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Nonlinear Knowledge in Kernel Approximation

O. L. Mangasarian & E. W. Wild

Abstract— Prior knowledge over arbitrary general sets is
incorporated into nonlinear kernel approximation problems in
the form of linear constraints in a linear program. The key n

tool in this incorporation is a theorem of the alternative for the2—norm'(Z(m)2)% The notationd € R™*™ will signify
convex functions that converts nonlinear prior knowledge im- ' ¢ '

i ! . . . . . . i=1
pl|cat|qns |_nto_I|near meq_ualltles without the need to kernc_allze_ a realm x n matrix. For such a matrix4’ will denote the
these implications. Effectiveness of the proposed formulation is

demonstrated on two synthetic examples and an important lymph  ranspose of4, A; will denote thei-th row of A and 4., the
node metastasis prediction problem. All these problems exhibit j-th column ofA. A vector of ones in a real space of arbitrary
marked improvements upon the introduction of prior knowledge dimension will be denoted by. Thus fore € R™ andy € R™

over nonlinear kemel approximation approaches that do not the notatione’y will denote the sum of the components pf
utilize such knowledge. A vector of zeros in a real space of arbitrary dimension will
be denoted by. For A € R™*™ and B € R™**, a kernel
| INTRODUCTION K(A, B) maps R™*" x R”X"'.into R™*k_In particular, if

x andy are column vectors iR" then, K(z',y) is a real

Prior knowledge has been used effectively in improvingumber, K (z/, A’) is a row vector inR™ and K (A, A’) is

classification both for linear [1] and nonlinear [2] kerneln m x m matrix. We shall make no assumptions on our
classifiers as well as for nonlinear kernel approximatioy [3kernels other than symmetry, thati§(A4, B) = K(B', A'),
[4]. In all these applications prior knowledge was conwrteand in particular we shall not assume or make use of Mercer’s
to linear inequalities that were imposed on a linear programositive definiteness condition [5], [6], [7], [8]. The bas&
The linear program generated a linear or nonlinear clagsifithe natural logarithm will be denoted lay A frequently used
or a linear or nonlinear function approximation, all of wiic kernel in nonlinear classification is the Gaussian kerngl [5
were more accurate than the corresponding results that {83 [8] whoseij-th elementi =1,...,m, j =1,...,k, is
not utilize prior knowledge. However, whenever a nonlineajiven by: (K (A, B)),; = e #I4'~Bl* where A € R™*™,
kernel was utilized in these applications, kernelization @3 ¢ R™** andy is a positive constant. Approximate equality
the prior knowledge was not a transparent procedure th@tdenoted by=:, while the abbreviation “s.t” stands for
could be easily related to the original sets over which priésubject to”.
knowledge was given. In contrast, in the present work no
kernelization of the prior knowledge sets is used in order II. CONVERSION OF NONLINEAR PRIOR
to incorporate that knowledge into a nonlinear classifieaor KNOWLEDGE INTO LINEAR CONSTRAINTS

function approximation. Furthermore, the region in theunp 1, problem that we wish to impart prior knowledge to
space on which the prior knowledge is given is complete%
t

n
z € R", x|, denotes tha-norm: "|a;|, while ||z|| denotes

i=1

) . . . onsists of approximating a functigifrom R"™ to R for which
arbitrary in the present work, whereas in all previous wor, bp d gt

. . proximate or exact function values are given on a datdset o
it had to be given on convex polyhedral sets. The preselii points in ™ denoted by rows of the matrix € R™*"
approach is possible through the use of a fundamental threorghus corresponding to each poift we are given an exact or
of the alternative for convex functions that we describe in .~ vale off, denoted by a real number, i — 1,. .., m.
Section Il of the paper, whereas previous work utilized sug%e wish to appr’oximatg" by a nonlinear kérnel fL’mcti’on as
a theorem for linear inequalitieanly. follows:

In Section Il we describe our linear programming for- K(z', AN+ b 1)
mulation that incorporates nonlinear prior knowledge iato ’ ’
nonlinear kernel, while Section IV gives numerical exarsplevhere, K (2/, A’) : R'*™ x R"*™ — R'*™ is an arbitrary
that show prior knowledge can improve a nonlinear kernkgrnel andhv € R™ andb € R are parameters to be determined
approximation significantly. Section V concludes the paper such that:

We describe our notation now. All vectors will be column K(A, Ao+ be —y =0, (2)
vectors unless transposed to a row vector by the prime patat
’. The scalar (inner) product of two vectorsand y in the
n-dimensional real spac®™ will be denoted byz'y. For

hnd such that some prior knowledge is also utilized in the
construction of our approximatioR (z’, A")a.+ b through the
following implication:
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approximating functionk (z’, A")a + b be larger than some defined by:
known functionh(z) : I' ¢ R® — R. In previous work ,
[2], [3] prior knowledge implications such as (3) could not —s KA Aatbe—y<s. (7)

be handled as we shall do here by using Theorem 2.1 belafe now drive this error down by minimizing the 1-norm
Instead, in [2], [3], the inequality(x) < 0 was kernelized. of the errors together with the 1-norm of for complex-
This led to an inequality not easily related to the originaty reduction or stabilization. This leads to the following
constraintg(z) < 0. In addition, all previous work [2], [3] constrained optimization problem with positive parameter
could handle only lineay(x) and h(z). The implication (3) that determines the relative weight of exact data fitting to

can be written in the following equivalent logical form: complexity reduction:
g(x) <0, K/, A)a+b— h(z) <0, min oy + Cs]ly
has no solution: € T'. (4) (cr,b,s) (8)

st. —s < KA A)a+be—y < s,
Itis precisely implic.a.tion (3.) th_at we sh_aII try to conyed t which can be represented as the following linear program:
a system of inequalities which is linear in the approximgatin
function parametergx, b) by means of the following theorem min ea+Ce's
of the alternative for convex functions. The alternativeseh [(?ij’ﬁ/)a the—y
are that either the negation of (4) holds, or (5) below holds, ’ o
but not both.

Theorem 2.1:Prior Know|edge as System of Linear We now introduce prior knowledge contained in the implica-
Inequalities For a fixeda € R™,b € R, the following are tion (3) by making use of Theorem 2.1 and converting it to the

)

a.

s.t. —s

<
—a <

INIA

equivalent: linear constraints (5) and incorporating into the lineargsam
(i) The implication (3) or equivalently (4) holds. (9) as follows:
(i) There existsv € R*, v > 0 such that: ¢
min ea+ Ce's + VZZi
K(x',A)a+b—h(z)+v'g(x) >0, Vzel, (5) (,b,s,a,0,21,0052¢) Pt
_ L N st —s< K(AA be —y <
where it is assumed for the implication=3>(ii) only, 72 <o (< ;z Jatbe—y<s,
that g(z) and K(z/,A’) are convex onl', h(z) is A i ;o
concave orl, T is a convex subset ak”", o > 0 and fgo’f_ )garg:hl(x ) +€U 9(x') + 2 =0,

that g(x) < 0 for somez € T. (10)
Proof (i)==(i): This follows from [10, Corollary 4.2.2], the We note that we have discretized the variable I" in the next
fact that the functiong(x) and K (2", A")a+b — h(z) 0f (4) 4 the |ast constraint above to a mesh of pointse?, . .. , z*

are conv'e:\x_ I(;rl“ 3”: tha:]g(lgé) ; 0 fﬁr sonp‘e:z: € F in order to convert a semi-infinite linear program [11], tieat
(i) <==(it): If (i) did not hold then there there exists anc I a linear program with an infinite number of constraints, to a

such thatg(a:) <0, K(?,’A,)O‘er*h(x) < 0, which would linear program with a finite number of constraints. We have
result in the contradiction:

also added nonnegative slack error variablgs = 1,. ...,
0> K(2',ANa+b—h(z)+v'g(z) > 0.0 (6) to allow small deviations in satisfying Fhe prior knowledge
The sum of these nonnegative slack variablgss, . . ., z, for

We note immediately that in the proposed application in Segre prior knowledge inequalities are minimized with weight
tion Ill of converting prior knowledge to linear inequadi in  , ~ ¢ in the objective function in order to drive them
the parameteréo, b) all we need is the implication B=(ii), to zero to the extent possible. Thus, the magnitude of the
which requires no assumptions whatsoeveon the functions parameter enforces prior knowledge while the magnitude of
g(z), K(2', A), h(z) or on the parametet. However, we ¢ enforces data fitting. Note thatand C' can be thought of
also note that even though we do not make explicit use £f hyperparameters in a Bayesian setting.

the necessity part of Theorem 2.1, it is quite important to we turn now to computational results and test examples of

have such a result in order to show th) is not a vacuous the proposed approach for incorporating nonlinear knogéded
sufficient condition since it does indeed hold under certajfto kernel approximation problems.

assumptions.
We further note that the implication (3) can represent yairl IV. COMPUTATIONAL RESULTS
complex knowledge such a&k(z’, A")a + b being equal to
any desired function whenevefz) < 0.
We turn now to our linear programming formulation of th
knowledge-based nonlinear kernel approximation.

To illustrate the effectiveness of our proposed formulatio
we report results on two synthetic datasets and the Wiseonsi
%rognostic Breast Cancer (WPBC) database, available from
[12]. It is important to point out that the present formubati
is very different in nature from that presented by Mangasari

I1I. NONLINEAR PRIOR KNOWLEDGE et al. in [3]. Our concern here is to demonstrate uses of more

APPROXIMATION VIA LINEAR PROGRAMMING complex prior knowledge that could not be handled exactly

We first formulate the approximation (2) without knowledgén [3]. In particular, we are able to incorporate general limp
as follows. We measure the error in (2) by a vectar R™ cations involving nonlinear functions as linear inequeditin
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Fig. 3. Approximation of the hyperboloid function f(z1,z2) = z122 based on
the same eleven function values as Figure @lus prior knowledge consisting of the
implication (12).

aware of. Note that even though the prior knowledge impli-
cation (12) provides only partial information regardinge th
hyperboloid (11) being approximated, applying it is suéfiti
to improve our kernel approximation substantially as deepgic
in Figure 3. We applied this prior knowledge implication Y12
in its equivalent inequality (5) form, at discrete pointsstasted
in the last three inequality constraints of (10). In thisrepde,
the knowledge was applied at eleven points along the line
x1 = —x9, 1 € {-5,—4,...,4,5}.
Fig. 2. Approximation of the hyperboloid function f(z1,z2) = =122 based on It is instructive to compare (12) with the prior knowledge
eleven exact function values along the liner> = @1,21 € {~5,—4,...,4,5}, ysed in [3] to obtain a visually similar improvement. In that
but without prior knowledge. . . .

work, the following prior knowledge was used:
a linear program by utilizing Theorem 2.1. Our two synthetic

(z1,22) € {(x1,22)|— 321 < w9y < =221} =

examples will show how our approach uses nonlinear prior 13
; P f(z1,22) <10z (13)
knowledge to obtain approximations that are much bettar tha 12/ = 1
those obtained without prior knowledge. The prior knowkedg and
may be strong, but the examples demonstrate that it can
. f . : (1‘1 LL‘Q) S {(1‘1 .’)32) —,2$1 <zo < —,1331} =
be easily and correctly incorporated into our formulation ’ ) 37l =22 —="3 (14)

to improve the obtained approximation. We will also use f(z1,22) < 1022,

the WPBC dataset to demonstrate a situation where pri’ﬂﬁese imp”cations were imp|emented by rep|acjf'(g-1,x2)
knowledge and conventional data are combined to obtaingh its nonlinear kernel approximation (1) and by kernielig
better approximation than that by using only prior knowledghe resulting prior knowledge [3, Equation 18]. The result
or data alone. can then be incorporated into a linear program with no
discretization required [3, Proposition 3.1]. However, ias
A. TWO-DIMENSIONAL HYPERBOLOID FUNCTION noted in [3], the implications (13) and (14) are not correct
Our first example is the two-dimensional hyperboloid funeverywhere, but are merely intended to coarsely model the
tion: global shape off (z1,z2). This inexactness arises because of
flxy,29) = 129, (11) the limitation that knowledge be linear in the input space] a
bfecause the use of the nonlinear kernel to map knowledge in
e input space to higher dimensions is difficult to intetpre
The given values at these points are the actual functioresaluHere’ in contrast, the prior knowledge of implication (12) :
always correct and exactly captures the shape of the functio

Figure 1 depicts the two-dimensional hyperboloid fur]Ctio?hus this example illustrates that there is a significair ga

;)Jn(clt?g.anl)gure 2 depicts the approximation of thg hypertnbl(_) usoability due to the fact that the knowledge may be nonlinear
y a surface based on the eleven points descrlblﬁ Input space features
above without prior knowledge. Figures 1 and 2 are taken '
from [3].
Figure 3 depicts a much better approximation of the hys. TWO-DIMENSIONAL TOWER FUNCTION
perboloid function by a nonlinear surface based on the sam

eleven points abovelus prior knowledge. The prior knowl-

This function was studied in [3]. The given data consists
eleven points along the ling, = =5, 2, € {—5,—4,...,4,5}.

%or our second example, we consider the following function:

edge consisted of the implication: 4, when Iz, z2)]] < 1
3, when 1 <||(z1,22)|| <2
< <
niwe S 1= flr1,22) < w12, (12) glz1,20) =< 2, when 2 <||(z1,22)]| <3  (15)
which, because of the nonlinearity ofz,, cannot be handled 1, when 3 < ||(z1,22)[ <4
by [3] nor by any other approximation procedure that we are 0, otherwise



IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. XX, NO. Y, MONTH 20® 4

. points on the grid[—4,4] x [—4,4]. The approximation
depicted in Figure 6 was made by setting the parameters
jxjwl]]llllmmm‘ C and v of (10) to 10' and 10?° respectively. Thus, this
llHIWWWHWIM " example illustrates that despite poor initial data, a sarilly
::‘lsym}wﬁ{#)"””f‘," ‘N\m”w improved approximation using prior knowledge can be made
@ ‘1‘““‘lﬂﬂ‘m‘lklhll'lllll”11 il L by incorporating prior knowledge in the form of an implicati
1JJMMMMIlIWll‘llMﬂllﬂ'llWlWl\ﬂ\ﬂW!I\NMlnx such as (17). Such incorporation of prior knowledge, inav

s e e nonlinear functions, as linear constraints in an optinaat

e problem has not been made previously.

Fig. 4. The exact tower function given by(15). C. PREDICTING LYMPH NODE METASTASIS

To conclude our numerical results, we consider a poten-
tially useful application of knowledge-based approxiroati
to breast cancer prognosis [13], [14], [15]. An important
prognostic indicator for breast cancer recurrence is tmeteu
of metastasized lymph nodes under a patient’s armpit which
could be as many as 30. To obtain this number, a patient
must optionally undergo a potentially debilitating susgén
addition to the removal of the breast tumor. Thus, it is usefu
to approximate the number of metastasized lymph nodes using
available information. The Wisconsin Prognostic Breast-Ca
cer (WPBC) data, in which the primary task is to determine
Fig. 5. An approximation ofAthe tower funf:tion in .(15) using 400 equally spaced tjme to recurrence [12]’ contains information on the nundfer
points on [=4, 4] > [, 4] given by (16) without prior knowledge. metastasized lymph nodes for 194 breast cancer patients, as
which is shown in Figure 4. Due to the visual appearance wkll as thirty cytological features obtained by a fine needle
this function, we refer to it as thewer function. aspirate and one histological feature, tumor size, obthine

The data used to approximate the tower function a@furing surgery. Mangasarian et al. demonstrated in [3] d&hat
(15) consists of 400 equally spaced points on the grfdnction that approximated the number of metastasized tymp
[—4, 4] x [—4, 4], with given values defined using thenodes using four of these features could be improved using

following equation: prior knowledge. We shall use the formulation developee her
) to approximate the number of metastasized lymph nodes using
f(z1,22) = min{g(z1, z2), 2}, (16) only the tumor size.

where g(a1,25) is given by (15). This misleading data In order to simulate the situation where an expert provides

explains the chopped-off appearance that is shown by tﬂgor knowledge regarding the number of metastasized lymph

approximation of Figure 5 which is a poor approximation Otppdes based on tumor size, weoused the following‘j‘ procedur?.
the tower function based on this daté&houtprior knowledge. F|r§t, we randomly selected 20% of the' data as “past datg.
Figure 6 shows an approximation of the tower functio his past data was used to develop prior knowledge, while

using the data described abgvesthe following prior knowl- the remaining B0% of th_e data_, the “presen_t da;a,” was L?SEd
edge: for evaluation. The goal is to simulate the situation in wahic

an expert can provide prior knowledge, but no more data is
(z1,72) € [—4,4] x [-4,4] = f(z1,22) = g(z1,72), (17) available. To generate such prior knowledge, we used kernel
approximation to find a functiotf; (z) = K (z/, A*)a + b,
where g(z1,22) is the exact value of the tower function ofyhere A! is the matrix containing the past data afd is
(15). This implication was enforced at 2500 equally spacqfle Gaussian kernel defined in Section I. We then used this
function as the basis for our prior knowledge. Since we did
not believe that this function was accurate for areas where
there was little data in the past data set, we imposed this
knowledge only on the regiop(z) > 0.1, wherep(xz) was
the density function for the tumor sizes it estimated with
the ksdensi ty routine, available in the MATLAB statistics
toolbox [16]. We considered the following prior knowledge
implication:

g
I
i

IR
AT
s
Al

p(z) > 0.1 = f(z) > fi(z) —001.  (18)

. o - _ That is, the number of metastasized lymph nodes was greater
Fig. 6. An approximation of the tower function in (15) using 400 equally spaced . .
points on [—4, 4] x [—4, 4] given by (16) with the prior knowledge described in than the pred|Cted value on the past data, with a tolerance
an. of 0.01. This implication incorporates a typical oncological
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Approximation RMSE
Without knowledge 5.92
With knowledge 5.04

Improvement due to knowledge 14.8%
p 9

Table I: Leave-one-out root-mean-squared-error (RMSE) of aproxima-
tions with and without knowledge on the present WPBC data. Bst result

such as that where the right hand side of the implication (3)
is replaced by a very general nonlinear inequality. Another
fruitful avenue of research would be to apply the general
nonlinear kernel knowledge to classification problems, for
which prior approaches involved unnecessary kerneliaaifo

is in bold. the

surgeon’s advice that the number of metastasized lymphsnode
increases with tumor size. In order to accurately simulage t
desired conditions, we formed this knowledge by observingt]
only the past data. We did not change any aspect of the prior
knowledge after we began testing on the present data.

Table | illustrates the improvement resulting from the use
of prior knowledge. The first two entries compare the leavel?]
one-out error of function approximations without and with
prior knowledge. When training functions on each training
set, ten points of the training set were selected as a tunir{ﬂ
set. This set was used to choose the valué€'dfom the set
{2%i = —7,...,7}. The kernel parameter was set 207,
which we observed gave a smooth curve on the past dalfd
set. This value was fixed before testing on the present data.
For the approximatiomwith knowledge, the parameter was
set t010¢, which ensured that the prior knowledge would bel®]
taken into account by the approximation. Implication (1&sw (g
imposed as prior knowledge, and the discretization for the
prior knowledge was 400 equally spaced points on the interv!
[1,5]. This interval approximately covered the region on whichg;
p(x) > 0.1. We note that the use of prior knowledge led to a
14.8% improvement. In our experience, such an improvement
is difficult to obtain in medical tasks, and indicates that th (g
approximation with prior knowledge is more potentially fude
than the approximation without prior knowledge. (10]

In order to further illustrate the effectiveness of using
prior knowledge, we also performed two other experimentgi]
First, we calculated the root-mean-squared-error (RMSE) [92]
the function f; on the present data, which was not used to
createf;. The resulting RMSE was 6.12, which indicates thdt3]
this function does not, by itself, do a good job predicting
the present data. We also calculated the leave-one-out efig
on the present data of an approximation that included the
present datand the past data, buwithout prior knowledge. 15]
This approach led to less than one percent improvemént
over the approximation without knowledge shown in Table
I, which indicates that the prior knowledge the form of the
implication (18)contains more useful information than tresv
past data alone. These results indicate that the inclugitmeo
prior knowledge with the present data is responsible for the
14.8% improvement.

(16]

V. CONCLUSION AND OUTLOOK

We have proposed a computationally effective framework
for handling general nonlinear prior knowledge in kernel ap
proximation problems. We have reduced such prior knowledge
to easily implemented linear constraints in a linear progra
ming formulation. We have demonstrated the effectivendéss o
our approach on two synthetic problems and an important real
world problem arising in breast cancer prognosis. Possible
future extensions are to even more general prior knowledge,

prior knowledge.
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