
Exactness Conditions for a Convex

Differentiable Exterior Penalty for Linear

Programming

O. L. Mangasarian1,2, E. W. Wild1

1 Computer Sciences Department, University of Wisconsin, Madison, WI 53706,
{olvi,wildt}@cs.wisc.edu

2 Department of Mathematics, University of California at San Diego, La Jolla,
CA 92093.

Abstract Sufficient conditions are given for a classical dual exterior penalty
function of a linear program to be independent of its penalty parameter.
This ensures that an exact solution to the primal linear program can be
obtained by minimizing the dual exterior penalty function. The sufficient
conditions give a precise value to such a penalty parameter introduced in
(Mangasarian, 2005), where no quantification of the parameter was given.
Computational results on linear programs with up to one million variables
or constraints compare favorably to CPLEX 9.0 (ILO, 2003) and validate
the proposed approach.

Keywords: linear programming, exact penalty function, explicit penalty
parameter magnitude

Introduction

In (Mangasarian, 2005), a classical exterior penalty formulation for the dual
of a linear program was shown to yield an exact solution to the primal lin-
ear program provided that the penalty parameter was sufficiently large,
but finite. However, no precise value for the penalty parameter was given
that would guarantee an exact primal solution. In the present work we give
sufficient conditions on the penalty parameter so that the corresponding
computed primal variable is an exact solution. In Section 1 we derive our
sufficient conditions for the penalty parameter to be large enough to gener-
ate an exact primal solution. Section 2 briefly details a generalized Newton
algorithm as well as a new and fast iterative algorithm that solves a sequence
of linear equations. Both of these methods will be used to obtain our numer-
ical results. Section 3 gives sufficient conditions for dual penalty exactness

2 O. L. Mangasarian, E. W. Wild

for primal linear programs with nonnegative variables. In Section 4 we give
numerical results for linear programs with up to one million variables or
constraints. These results show that our penalty parameter magnitude con-
dition is satisfied by the exact solutions obtained. Section 5 concludes the
paper.

We now describe our notation and give some background material. All
vectors will be column vectors unless transposed to a row vector by a prime
′. For a vector x in the n-dimensional real space Rn, x+ denotes the vector
in Rn with all of its negative components set to zero. This corresponds to
projecting x onto the nonnegative orthant. For a vector x ∈ Rn, sign(x)
denotes a vector in Rn with components of ±1 for positive and negative
components of x respectively and 0 for zero components of x. Thus, for a

vector x ∈ Rn the expression diag
(

sign
(

(−x)+
)

)

will denote a diagonal

matrix of ones and zeros in Rn×n where the zeros correspond to nonnega-
tive components of x and ones correspond to negative components of x. For
x ∈ Rn, ‖x‖ will denote the 2−norm of x. For simplicity we drop the 2 from
‖x‖2. The notation A ∈ Rm×n will signify a real m × n matrix. For such
a matrix A′ will denote the transpose of A, Ai will denote the i-th row of
A and Aij will denote the ij-th element of A. A vector of ones or zeroes in
a real space of arbitrary dimension will be denoted by e or 0, respectively.
For a piecewise-quadratic function, such as f(x) = 1

2
||(Ax− b)+||

2 + 1

2
x′Px,

where A ∈ Rm×n, P ∈ Rn×n, P = P ′, P positive semidefinite and b ∈ Rm,
the ordinary Hessian does not exist because its gradient, the n × 1 vector
∇f(x) = A′(Ax− b)+ +Px, is not differentiable but is Lipschitz continuous
with a Lipschitz constant of ‖A′‖ ‖A‖ + ‖P‖. However, one can define its
generalized Hessian (Hiriart-Urruty et al., 1984; Facchinei, 1995; Man-
gasarian, 2001) which is the n × n symmetric positive semidefinite matrix:

∂2f(x) = A′diag
(

sign
(

(Ax − b)+
)

)

A + P,

where diag
(

sign
(

(Ax − b)+
)

)

denotes an m × m diagonal matrix with

diagonal elements sign
(

(Aix− bi)+
)

, i = 1, . . . , m. The generalized Hessian
has many of the properties of the regular Hessian (Hiriart-Urruty et al.,
1984; Facchinei, 1995; Mangasarian, 2001) in relation to f(x). If the smallest
eigenvalue of ∂2f(x) is greater than some positive constant for all x ∈ Rn,
then f(x) is a strongly convex piecewise-quadratic function on Rn. The
abbreviation “s.t.” stands for “subject to.”

1 Sufficient Conditions for Dual Exterior Penalty Function
Exactness

We shall consider the solvable linear program (LP):

min
y∈Rℓ

d′y s.t. By ≥ b, (1)

Exactness Conditions for Linear Programming 3

where d ∈ Rℓ, B ∈ Rm×ℓ, b ∈ Rm, and its dual:

max
u∈Rm

b′u s.t. B′u = d, u ≥ 0. (2)

The classical asymptotic exterior penalty problem for the dual linear pro-
gram is:

min
u∈Rm

ǫ(−b′u) +
1

2
(‖B′u − d‖2 + ‖(−u)+‖

2). (3)

Dividing Equation (3) by ǫ2 and letting:

u

ǫ
→ u, α =

1

ǫ
, (4)

Equation (3) becomes:

min
u∈Rm

f(u) = −b′u +
1

2
(‖B′u − αd‖2 + ‖(−u)+‖

2). (5)

Applying Proposition 1 of (Mangasarian, 2005) to the dual exterior penalty
problem (5) we get:

Proposition 1 Exact Primal Solution Computation Let the primal
LP (1) be solvable. Then the dual exterior penalty problem (5) is solvable
for all α > 0. For any α ≥ ᾱ for some finite ᾱ > 0, any solution u of (5)
generates an exact solution to primal LP (1) as follows:

y = B′u − αd. (6)

In addition, this y minimizes:

‖y‖2 + ‖By − b‖2, (7)

over the solution set of the primal LP (1).

What we are after in the present work are sufficient conditions to en-
sure that α ≥ ᾱ, which we proceed to obtain now by first establishing the
following lemma based on the convexity of the penalty function (5).

Lemma 1 Optimality Condition for Solving the Exterior Penalty
(5) A necessary and sufficient condition for u to be a solution of the exterior
penalty function (5) is that:

∇f(u) = −b + B(B′u − αd) + Pu = 0, (8)

where P ∈ Rm×m is a diagonal matrix of ones and zeros defined as follows:

P = diag
(

sign
(

(−u)+
)

)

. (9)

4 O. L. Mangasarian, E. W. Wild

Proof Setting the gradient of the convex differentiable exterior penalty
function (5) equal to zero gives:

−b + B(B′u − αd) − (−u)+ = 0, (10)

which, upon making use of the definition (9) of P , gives (8). �

Note that the matrix P in the condition (8) depends on u and hence
cannot be used directly to solve for u. However, P will be used to derive
the conditions needed to ensure that α ≥ ᾱ, as we shall proceed to do
now. We note first that by Proposition 1, Equation (8) is solvable for any
α > 0 whenever the linear program (1) is solvable. Hence, for such a case
an explicit solution to (8) is given as follows:

u = (BB′ + P)\(αBd + b), (11)

where the MATLAB (MATLAB, 1994-2006) backslash notation u = H\h
denotes a solution to a solvable system of linear equations Hu = h. If we now
substitute for u in (6) we obtain the following expression for the solution y

of the primal linear program (1) when α ≥ ᾱ:

y = B′
(

(BB′ + P)\b
)

+ α
(

B′
(

(BB′ + P)\(Bd)
)

− d
)

. (12)

We note immediately that y depends on α through the explicit term α in
the above Equation (12), as well as through the dependence of P on u in its
definition (9), and the dependence of u on α through (11). Hence, in order
for y to be independent of α, as would be the case when α ≥ ᾱ, we have
the following result which follows directly from the expression (12) for y.

Proposition 2 Sufficient Conditions for Independence on α The op-
timal solution y given by (12) for a solvable primal linear program (1) is
independent of α if:

The diagonal matrix P is independent of α (13)

and

B′
(

(BB′ + P)\(Bd)
)

− d = 0. (14)

We note immediately that condition (14) is easy to verify once the exterior
penalty problem (3) is solved. However, although condition (13) is difficult
to verify without varying α, it turns out that in all our computational results
presented in this work, condition (14) is satisfied whenever an exact solution
to the linear program (1) is obtained. Hence, for all intents and purposes,
(13) can be ignored. Similarly, even though we have not established the
necessity of conditions (13) and (14), the necessity of (14) appears to hold
in our computational results.

We now describe our computational algorithms.

Exactness Conditions for Linear Programming 5

2 Computational Algorithms

In this section we present two algorithms for solving the linear program (1)
by solving the dual exterior penalty problem (5). Both algorithms utilize
the sufficient condition (14) for independence on the penalty parameter α

as a stopping criterion.

2.1 Generalized Newton Algorithm

Our first algorithm will make use of the generalized Newton algorithm,
utilized in (Mangasarian, 2005) for 1-norm support vector machine classifi-
cation problems, to solve our unconstrained minimization problem (5) with
an appropriate value of the penalty parameter α by utilizing the new suf-
ficient condition (14) for exactness. For that purpose we define f(u) as the
objective function of (5), that is:

f(u) = −b′u +
1

2
(‖B′u − αd‖2 + ‖(−u)+‖

2). (15)

The gradient and generalized Hessian as defined in the Introduction are
given as follows.

∇f(u) = −b + B(B′u − αd) − (−u)+. (16)

∂2f(u) = BB′ + diag
(

sign
(

(−u)+
)

)

. (17)

We now incorporate our new sufficient condition (14) into the general-
ized Newton algorithm (Mangasarian, 2005, Algorithm 3) for solving the
unconstrained minimization problem (5). In particular the sufficient condi-
tion (14) will be used as a stopping criterion in Step (II) of the following
Algorithm 1, as well as in Algorithm 2 further on.

Algorithm 1 Generalized Newton Algorithm for (5) Let f(u), ∇f(u)
and ∂2f(u) be defined by (15),(16) and (17). Set the parameter values α,
δ, tol and imax (typically α = 100, δ = 1e−6, tol=1e−3 and imax=5000).
Start with a random u0 ∈ Rm. For i = 0, 1, . . .:

(I) ui+1 = ui − λi(∂
2f(ui) + δI)−1∇f(ui) = ui + λit

i,
where the Armijo stepsize λi = max{1, 1

2
, 1

4
, . . .} is such that:

f(ui) − f(ui + λit
i) ≥ −

λi

4
∇f(ui)′ti, (18)

and ti is the modified Newton direction:

ti = −(∂2f(ui) + δI)−1∇f(ui). (19)

In other words, start with λi = 1 and keep multiplying λi by 1

2
until (18)

is satisfied.

6 O. L. Mangasarian, E. W. Wild

(II) Stop if ‖∇f(ui)‖ ≤ tol & norm
(

B′
(

(BB′ +P i)\(Bd)
)

−d
)

≤ tol where

P i = diag
(

sign
(

(−ui)+
)

)

.

(III) If i = imax then α → 10α, imax → 2 · imax

(IV) i → i + 1 and go to (I)

The iterates ui of the above algorithm either terminate or converge as follows
(Mangasarian, 2005, Proposition 4).

Proposition 3 Generalized Newton Algorithm 1 Convergence Let
tol = 0 and assume that (14) implies that α ≥ ᾱ. Then either Algorithm 1
terminates at an i such that ui solves the exterior penalty problem (5) and
consequently yi = B′ui − αd solves the primal linear program (1), or any
accumulation point ū of the sequence {ui} generated by Algorithm 1 solves
the exterior penalty problem (5) and the corresponding ȳ = B′ū−αd solves
the primal linear program (1).

Proof If Algorithm 2 terminates at some i, then, by the stopping crite-
rion (II), ∇f(ui) = 0, and B′

(

(BB′+P i)\(Bd)
)

−d = 0. Hence, P i+1 = P i,
condition (14) is satisfied for P i, and ui solves (8). Consequently, ui solves
the dual penalty minimization problem (5), and since, by assumption, con-
dition (14) implies that α ≥ ᾱ, it follows that yi = B′ui − αd solves the
primal linear program (1).

For the case when {i} does not terminate, since the corresponding se-
quence of diagonal matrices of ones and zeros {P i} has a finite number of
possible configurations, at least one such configuration must occur infinitely
often and, by (Mangasarian, 2005, Proposition 4), for any accumulation
point ū of {ui} there exists a subsequence {uij , P ij} with constant P ij that
converges to (ū, P̄) such that ∇f(ū) = 0 and B′

(

(BB′ + P̄)\(Bd)
)

− d = 0.
Consequently, ū solves the minimization problem (15) and since, by assump-
tion, (14) implies that α ≥ ᾱ, it follows that ȳ = B′ū−αd solves the primal
linear program (1). �

We now give a considerably simpler algorithm based on the successive
direct solution of a linear equation obtained from the sufficient condition
(8).

2.2 Direct Linear Equation (DLE) Algorithm

Our direct linear equation algorithm consists of successively solving the
necessary and sufficient optimality condition (8) for updated values of the
diagonal matrix P . The sufficient condition (14) for independence on α is
satisfied in our computational examples.

Algorithm 2 DLE: Direct Linear Equation Algorithm for (8) Set
the parameter values α, δ, tol, tol1 and imax (typically α = 100, δ = 1e−8,
tol=1e−16, tol1=1e−3 and imax=500). Start with a random u0 ∈ Rm. For
i = 0, 1, . . .:

Exactness Conditions for Linear Programming 7

(I) Set P i to:

P i = diag
(

sign
(

(−ui)+
)

)

. (20)

(II) Solve for ui+1 as follows:

ui+1 = (BB′ + P i)\(b + αBd). (21)

(III) ui+1 →
(

ui+λi(u
i+1−ui)

)

, where the Armijo stepsize λi = max{1, 1

2
, 1

4
, . . .}

is such that:

f(ui) − f
(

ui + λi(u
i+1 − ui)

)

≥ −
λi

4
∇f(ui)′(ui+1 − ui). (22)

(IV) Stop if ‖ui+1 − ui‖ ≤ tol & norm
(

B′
(

(BB′ + P i)\(Bd)
)

− d
)

≤ tol1.

(V) If i = imax then α → 10α, imax → 2 · imax.
(VI) i → i + 1 and go to (I).

We state now the following convergence result for the DLE Algorithm
2. The result is based on the fact that the direction (ui+1 − ui) is a descent
direction for the dual penalty function (15), and satisfies the convergence
conditions required by (Mangasarian, 1995, Theorem 2.1) .

Proposition 4 DLE Algorithm 2 Convergence Let tol = tol1 = 0
and assume that (14) implies α ≥ ᾱ. Then either Algorithm 2 terminates
at an i such that ui solves (5) and consequently yi = B′ui − αd solves the
primal linear program (1), or any accumulation point ū of the sequence {ui}
generated by Algorithm 2 solves the exterior penalty problem (5) and the
corresponding ȳ = B′ū − αd solves the primal linear program (1), provided
the matrices of the sequence {(BB′ + P i)} are nonsingular.

Proof If Algorithm 2 terminates at some i, then ui+1 = ui and B′
(

(BB′+

P i)\(Bd)
)

− d = 0. Hence P i+1 = P i, ui = (BB′ + P i)\(b + αBd), and
(14) holds for u = ui and P = P i. Thus the pair (ui, P i) solves (8). Conse-
quently, ui solves the dual penalty minimization problem (5), and since, by
assumption, condition (14) implies that α ≥ ᾱ, it follows that yi = B′ui−αd

solves the primal linear program (1).
For the case when {i} does not terminate, for each accumulation point ū

of {ui}, there exists a subsequence {uij , P ij} of {ui, P i} for which {P ij} is
constant and equal to P̄ , and {uij , P ij} converges to (ū, P̄). This is because
{P i} is a sequence of diagonal matrices of ones and zeros with a finite
number of values. We will now show that ∇f(ū) = 0 and consequently ū

minimizes the dual exterior penalty function (15).
From (8) we have that:

∇f(ui) = (BB′ + P i)ui − (αBd + b). (23)

By the assumption that (BB′ + P i) is nonsingular, it follows from (21),
before the Armijo stepsize is taken, that:

ui+1 = (BB′ + P i)−1(αBd + b). (24)

8 O. L. Mangasarian, E. W. Wild

Define now the direction ti as:

ti := ui+1 − ui = (BB′ + P i)−1(αBd + b) − ui. (25)

Consequently, after some algebra we have that:

−∇f(ui)′ti = ui′(BB′+P i)ui−2ui′(αBd+b)+(αBd+b)′(BB′+P i)−1(αBd+b).
(26)

We will now show that the right hand side of (26) is a forcing function of
∇f(ui), that is, it is nonnegative and if it approaches zero then ‖∇f(ui)‖
approaches zero. Define the quantities a and M as:

a = (αBd + b), M = (BB′ + P i). (27)

Then, Equation (26) reduces to:

−∇f(ui)′ti = ui′Mui − 2ui′a + a′M−1a. (28)

Define now
h = M− 1

2 a, g = M
1

2 ui. (29)

Hence
−∇f(ui)′ti = g′g − 2g′M− 1

2 M
1

2 h + h′h = ‖g − h‖2

= ‖M
1

2 ui − M− 1

2 a‖2

= ‖M− 1

2 (Mui − a)‖2

= ‖M− 1

2

(

(BB′ + P i)ui − (αBd + b)
)

‖2

= ‖(BB′ + P i)−
1

2∇f(ui)‖2.

(30)

The last term of (30) is a forcing function of ∇f(ui). Hence, by (Man-
gasarian, 1995, Theorem 2.1) it follows that for each accumulation point ū,
∇f(ū) = 0, and for a subsequence {uij , P ij} with constant P ij that con-
verges to (ū, P̄), the pair (ū, P̄) solves (8) and B′

(

(BB′+ P̄)\(Bd)
)

−d = 0.
Consequently, ū solves the minimization problem (5) and since (14) implies
that α ≥ ᾱ, it follows that ȳ = B′ū − αd solves the primal linear program
(1). �

Before presenting our computational results we state results correspond-
ing to those of Section 1 for linear programs with explicit nonnegative vari-
able constraints. We do this because it will allow us to find an exact solution
for the linear program (2), that is the dual of (1), which will allow us to
efficiently obtain solutions of (1) when m >> ℓ.

3 Linear Programs with Nonnegative Variables

In solving the linear program (1) for the case when m >> ℓ, the algorithms
of Section 2 are quite inefficient because these algorithms involve the inver-
sion of very large m-by-m matrices that contain BB′ in (19) or (21). To
avoid this difficulty we shall instead first solve the dual linear program (2)
exactly by solving an exterior penalty problem for the primal linear program

Exactness Conditions for Linear Programming 9

(1). As shown below, this involves the inversion of much smaller ℓ-by-ℓ ma-
trices. Once an exact dual solution u is obtained an exact primal solution
is obtained by solving the following unconstrained minimization problem:

min
y∈Rℓ

1

2
‖B1y − b1‖2 +

1

2
‖(−B2y + b2)+‖

2 +
1

2
(d′y − b′u)2, (31)

where the superscripts 1 and 2 denote components of the primal constraints
By ≥ b corresponding to optimal dual variable components u1 > 0 and
u2 = 0 respectively. It is easy to check that solving (31) involves the inversion
of much smaller ℓ-by-ℓ matrices, as will be the case for the computations
below.

In order to develop the above approach, we begin with the solvable dual
linear program (2) with nonnegative variables (hence the title of this section)
and consider the classical exterior penalty function for the corresponding
primal problem (1):

min
y∈Rℓ

ǫd′y +
1

2
‖(−By + b)+‖

2. (32)

Dividing by ǫ2 and letting:

y

ǫ
→ y and

1

ǫ
→ α, (33)

the penalty problem (32) becomes:

min
y∈Rℓ

d′y +
1

2
‖(−By + αb)+‖

2. (34)

Applying Proposition 1 of (Mangasarian, 2005) to the primal exterior penalty
problem (34), we get:

Proposition 5 Exact Dual Solution Computation Let the dual LP (2)
be solvable. Then the primal exterior penalty problem (34) is solvable for all
α > 0. For any α ≥ ᾱ for some finite ᾱ > 0, any solution y of (34) generates
an exact solution to dual LP (2) as follows:

u = (−By + αb)+. (35)

In addition, this u minimizes:

‖u‖2, (36)

over the solution set of the dual LP (2).

Without giving proofs of results similar to those of Section 1, we now state
results corresponding to Lemma 1 and Proposition 2.

10 O. L. Mangasarian, E. W. Wild

Lemma 2 Optimality Condition for Solving the Primal Exterior
Penalty (34) A necessary and sufficient condition for u to be a solution of
the exterior penalty function (34) is that:

d − B′Q(−By + αb) = 0, (37)

where Q ∈ Rℓ×ℓ is a diagonal matrix of ones and zeros defined as follows:

Q = diag
(

sign
(

(−By + αb)+
)

)

. (38)

We note that Equation (37) is solvable for any α > 0 whenever the linear
program (1) is solvable. Hence, for such a case an explicit solution to (37)
is given as follows:

y = (B′QB)\(αB′Qb − d). (39)

If we now substitute for y in (35) we obtain the following expression for an
exact solution u of the dual linear program (2) when α ≥ ᾱ:

u =

(

B
(

(B′QB)\d
)

− α
(

B
(

(B′QB)\(B′Qb)
)

− b
)

)

+

(40)

We note that u depends on α through the explicit term α in the above
Equation (40), as well as through the dependence of Q on y in the definition
(38), and the dependence of y on α in (39). Hence, in order for u to be
independent of α, as would be the case when α ≥ ᾱ, we have the following
result which follows directly from the expression (40) for u being a constant
function of α: for a constant Q, the subgradient (Rockafellar, 1970) of the
expression for u (40) with respect to α vanishes as stated in (42) below.

Proposition 6 Sufficient Conditions for Independence on α The op-
timal solution u given by (40) for a solvable dual linear program (2) is
independent of α if:

The diagonal matrix Q is independent of α (41)

and

diag
(

sign(u)
)(

B
(

(B′QB)\(B′Qb)
)

−b
)

= 0, (42)

where u is defined in (40).

We turn now to our computational results based on Algorithms 1 and
2.

Exactness Conditions for Linear Programming 11

4 Computational Results

To illustrate the effectiveness of our approach, we report results on randomly
generated linear programs. In these linear programs we selected the number
of variables, constraints, nonzero coefficients, and generated optimal values
for the primal and dual variables. We compare our Newton LP approach (Al-
gorithm 1) and direct linear equation (DLE) approach (Algorithm 2) with
CPLEX 9.0 (ILO, 2003), a state-of-the-art linear programming package.

All methods were run in a random order on each linear program. The re-
ported results were obtained on an Intel Pentium 4 processor with 1 gigabyte
of RAM running CentOS Linux 4.5 and MATLAB 7.3. For the DLE method,
we set δ = 1e−8, tol = 1e−16, tol1 = 1e−3, imax = 500, and α = 100.
For the Newton LP method, we set δ = 1e−6, tol = 1e−3, imax = 5000,
and α = 100. For problems with more constraints than variables, we used
imax = 500 for the Newton LP method. If the sufficient condition was not
less than tol after the Newton method terminated, we tried again with 10α.
This case occurred only a few times over all the experiments we report. We
used only stepless methods. Although these parameters effect the solution
time and accuracy, we did not experiment much with different settings and
chose these particular values because they gave acceptable results on our
experiments. Default parameters were used for CPLEX.

The sufficient conditions (14) and (42) play an important role in our
algorithms in choosing the size of the penalty parameter α and as a stop-
ping criterion. In fact, in all our tests the penalty parameter α was chosen
sufficiently large so that it satisfied the appropriate sufficient condition (14)
or (42). In every experiment we report, the relative difference between the
returned and the true objective value, maximum constraint violation, and
sufficient condition was less then 1e−3, and in most experiments these val-
ues were of the order of 1e−7 or smaller.

4.1 Square linear programs

Figure 1 shows results for our proposed Newton LP Algorithm 1 and DLE
Algorithm 2 formulations, as well as CPLEX 9.0. Each point on the graph
represents the average elapsed seconds over 10 square linear programs ran-
domly generated with density 0.1. The standard deviations are too small
to show on the plot, and our proposed approaches are both clearly faster
than CPLEX for problems with more than 2000 variables and constraints.
In general, CPLEX returned more accurate solutions than our approaches.
We used the barrier method for CPLEX, which was faster than both the
primal and dual simplex algorithms for these problems. Note that both of
our approaches are more than twice as fast as CPLEX for problems with
5000 variables and 5000 constraints.

12 O. L. Mangasarian, E. W. Wild

 2
 48
 92

 155

 250

 370

 524

 717

 1000 1500 2000 2500 3000 3500 4000 4500 5000

A
ve

ra
ge

 s
ol

ut
io

n
tim

e
in

 s
ec

on
ds

Number of variables (= number of constraints)
 in the primal linear program

Running Time Versus Linear Program Size

DLE
Newton LP

CPLEX Barrier

Fig. 1 Average running times of our proposed approaches and the CPLEX 9.0

barrier method. Our Newton LP Algorithm 1 method is represented by ’+’, our

DLE Algorithm 2 method is represented by ’©’, and CPLEX is represented by ’△’.

Each point is the average of 10 randomly generated square linear programs.

4.2 Rectangular linear programs

Table 1 shows results for our proposed Newton LP Algorithm 1 and DLE
Algorithm 2 methods, as well as CPLEX 9.0. We applied Algorithms 1 and
2 directly for problems with more variables than constraints, and used the
technique described in Section 3 for problems with more constraints than
variables. We found that the primal simplex method of CPLEX performed
best for problems with more variables than constraints, while the dual sim-
plex method of CPLEX performed best for problems with more constraints
than variables. The results in Table 1 show that our approach can solve
problems with up to a million variables or constraints, although not as
quickly as the commercially available CPLEX solvers in all cases.

We note that our proposed DLE Algorithm 2 method, which is imple-
mented in 54 lines of MATLAB code, gives times which are faster than
CPLEX for problems with more variables than constraints. In general, our
proposed Newton method is slower on these problems, but is still able to
give solutions in about half a minute. For problems with more constraints
than variables, CPLEX is noticeably faster. Nevertheless, our proposed ap-
proaches are able to give accurate solutions to problems with as many as
one million constraints and one hundred variables within a few minutes.

Exactness Conditions for Linear Programming 13

Constraints Variables CPLEX Newton LP DLE

100 1,000 0.0246 (0.0006) 0.0438 (0.0003) 0.0251 (0.0001)

100 10,000 0.0522 (0.0001) 0.2024 (0.0004) 0.0682 (0.0001)

100 100,000 0.837 (0.003) 3.219 (0.012) 0.905 (0.004)

100 1,000,000 17.9 (0.6) 29.1 (0.2) 9.3 (0.2)

1,000 100 0.0969 (0.0025) 0.1391 (0.0027) 0.1032 (0.0004)

10,000 100 0.267 (0.001) 0.970 (0.012) 0.469 (0.003)

100,000 100 2.96 (0.05) 13.02 (0.12) 5.50 (0.04)

1,000,000 100 44.8 (0.3) 173.5 (2.2) 70.9 (0.4)

Table 1 Average running times of our proposed approaches and the CPLEX 9.0

simplex method. Ten linear programs were randomly generated for each number of

variables and constraints, and the average solution time in seconds is given with the

standard deviation in parentheses for each algorithm. Primal methods were used

for problems with more variables than constraints, and dual methods were used for

problems with more constraints than variables.

5 Conclusion and Outlook

We have presented sufficient conditions for a classical dual exterior penalty
function of a linear program to provide an exact solution to a primal linear
program. These conditions allow us to give a precise termination condition
to a Newton algorithm for linear programming introduced in (Mangasarian,
2005), and also to a new direct method based on solving the necessary and
sufficient optimality condition (8). Experimental results indicate that both
approaches are able to efficiently obtain accurate solutions on randomly gen-
erated linear programs with different numbers of constraints and variables.
For some linear programs, our approaches implemented in MATLAB were
as much as twice as fast as the commercial linear programming package
CPLEX 9.0.

It is possible that our approaches could be extended to handle prob-
lems which are too big to fit in memory, so long as either the number of
constraints or the number of variables is not too big, and the matrix multi-
plications are done externally. Other opportunities for future work include
applying both approaches to real world linear programs, exploring the use
of direct methods for other optimization problems, and further improving
the performance of our approaches.

Acknowledgements The research described in this Data Mining Institute Report
07-01, July 2007, was supported by National Science Foundation Grants CCR-
0138308 and IIS-0511905, the Microsoft Corporation, and ExxonMobil.

14 O. L. Mangasarian, E. W. Wild

References

F. Facchinei. Minimization of SC1 functions and the Maratos effect. Oper-
ations Research Letters, 17:131–137, 1995.

J.-B. Hiriart-Urruty, J. J. Strodiot, and V. H. Nguyen. Generalized Hessian
matrix and second-order optimality conditions for problems with CL1

data. Applied Mathematics and Optimization, 11:43–56, 1984.
ILOG CPLEX 9.0 User’s Manual. ILOG, Incline Village, Nevada, 2003.

http://www.ilog.com/products/cplex/.
O. L. Mangasarian. Parallel gradient distribution in unconstrained opti-

mization. SIAM Journal on Control and Optimization, 33(6):1916–1925,
1995. ftp://ftp.cs.wisc.edu/tech-reports/reports/1993/tr1145.ps.

O. L. Mangasarian. A finite Newton method for classification prob-
lems. Technical Report 01-11, Data Mining Institute, Computer Sciences
Department, University of Wisconsin, Madison, Wisconsin, December
2001. ftp://ftp.cs.wisc.edu/pub/dmi/tech-reports/01-11.ps.Optimization
Methods and Software 17, 2002, 913-929.

O. L. Mangasarian. Exact 1-Norm support vector machines via
unconstrained convex differentiable minimization. Technical Re-
port 05-03, Data Mining Institute, Computer Sciences Depart-
ment, University of Wisconsin, Madison, Wisconsin, August 2005.
ftp://ftp.cs.wisc.edu/pub/dmi/tech-reports/05-03.ps. Journal of Machine
Learning Research 7, 2006, 1517-1530.

MATLAB. User’s Guide. The MathWorks, Inc., Natick, MA 01760, 1994-
2006. http://www.mathworks.com.

R. T. Rockafellar. Convex Analysis. Princeton University Press, Princeton,
New Jersey, 1970.

