm×`. A

typical kernel is the Gaussian kernel ε−µ‖A′

i−B·j‖
2

, i, j = 1, . . . , m, ` = m, where
ε is the base of natural logarithms, while a linear kernel is K(A, B) = AB. For a
column vector x in Rn, K(x′, A′) is a row vector in Rm, and the linear separating
surface (4) is replaced by the nonlinear surface:

K(x′, A′)Dv = γ, (16)

where v is the solution of the dual problem (8). For a linear kernel K(A, A′) = AA′,
we have that w = A′Dv [18] and the primal linear programming SVM (2) becomes
upon using w = p− q = A′Dv and the 1-norm of v in the objective instead that of
w:

min
(v,γ,y)

νe′y + ‖v‖1

s.t. D(AA′Dv − eγ) + y ≥ e

y ≥ 0,

(17)

Setting:
v = r − s, r ≥ 0, s ≥ 0, (18)

the linear program (17) becomes:

min
(r,s,γ,y)

νe′y + e′(r + s)

s.t. D(AA′D(r − s) − eγ) + y ≥ e

r, s, y ≥ 0,

(19)

which is the linear kernel SVM in terms of the dual variable v = r − s. If we
replace the linear kernel AA′ in (19) by the nonlinear kernel K(A, A′) we obtain
the nonlinear kernel linear program:

min
(r,s,γ,y)

νe′y + e′(r + s)

s.t. D(K(A, A′)D(r − s) − eγ) + y ≥ e

r, s, y ≥ 0.

(20)

We immediately note that the linear program (20) is identical to the linear classifier
SVM (6) if we let:

A −→ K(A, A′)D, (21)

FEATURE SELECTION NEWTON SUPPORT VECTOR MACHINE 7

in (6) and n −→ m. Hence the results outlined in Proposition 1 are applicable to
a nonlinear kernel if we make the replacement (21) in (9) and (15) and let p −→ r,
q −→ s, w −→ v in (15) and use the nonlinear kernel classifier (16). As in the linear
case, the 1-norm formulation (21) leads to a very sparse v. Every zero component vi

of v implies non-dependence of the nonlinear kernel classifier on the kernel function
K(x′, A′

i). This is because:

K(x′, A′)Dv =
∑m

i=1 DiiviK(x′, A′
i)

=
∑

{i|vi 6=0} DiiviK(x′, A′
i).

(22)

We turn now to our algorithmic implementation of Proposition 1.

3. Newton Method for Linear Programming SVM (NLPSVM)

We shall solve the dual exterior penalty (9) for a finite value of the penalty pa-
rameter ε by incorporating the nonnegativity constraint u ≥ 0 into the objective
function of (9) as a penalty term which results in the following convex penalty
function:

min
u

f(u) = −εe′u + 1
2‖(A

′Du − e)+‖
2

+ 1
2‖(−A′Du − e)+‖

2 + 1
2‖e

′Du‖2

+ 1
2‖(u − νe)+‖

2 + α
2 ‖(−u)+‖

2.

(23)

We note that the use of the asymptotic penalty function above introduces an ap-
proximation to our solution which accounts for a slightly different computational
result from that of CPLEX on the test problem results given in Tables 1 and 2.
Another possible cause for the differences is that CPLEX was run with its default
settings, whereas the parameters of NLPSVM were adjusted by a tuning set.

The gradient of the function f(u) is given by:

∇f(u) = −εe + DA(A′Du − e)+ − DA(−A′Du − e)+
+Dee′Du + (u − νe)+ − α(−u)+,

(24)

and its generalized Hessian as defined by (1) in the Introduction:

∂2f(u) = DA(diag((A′Du − e)∗ + (−A′Du − e)∗)A
′D

+Dee′D + diag((u − νe)∗ + α(−u)∗)
= DA(diag(|A′Du| − e)∗)A

′D

+Dee′D + diag((u − νe)∗ + α(−u)∗),

(25)

where the last equality follows from the equality:

(a − 1)∗ + (−a − 1)∗ = (|a| − 1)∗. (26)

We are ready now to state our Newton algorithm.

Algorithm 1 Newton Algorithm for (9) Let f(u), ∇f(u) and ∂2f(u) be de-
fined by (23)-(25). Set the parameter values ν, ε, δ, tolerance tol, α and imax

8 G. M. FUNG AND O. L. MANGASARIAN

(typically: ε = 4×10−4 for linear SVMs and 10−1 for nonlinear SVMs, tol = 10−3,
α = 103, imax = 50, while ν and δ are set by a tuning procedure described in
Section 4.1.2). Start with any u0 ∈ Rm. For i = 0, 1, . . .:

(I) ui+1 = ui − λi(∂
2f(ui) + δI)−1∇f(ui) = ui + λid

i,
where the Armijo stepsize λi = max{1, 1

2 , 1
4 , . . .} is such that:

f(ui) − f(ui + λid
i) ≥ −

λi

4
∇f(ui)′di, (27)

and di is the modified Newton direction:

di = −(∂2f(ui) + δI)−1∇f(ui). (28)

(II) Stop if ‖ui − ui+1‖ ≤ tol or i = imax. Else, set i = i + 1, α = 2α and go to
(I).

(III) Define the least 2-norm solution of the linear programming SVM (6) by (15)
with u = ui.

We state a convergence result for this algorithm now.

Theorem 1 Let tol = 0, imax = ∞ and let ε > 0 be sufficiently small. Each
accumulation point ū of the sequence {ui} generated by Algorithm 1 solves the
exterior penalty problem (9). The corresponding (w̄, γ̄, ȳ) obtained by setting u to
ū in (15) is the exact least 2-norm solution to the primal linear program SVM (6).

Proof That each accumulation point ū of the sequence {ui} solves the minimiza-
tion problem (9) follows from exterior penalty results [7, 1] and standard uncon-
strained descent methods such as [16, Theorem 2.1, Examples 2.1(i), 2.2(iv)] and
the facts that the direction choice di of (19) satisfies, for some c > 0:

−∇f(ui)′di = ∇f(ui)′(δI + ∂2f(ui))−1∇f(ui)
≥ c‖∇f(ui)‖2,

(29)

and that we are using an Armijo stepsize (27). The last statement of the theorem
follows from Proposition 1.�

Remark 2 Choice of ε Determining the size of ε̄, such that the solution u of the
quadratic program (11) for ε ∈ (0, ε̄], is the least 2-norm solution of the problem (6),
is not an easy problem theoretically. However, computationally this does not seem
to be critical and is effectively addressed as follows. By [13, Corollary 3.2], if for
two successive values of ε: ε1 > ε2, the corresponding solutions of the ε-perturbed
quadratic programs (11): u1 and u2 are equal, then under certain assumptions,
u = u1 = u2 is the least 2-norm solution of the dual linear program (6). This result
can be implemented computationally by using an ε, which when decreased by some
factor yields the same solution to (6).

We turn now to our computational results.

FEATURE SELECTION NEWTON SUPPORT VECTOR MACHINE 9

4. Numerical Experience

In order to show that our algorithm can achieve very significant feature suppression,
our numerical tests and comparisons were carried out on a dataset with the high
dimensional input space and a moderate number of data points. On the other
hand, in order to show that our proposed algorithm has a computational speed
comparable to that of other fast methods, we also performed experiments on more
conventional datasets where the dimensionality of the input space is considerably
smaller than the number of data points. All our computations were performed on
the University of Wisconsin Data Mining Institute “locop1” machine, which utilizes
a 400 Mhz Pentium II and allows a maximum of 2 Gigabytes of memory for each
process. This computer runs on Windows NT server 4.0, with MATLAB 6 installed
[22].

Because of the simplicity of our algorithm, we give below a simple MATLAB
implementation of the algorithm without the Armijo stepsize, which does not seem
to be needed in most applications. Although this is merely an empirical observation
in the present case, it considerably simplifies our MATLAB Code 1. However, it
has also been shown [19, Theorem 3.6] that under a well conditioned assumption,
not generally satisfied here, the proposed Newton method indeed terminates in a
finite number of steps without an Armijo stepsize. Note that this version of the
algorithm is intended for cases where the number of data point m is smaller that
the number of features n, i.e. when m � n since the speed of the algorithm depends
on m in a cubic fashion.

Code 1 NLPSVM Code

function [w,gamma]=nlpsvm(A,d,nu,delta)

%NLPSV: linear and nonlinear classification

% without Armijo

%INPUT: A, D, nu, delta. OUTPUT=w, gamma.

%[w,gamma]=nlpsvm(A,d,nu,delta)

epsi=10^(-1);alpha=10^3;tol=10^(-3);imax=50;

[m,n]=size(A);en=ones(n,1);em=ones(m,1);

u=ones(m,1);%initial point

iter=0;g=1;

epsi=epsi*em;nu=nu*em;

DA=spdiags(d,0,m,m)*A;

while (norm(g)>tol) & (iter<imax)

iter=iter+1;

du=d.*u;Adu=A’*du;

pp=max(Adu-en,0);np=max(-Adu-en,0);

dd=sum(du)*d;unu=max(u-nu,0);uu=max(-u,0);

g=-epsi+(d.*(A*pp))-(d.*(A*np))+dd+unu-alpha*uu;

E=spdiags(sqrt(sign(np)+sign(pp)),0,n,n);

H=[DA*E d];

10 G. M. FUNG AND O. L. MANGASARIAN

F=delta+sign(unu)+alpha*sign(uu);

F=spdiags(F,0,m,m);

di=-((H*H’+F)\g);

u=u+di;

end

du=d.*u;Adu=A’*du;

pp=max(Adu-en,0);np=max(-Adu-en,0);

w=1/epsi(1)*(pp-np);

gamma=-(1/epsi(1))*sum(du);

return

We further note that the MATLAB code above not only works for a linear clas-
sifier, but also for a nonlinear classifier as well [18, Equations (1), (10)]. In the
nonlinear case, the matrix K(A, A′)D is used as input instead of A, and the pair
(v, γ), is returned instead of (w, γ). The nonlinear separating surface is then given
by (11) as:

K(x, A′)Dv − γ = 0. (30)

Our first numerical testing and comparisons were carried out on the high dimen-
sional Multiple Myeloma dataset available at: http://lambertlab.uams.edu/publicdata.htm,
and processed by by David Page and his colleagues [26]. The structure of this
dataset with very large n and (m � n) results from the DNA microarray dataset
used. Hence, feature selection is very desirable in such high dimensional problems.
Other tests and comparisons were also carried out on six moderately dimensioned,
publicly available datasets [24, 25] and are described Section 4.2.

4.1. Multiple Myeloma dataset

Multiple Myeloma is cancer of the plasma cell. The plasma cell normally pro-
duces antibodies that destroy foreign bodies such as bacteria. As a product of the
Myeloma disease the plasma cells get out of control and produce a tumor. These
tumors can grow in several sites, usually in the soft middle part of bone, the bone
marrow. When these tumors appear in multiples sites they are called Multiple
Myeloma. A detailed description of the process used to obtain the data can be
found in [26].

4.1.1. Description of the dataset The data consists of 105 data points, 74 of
the points representing newly-diagnosed multiple Myeloma patients while 31 points
represent 31 healthy donors. Each data point represents measurements taken from
7008 genes using plasma cells samples from the patients. For each one of the 7008
genes there are two measurements. One measurement is called Absolute Call (AC)
and takes on one of three nominal values: A (Absent), M (Marginal) or P (Present).
The other measurement, the average difference (AD), is a floating point number
that can be either positive or negative. Since each one of the 7008 AC features

FEATURE SELECTION NEWTON SUPPORT VECTOR MACHINE 11

takes on nominal values from the set {A, M, P}, a real valued representation is
needed to utilize our classifier which requires an input of real numbers. Thus, each
nominal value is mapped into a three dimensional binary vector depending on the
value that is being represented. This simple and widely used “1 of N” mapping
scheme for converting nominal attributes into real-valued attributes is illustrated
in Figure 2. Once this simple conversion is applied to the dataset, the AC feature
space is transformed from a 7008-dimensional space with nominal values A, M, P

into a 7008 × 3 = 21024 real-valued dimensional space. Adding the numerical AD
feature for each of the 7008 genes results in each data point being transformed
to a point in R28032, with 21024 coming from the AC transformation mentioned
above and 7008 from the AD values. This makes this dataset very interesting for
our method, since a main objective of this paper is to show that our proposed
algorithm does a remarkable job of suppressing features especially for datasets in a
very high dimensional input space.

1 0 0

0

0

0 1

10P

A

M

Figure 2. Real-valued representation of the AC features set {A,M, P} .

4.1.2. Numerical comparisons Performance of our Newton Linear Program-
ming SVM (NLPSVM) algorithm on the Myeloma dataset, in terms of feature
selection and generalization ability, is first compared with two publicly available
SVM solvers: LSVM [21] and NSVM [8]. Reported times for LSVM here differ
from the ones reported in [21] because the calculation time for the matrix H of
(9) is considered as input time in [21], whereas here it is counted as part of the
computational time. The other algorithm included in our comparisons, consists
of solving the linear programing formulation (20) employing the widely used com-
mercial solver CPLEX 6.5 [11]. We call this approach CPLEX SVM. Termination
criteria for all methods, with the exception of CPLEX SVM, was set to tol = 0.001,
which is the default for LSVM. For CPLEX SVM the termination criterion used
was the default supplied in the commercial package. We outline some of the results
of our comparative testing.

• All three methods tested: NSVM, NLPSVM and CPLEX SVM obtained 100%
leave-one-out correctness (looc). The following tuning procedure was employed
for each of the 105 folds:

12 G. M. FUNG AND O. L. MANGASARIAN

– A random tuning set of the the size of 10% of the training data was chosen
and separated from the training set.

– Several SVMs were trained on the remaining 90% of the training data using
values of ν equal to 2i with i = −12, . . . , 0, . . . , 12. Values of the parameter
δ tried were 10j with j = −3, . . . , 0, . . . , 3. This made the search space for
the pair (ν, δ) a grid of dimension 25 × 7.

– Values of ν and δ that gave the best SVM correctness on the tuning set
were chosen.

– A final SVM was trained using the chosen values of ν, δ and all the training
data. The resulting SVM was tested on the testing data.

• The remaining parameters were set to the following values: ε = 4 × 10−4, α =
103, tol = 10−3, imax = 50

• Our NLPSVM algorithm outperformed all others in the feature selection task,
and it obtained 100% looc using only 7 features out of 28032 original features.
The closest contender was CPLEX SVM which required more than twice as
many features.

• The average cpu time required by our algorithm for the leave-one-out correctness
(looc) computations was 75.16 seconds per fold and total time for 105 folds was
7891.80 seconds. This outperformed CPLEX SVM both in cpu time and number
of features used. CPLEX SVM had a cpu time average of 108.28 seconds per
fold, a total time of 11369.40 seconds and used an average 16 features per fold.
However, NLPSVM was considerably slower than the NSVM which had a cpu
time of 4.20 seconds average per fold and total looc time of 441.00 seconds. Also,
the NSVM classifier required an average 6554 features per fold, more than any
classifier obtained by all other methods.

• LSVM reported an out of memory error. However, as pointed out by one of the
referees, this can be avoided if LSVM is recoded without the Sherman-Morrison-
Woodbury which is part of its code now. Hence the comparisons reported here
are with LSVM as presently coded.

• Only NLPSVM and CPLEX SVM achieved a rather dramatic feature reduction
from 28032 to 7 and 16 respectively as average number of features used per fold
of the 105 folds of testing. Also to show the variance in the specific features
used in each fold, we kept track of the overall features used in all the folds by
NLPSVM and CPLEX SVM. These are respectively 7 and 16 again, with an
overlap of 4 features between the 7 and 16 features.

These results are summarized in Table 1 below.

4.2. Tests on six other datasets

In this section we exhibit the effectiveness of NLPSVM in performing feature selec-
tion while maintaining accuracy and cpu time comparable to those of other methods

FEATURE SELECTION NEWTON SUPPORT VECTOR MACHINE 13

Table 1. Myeloma Dataset Results for NSVM [8], CPLEX SVM [11], LSVM [21] & NLPSVM :
leave-one-out correctness (looc), total running times, average number of features per fold used
by a LINEAR classifier, and the overall number of different features used in the 105 folds of
testing. Best results are in bold. “oom”, which stands for “out of memory”, can be avoided
for LSVM by recoding it without the Sherman-Morrison-Woodbury formula. However, as
indicated by the results in Table 2, LSVM will not reduce features as does NLPSVM.

Data Set NSVM[8] CPLEX SVM[11] LSVM[21] NLPSVM
m × n looc looc looc looc

(points × dimensions) Time (Sec.) Time (Sec.) Time (Sec.) Time (Sec.)
Average Features Average Features Average Features Average Features

Overall Features Overall Features

Myeloma
105 × 28032 100.0% 100.0% oom 100%

441.00 11369.40 oom 7891.80
6554 16 oom 7

16 7

that do not perform feature selection. We tested our algorithm on six publicly avail-
able datasets. Five from the UCI Machine Learning Repository [24]: Ionosphere,
Cleveland Heart, Pima Indians, BUPA Liver and Housing. The sixth dataset is the
Galaxy Dim dataset available at [25]. The dimensionality and size of each dataset
is given in Table 2.

4.2.1. Numerical comparisons using a linear classifier In this set of ex-
periments we used a linear classifier to compare our method NLPSVM with LSVM,
NSVM and CPLEX SVM on the six datasets mentioned above. Because m � n

for these datasets, it was preferable to use the Sherman-Morrison-Woodbury iden-
tity [9] to calculate the direction di in the Newton iteration (28) and solve an
(n + 1) × (n + 1) linear system of equations instead of an m × m linear system of
equations. For this purpose define:

E2 := diag(|A′Du| − e)∗,
H := D[AE e].
and F := diag((u − νe)∗ + α(−u)∗) + δI.

(31)

Then, it follows from (25) that:

∂2f(u) + δI = HH ′ + F,

which is the matrix whose inverse is needed in the Newton iteration (28).
Applying the Sherman-Morrison-Woodbury identity we have:

(HH ′ + F)−1 = F−1 − F−1H(I + H ′F−1H)−1H ′F−1

Note that the inverse F−1 of F is trivial to calculate since F is a diagonal matrix.
This simple but effective algebraic manipulation makes our algorithm very fast even
when m � n but n is relatively small.

14 G. M. FUNG AND O. L. MANGASARIAN

The values for the parameters ν and δ were again calculated using the same tuning
procedure given in Section 4.1.2. The values of the remaining parameters were the
same as those used in Section 4.1.2. As shown in Table 2, the correctness of the four
methods was very similar, the execution time including ten-fold cross validation
for NSVM was less for all the datasets tested. However, all solutions obtained
by NSVM depended on all the original input features. In contrast, NLPSVM
performed comparably to LSVM, was always faster than CPLEX SVM but used
the least number of features on all the datasets compared to all other methods
tested.

Table 2. NSVM [8], CPLEX SVM [11], LSVM [21] & NLPSVM: Training correct-
ness, ten-fold testing correctness, ten-fold training times and number of features
needed using a LINEAR classifier. All parameters ν, δ chosen by tuning. For each
algorithm a reduced kernel version was also tested. Best results are in bold. Train-
ing and testing correctness and number of features are all averages over ten folds,
while time is the total time over ten folds.

Data Set NSVM CPLEX SVM LSVM NLPSVM
m × n Train Train Train Train

Test Test Test Test
(points × dimensions) Time (Sec.) Time (Sec.) Time (Sec.) Time (Sec.)

Features Features Features Features

Ionosphere 92.9% 90.9 % 92.9% 90.7%
351 × 34 88.9% 88.3 % 88.9% 88.0%

0.91 3.2 1.49 2.4
34 17.7 34 11.2

BUPA Liver 70.3% 71.2% 70.3% 70.6%
345 × 6 70.2% 69.9% 70.2% 68.8%

0.24 5.17 0.92 1.13
6 6 6 4.8

Pima Indians 77.7% 76.8% 77.7% 76.8%
768 × 8 77.2% 77.0% 77.2% 77.1%

0.55 3.94 2.30 1.07
8 5 8 4.9

Cleveland Heart 87.2% 85.9% 87.2% 86.5%
297 × 13 86.6% 85.5% 86.6% 85.9%

0.14 1.08 0.31 0.55
13 7.5 13 7.1

Housing 87.7% 87.7% 87.7% 87.0%
506 × 13 86.8% 85.0% 86.8% 85.2%

0.69 2.54 1.53 1.91
13 10.9 13 6.5

Galaxy Dim 94.0% 94.7% 94.0% 94.4%
4192 × 14 94.2% 94.7% 94.2% 94.6%

6.67 29.82 71.56 8.90
14 5 14 3.4

FEATURE SELECTION NEWTON SUPPORT VECTOR MACHINE 15

4.2.2. Numerical comparisons using a nonlinear classifier In order to
show that our algorithm can also be used to find nonlinear classifiers, we chose
three datasets from the UCI Machine Learning Repository for which it is known
that a nonlinear classifier performs better that a linear classifier. We used NSVM,
LSVM , CPLEX SVM and our proposed algorithm NLPSVM in order to find a
nonlinear classifier based on the Gaussian kernel:

(K(A, B))ij = ε−µ‖Ai
′−B·j‖

2

,

i = 1, . . . , m, j = 1, . . . , k.
(32)

where A ∈ Rm×n, B ∈ Rn×k and µ is a positive constant. The value of µ in the
Gaussian kernel and the value of ν in all the algorithms were chosen by tuning on
the values 2i with i an integer ranging from −12 to 12 following the same procedure
described in Section 4.1.2. The value of δ in NLPSVM was obtained also by tuning
on the values 10j with j = −3, . . . , 0, . . . , 3. The value of the parameter ε in this case
was set to 10−1. The values of the remaining parameters were the same as in Section
4.1.2. Because the nonlinear kernel matrix is square and since NLPSVM, NSVM
and LSVM perform better on rectangular matrices, we also used a rectangular
kernel formulation as described in the Reduced SVM (RSVM) [12]. This resulted
in as good or better correctness and much faster running times. The size of the
random sample used to calculate the rectangular kernel was 10% of the size of the
original dataset in all cases. We refer to these variations of NSVM,LSVM, CPLEX
SVM and NLPSVM as Reduced NSVM, Reduced LSVM, Reduced CPLEX SVM
and Reduced NLPSVM respectively. The results are summarized in Table 3 for
these nonlinear classifiers.

Again, as in the linear case the correctness of the four methods was similar on
all the datasets, the execution time including ten-fold cross validation for NSVM
was less for all the datasets tested, but with non-sparse solutions. NLPSVM per-
formance was fast when a reduced rectangular kernel was used and it obtained very
sparse solutions that resulted in nonlinear kernel classifiers that are easier to store
and to evaluate.

5. Conclusion

We have presented a fast and finitely terminating Newton method for solving a
fundamental classification problem of data mining with a pronounced feature selec-
tion property for linear classifiers. When nonlinear kernels are used, the algorithm
performs feature selection in a high dimensional space of the dual variable, which
results in a nonlinear kernel classifier that depends on a small number of kernel
functions. This makes the method a very good choice for classification when fea-
ture selection or a fast nonlinear kernel classifier is required, as in the case of online
decision making such as fraud or intrusion detection.

The NLPSVM algorithm requires only a linear equation solver, which makes
it simple, fast and easily accessible. In addition, NLPSVM can be applied very
effectively to classification problems in very large dimensional input spaces, which
is often the case in the analysis of gene expression microarray data. NLPSVM can

16 G. M. FUNG AND O. L. MANGASARIAN

Table 3. NSVM [8], LSVM [21], NLPSVM, CPLEX SVM [11] and Reduced [12]
NSVM, LSVM, NLPSVM, CPLEX SVM: Training correctness, ten-fold testing
correctness, ten-fold training times and cardinality of v (Card(v)) using a NON-
LINEAR classifier. Best results are in bold. Training and testing correctness
and and cardinality of v are all averages over ten folds, while time is the total
time over ten folds.

Algorithm Data Set Ionosphere BUPA Liver Cleveland Heart
m × n 351 × 34 345 × 6 297 × 13

(points × dimensions)

NSVM Train 96.1 75.7 87.6
Test 95.0 73.1 86.8

Time (Sec.) 23.27 25.54 17.51
Card(v) 351 345 297

Reduced Train 96.1 76.4 86.8
NSVM Test 94.5 73.9 87.1

Time (Sec.) 0.88 0.67 0.53
Card(v) 35 35 30

LSVM Train 96.1 75.7 87.6
Test 95.0 73.1 86.8

Time (Sec.) 23.76 27.01 12.98
Card(v) 351 345 297

Reduced Train 96.1 75.1 87.1
LSVM Test 94.5 73.1 86.2

Time (Sec.) 2.09 1.81 1.09
Card(v) 35 35 30

NLPSVM Train 94.4 75.4 86.9
Test 93.5 73.9 86.2

Time (Sec.) 195.31 187.91 70.47
Card(v) 22.3 32.7 50.1

Reduced Train 94.4 74.5 85.9
NLPSVM Test 95.1 73.9 86.5

Time (Sec.) 2.65 6.82 5.17
Card(v) 14.6 16.4 12.3

CPLEX SVM Train 99.2 76.4 87.8
Test 96.1 73.6 86.2

Time (Sec.) 34.8 34.48 18.37
Card(v) 36.1 26.2 14.1

Reduced Train 98.7 76.4 87.0
CPLEX SVM Test 95.5 73.9 85.6

Time (Sec.) 3.08 4.42 2.47
Card(v) 26.9 18.7 12.6

FEATURE SELECTION NEWTON SUPPORT VECTOR MACHINE 17

also be used effectively for classifying large datasets in smaller dimensional input
space. As such, NLPSVM is a versatile stand-alone algorithm for classification
which hopefully is a valuable addition to the tools of data mining and machine
learning.

Acknowledgments

The research described in this Data Mining Institute Report 02-03, September
2002, was supported by National Science Foundation Grants CCR-0138308 and
CDA-9623632, and by Air Force Office of Scientific Research Grant F49620-00-
1-0085. We thank David Page for making available to us the Multiple Myeloma
dataset as well as a preprint of his joint paper [26].

References

1. D. P. Bertsekas. Nonlinear Programming. Athena Scientific, Belmont, MA, second edition,
1999.

2. J. Bi, K. P. Bennett, M. Embrechts, C. M. Breneman, and M. Song. Dimensionality reduction
via sparse support vector machines. Journal of Machine Learning Research, 3:1229–1243,
March 2003.

3. P. S. Bradley and O. L. Mangasarian. Feature selection via concave minimization and sup-
port vector machines. In J. Shavlik, editor, Machine Learning Proceedings of the Fifteenth
International Conference(ICML ’98), pages 82–90, San Francisco, California, 1998. Morgan
Kaufmann. ftp://ftp.cs.wisc.edu/math-prog/tech-reports/98-03.ps.

4. V. Cherkassky and F. Mulier. Learning from Data - Concepts, Theory and Methods. John
Wiley & Sons, New York, 1998.

5. M.J. van de Vijver et al. A gene-expression signature as a predictor of survival in breast
cancer. The New England Journal of Medicine, 347:1999–2009, 2002.

6. F. Facchinei. Minimization of SC1 functions and the Maratos effect. Operations Research
Letters, 17:131–137, 1995.

7. A. V. Fiacco and G. P. McCormick. Nonlinear Programming: Sequential Unconstrained
Minimization Techniques. John Wiley & Sons, New York, NY, 1968.

8. G. Fung and O. L. Mangasarian. Finite Newton method for Lagrangian support vec-
tor machine classification. Technical Report 02-01, Data Mining Institute, Computer
Sciences Department, University of Wisconsin, Madison, Wisconsin, February 2002.
ftp://ftp.cs.wisc.edu/pub/dmi/tech-reports/02-01.ps. Neurocomputing, to appear.

9. G. H. Golub and C. F. Van Loan. Matrix Computations. The John Hopkins University
Press, Baltimore, Maryland, 3rd edition, 1996.

10. J.-B. Hiriart-Urruty, J. J. Strodiot, and V. H. Nguyen. Generalized hessian matrix and
second-order optimality conditions for problems with CL1 data. Applied Mathematics and
Optimization, 11:43–56, 1984.

11. ILOG CPLEX Division, 889 Alder Avenue, Incline Village, Nevada. CPLEX Optimizer.
http://www.cplex.com/.

12. Y.-J. Lee and O. L. Mangasarian. RSVM: Reduced support vector machines. Tech-
nical Report 00-07, Data Mining Institute, Computer Sciences Department, University
of Wisconsin, Madison, Wisconsin, July 2000. Proceedings of the First SIAM Inter-
national Conference on Data Mining, Chicago, April 5-7, 2001, CD-ROM Proceedings.
ftp://ftp.cs.wisc.edu/pub/dmi/tech-reports/00-07.ps.

13. S. Lucidi. A new result in the theory and computation of the least-norm solution of a linear
program. Journal of Optimization Theory and Applications, 55:103–117, 1987.

14. O. L. Mangasarian. Normal solutions of linear programs. Mathematical Programming Study,
22:206–216, 1984.

18 G. M. FUNG AND O. L. MANGASARIAN

15. O. L. Mangasarian. Nonlinear Programming. SIAM, Philadelphia, PA, 1994.
16. O. L. Mangasarian. Parallel gradient distribution in unconstrained optimization. SIAM

Journal on Control and Optimization, 33(6):1916–1925, 1995. ftp://ftp.cs.wisc.edu/tech-
reports/reports/1993/tr1145.ps.

17. O. L. Mangasarian. Arbitrary-norm separating plane. Operations Research Letters, 24:15–23,
1999. ftp://ftp.cs.wisc.edu/math-prog/tech-reports/97-07r.ps.

18. O. L. Mangasarian. Generalized support vector machines. In A. Smola, P. Bartlett,
B. Schölkopf, and D. Schuurmans, editors, Advances in Large Margin Classifiers, pages 135–
146, Cambridge, MA, 2000. MIT Press. ftp://ftp.cs.wisc.edu/math-prog/tech-reports/98-
14.ps.

19. O. L. Mangasarian. A finite Newton method for classification problems. Technical Re-
port 01-11, Data Mining Institute, Computer Sciences Department, University of Wiscon-
sin, Madison, Wisconsin, December 2001. ftp://ftp.cs.wisc.edu/pub/dmi/tech-reports/01-
11.ps.Optimization Methods and Software 17, 2002, 913-929.

20. O. L. Mangasarian and R. R. Meyer. Nonlinear perturbation of linear programs. SIAM
Journal on Control and Optimization, 17(6):745–752, November 1979.

21. O. L. Mangasarian and D. R. Musicant. Lagrangian support vector machines. Journal of Ma-
chine Learning Research, 1:161–177, 2001. ftp://ftp.cs.wisc.edu/pub/dmi/tech-reports/00-
06.ps.

22. MATLAB. User’s Guide. The MathWorks, Inc., Natick, MA 01760, 1994-2001.
http://www.mathworks.com.

23. M. Molla, M. Waddell, D. Page, and J. Shavlik. Using machine learning to design and
interpret gene-expression microarrays. AI Magazine, Special Issue on Bioinformatics, 2003.
To appear. ftp://ftp.cs.wisc.edu/machine-learning/shavlik-group/molla.aimag03.pdf.

24. P. M. Murphy and D. W. Aha. UCI machine learning repository, 1992.
www.ics.uci.edu/∼mlearn/MLRepository.html.

25. S. Odewahn, E. Stockwell, R. Pennington, R. Humphreys, and W. Zumach. Automated
star/galaxy discrimination with neural networks. Astronomical Journal, 103(1):318–331,
1992.

26. D. Page, F. Zhan, J. Cussens, M. Waddell, J. Hardin, B. Barlogie, and J. Shaughnessy,
Jr. Comparative data mining for microarrays: A case study based on multiple myeloma.
Technical Report 1453, Computer Sciences Department, University of Wisconsin, November
2002.

27. V. N. Vapnik. The Nature of Statistical Learning Theory. Springer, New York, second
edition, 2000.

28. J. Zhy, S. Rosset, T. Hastie, and R. Tibshirani. 1-norm support vector machines. Working
paper, Department of Statistics, Stanford University, Stanford CA 94305, 2003. http://www-
stat.stanford.edu/∼hastie/Papers/.

