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Abstract

We propose a novel privacy-preserving nonlinear support vector machine (SVM) classifier for a
data matrix A whose columns represent input space features and whose individual rows are divided
into groups of rows. Each group of rows belongs to an entity that is unwilling to share its rows or
make them public. Our classifier is based on the concept of a reduced kernel K (A, B') where B’ is
the transpose of a completely random matrix B. The proposed classifier, which is public but does
not reveal the privately-held data, has accuracy comparable to that of an ordinary SVM classifier
based on the entire data.
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1 INTRODUCTION

Recently there has been wide interest in privacy-preserving support vector machine (SVM) classifiers.
Basically, the problem revolves around generating a classifier based on data, parts of which are held
by private entities who, for various reasons, are unwilling to make it public. For example, when each
entity holds all the feature values for its own group of individuals while other entities hold similar data
for other groups of individuals, the data is referred to as horizontally partitioned. This is so because
feature values for each individual are stored as rows of a data matrix, while a specific feature values for
all individuals are represented by columns of a data matrix. In [18, 19] horizontally partitioned privacy-
preserving SVMs and induction tree classifiers were obtained for data where different entities hold the
same features for different groups of individuals. Privacy-preserving SVM classifiers were obtained
for vertically partitioned data by securely computing a kernel matrix using random perturbations in
[20], and by using random kernels in [13]. Other privacy-preserving classifying techniques include
cryptographically private SVMs [15], wavelet-based distortion [10] and rotation perturbation [2].

In this work we propose a highly efficient privacy-preserving SVM (PPSVM) classifier for horizontally
partitioned data that is different from existing SVM classifiers for such partitioned data and which is
based on the following two ideas. For a given data matrix A € R™*™ instead of using the usual kernel
function K (A, A’) : R™*" x R"™™ — R™M*™ we use a reduced kernel [9, 8] K(A, B) : R™*" x R"™*™ —
R™*™ m < n, where B is a completely random matrix. The second idea is that each entity makes
public only the matrix product of its privately held matrix of data rows multiplied by the transpose
of the random matrix B for linear kernels, and a similar kernel function for nonlinear kernels. By
employing these two ideas, we shall describe an algorithm that protects the privacy of each horizontal
partition of the data matrix A, owned by a distinct entity, while generating an SVM classifier which
has tenfold correctness comparable to that of an ordinary SVM classifier.
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We now briefly describe the contents of the paper. In Section 2 we describe our method for a privacy-
preserving linear SVM classifier for horizontally partitioned data and show that what each entity reveals
does not lead to the disclosure of its privately held data. In Section 3 we treat nonlinear SVM classifiers
by a similar approach. In Section 4 we give computational results that show the accuracy of our approach
is comparable to ordinary SVMs. Section 5 concludes the paper.

We describe our notation now. All vectors will be column vectors unless transposed to a row vector
by a prime ’. For a vector z € R" the notation x; will signify either the j-th component or j-th block

of components. The scalar (inner) product of two vectors x and y in the n-dimensional real space R™
n

will be denoted by z'y. For « € R"™, ||z||; denotes the 1-norm: (Z|xl\) while ||z|| denotes the 2-norm:

i=1
n

(Z(%)Q)% The notation A € R™*™ will signify a real m X n matrix. For such a matrix, A" will

dzenlote the transpose of A, A; will denote the i-th row or i-th block of rows of A, A.; the j-th column
or the j-th block of columns of A, and A;. the ir-th element of A or the r-th row of i-th block A; of
A. A vector of ones in a real space of arbitrary dimension will be denoted by e. Thus for e € R™ and
y € R™ the notation €'y will denote the sum of the components of y. A vector of zeros in a real space
of arbitrary dimension will be denoted by 0. For A € R™ "™ and B € RF*", a kernel K(A, B') maps
R™™ x R into R™**. In particular, if z and y are column vectors in R™ then, K (2, y) is a real
number, K (2, B') is a row vector in R¥ and K (A, B') is an m x k matrix. The base of the natural
logarithm will be denoted by €. A frequently used kernel in nonlinear classification is the Gaussian kernel
[17, 3, 11] whose ij-th element, i = 1,...,m, j = 1,...,k, is given by: (K (A, B'))y; = e #l4i=B4'I”,
where A € R™*" B € RF*™ and p is a positive constant. We shall not assume that our kernels satisfy
Mercer’s positive definiteness condition [17, 16, 4] However, we shall assume that they are associative

in the following sense:
E N (K(E,G)
([ @) = (idren) -

where £ € R™*" F ¢ R™*" G € RF*™. Tt is straightforward to check that both a linear kernel
K(A,B') = AB’ and a Gaussian kernel satisfy (1.1). For the k matrices G',...  G¥, of the same

j=k j=k
dimensions, their affine hull is defined as the set {H | H = Z)\j G’ with Z)\j = 1. The abbreviation
j=1 j=1

“s.t.” stands for “subject to”.

2 Privacy-Preserving Linear Classifier for Horizontally Partitioned Data

The dataset that we wish to obtain a classifier for consists of m points in R" represented by the m rows
of the matrix A € R"™*". Each row contains values for n features associated with a specific individual,
while each column contains m values of a specific feature associated with m different individuals. The
matrix A is divided into ¢ blocks of m1, ma, ... my rows with m; +msa+...+my = m, and each block of
rows “owned” by an entity that is unwilling to make it public or share it with others. Furthermore, each
row of A is labeled as belonging to the class +1 or —1 by a corresponding diagonal matrix D € R™*™
of +1’s. The linear kernel classifier to be generated based on this data will be a separating plane in R"™:

dw—y=a2Bu—vy=0, (2.2)

where w = B'u, w € R" is the normal to the separating plane 2w —~ = 0, v € R determines the
distance of the plane from the origin and B is a completely random matrix in R¥*™. The change of
variables w = B'u is employed in order to kernelize the data and is motivated by the fact that when



B = A and hence w = A’u, the variable w is the dual variable for a 2-norm SVM [11]. The variables
u € RF and v € R are to be determined by an optimization problem such that the labeled data A
satisfy, to the extent possible, the separation condition:

D(AB'u —ev) > 0. (2.3)

This condition (2.3) places the +1 and —1 points represented by A on opposite sides of the separating
plane (2.2). In general, the matrix B which determines a transformation of variables w = B'u, is set
equal to A. However, in reduced support vector machines [9, 6] B = A, where A is a submatrix of A
whose rows are a small subset of the rows of A. In fact B can be a random matrix in R™*" with m < n
for our application here. The random choice of B holds the key to our privacy-preserving classifier and
has been used effectively in SVM classification problems [12]. Our computational results of Section 4
will show that there is no essential difference between using a random B or a random submatrix of A
of the rows of A as in reduced SVMs [9, 8]. We shall partition our data matrix A into ¢ row blocks
Ar, Ag, ..., Ay with each row block belonging to one of the g entities and held privately by it and never
made public. However, what is made public by each entity 7 is the matrix product A;B’ which allows
the public calculation of the the linear kernel AB’ € R™*™ as follows:

A B’
AyB'

: (2.4)
A,B’

We are now ready to state our algorithm which will provide a linear classifier for the data without
revealing the private blocks of the privately held data blocks Aj, A, ..., A,. The accuracy of this
algorithm will be comparable to that of a linear SVM using a publicly available linear kernel AA’
instead of merely the blocks A1 B’, A3B', ..., A,B’ of (2.4) as is the case here.

ALGORITHM 2.1. Linear PPSVM Algorithm

(I) All q entities agree on the same random matriz B € R™ ™ with m < n for security reasons as
justified in the explanation immediately following this algorithm.

(1) All entities make public the class matriz D where Dy = +£1, £ = 1,...,m, for the data matrices
A;,i=1,...,m, that they all hold.

(IIT) Each entity i makes public its linear kernel A;B’. This does not reveal A; but allows the public
computation of the full linear kernel:

Aq
Ao
AB'=| | B (2.5)
Aq
(IV) A publicly calculated linear classifier 2’ Bu — v = 0 is computed by some standard method such as
a 1-norm SVM [11, 1]:

min vyl + llull

(uv,y)

s.t. D(ABu—ey)+y > e, (2.6)
y = 0.



(V) For each new privately held x € R™ obtained by any entity, that entity privately computes z'B’
from which a linear classifier is computed as follows:

¥'B'u—v=0. (2.7)

Note that no entity i reveals its data set A;. This is so because each entity reveals only the m;m
numbers constituting the matrix P; = (4;B’) € R™*™. When m < n, there is an infinite number of
matrices A; € R™*" satisfying A; B’ = P;, given B and P;. We make this statement more precise by
first showing that at least an exponential number of matrices A; satisfy A;B’ = P; for a given B and
P, when m < n. We then show that the infinite number of matrices that lie in the affine hull of these
matrices also satisfy A;B’ = P;. This obviously precludes the possibility of determining the dataset A;
held by entity ¢ given only A;B’.

PROPOSITION 2.2. Given the matriz product P,/ = A; B’ € R™>™ where A; € R™*" is unknown and
B is a known matriz in R™™ with m < n, there are an infinite number of solutions, including:

() = (=) o

possible solutions A; € R™*"™ to the equation BA;' = P;. Furthermore, the infinite number of matrices
i the affine hull of these (%)m’ matrices also satisfy BA;' = P;.

Proof Consider the problem of solving for row r of A;, that is A;. € R™, r € {1,...,m;}, from the r-th
equation of BA;' = P;:

BA;, = P;,. (2.9)
Since m < n, and B is a random matrix, it follows by [5] that each of the <;:L> random m X m

square submatrices of B are of full rank and hence nonsingular. Consequently, Equation (2.9) has (;;)

my m;
solutions for each row r of A;, that is A;., » € {1,...,m;}. Hence there are " = (—2

n—m

solutions for the m; rows of A;.

To prove the last statement of the proposition, we note that if each of k£ matrices Al-l, ey Af solve
j=k j=k
BA; = P; for a given B and P;, then so does A; = Z/\jAg for Z)\j = 1. Hence any matrix in the
j=1 J=1
i=k =k
affine hull of Al,..., AF, {H | H =Y MAJ Y N =1} also satisfies (2.9). O
j=1 j=1

For the specific case of m = n — 1, which is used for our numerical results, we have that:

() = (=) =0 20

This translates to (30)% for the typical case of n = 30, m = 29 and m; = 20.
We turn now to nonlinear classification.



3 Nonlinear SVM Classifier for Horizontally Partitioned Data

The approach to nonlinear classification is similar to that for the linear one, except that we make use of
the associative property (1.1) of a nonlinear kernel which is satisfied by a Gaussian kernel. This kernel
is one of the most commonly used nonlinear kernels. Otherwise, the approach is very similar to that of
a linear kernel. We state that approach explicitly now.

ALGORITHM 3.1. Nonlinear PPSVM Algorithm

(I) All q entities agree on the same random matriz B € R™ ™ with m < n for security reasons as
justified in the explanation immediately following this algorithm.

(1) All entities make public the class matric Dy = +1, £ = 1,...,m, for the data matrices A;,
i=1,...,m that they all hold.

(III) Each entity i makes public its nonlinear kernel K(A;, B"). This does not reveal A; but allows the
public computation of the full nonlinear kernel:

A K(A1,B)
Ay K (A, B)

KAB)=K|| |.,B|= _ (3.11)
Ay K(Aq, B)

(IV) A publicly calculated nonlinear classifier K (', B)u —~v = 0 is computed by some standard method
such as a 1-norm SVM [11, 1]:

min vyl + llullx

(u1,y)

st. D(K(A,BYu—ey)+y > e, (3.12)
y = 0.

(V) For each new x € R™ obtained by an entity, that entity privately computes K(x', B") from which
a nonlinear classifier is computed as follows:

K@ ,BYyu—~v=0 (3.13)

Note that in the above algorithm no entity i reveals its dataset A;. This is so because it is impossible
to compute unique m;n numbers constituting the matrix A4; € R™*™ given only the m;m numbers
constituting the revealed kernel matrix K (A4;, B') € R™*™ with m < n. However, all entities share the
publicly computed nonlinear classifier (3.13) without revealing their individual datasets 4;, 71 =1,...,¢,
or any new x that they obtain. Thus, for example, if we wish to compute the r-th row A;. of entity
i’s data matrix A; from the given matrix P; = K(A;, B') € R™*™ we need to solve the m nonlinear
equations K (B, A;') = P’ for the n components of A;. € R™. Because n > m, this would in general
generate a nonlinear surface in R" containing an infinite number of solutions which makes it impossible
to determine A;. uniquely.
We turn now to our computational results.



4 Computational Results

We illustrate the effectiveness of our proposed privacy preserving SVM (PPSVM) in two ways. First,
we demonstrate that by using our approach entities can obtain classifiers with lower misclassification
error than classifiers obtained using only the examples of each entity alone. Second, we show that
a random kernel K (A, B') achieves comparable accuracy to the usual kernel K (A, A") or the reduced
kernel K (A, A’), where A contains a subset of the rows of A. All experiments were run using both a
linear kernel and the commonly used Gaussian kernel described in Section 1. In all of our results, A
consisted of ten percent of the rows of A randomly selected, while B was a completely random matrix
with the same number of columns as A. The number of rows of B was set to the minimum of n — 1 and
the number of rows of A, where n is the number of features in the dataset. Thus, we ensure that the
conditions discussed in the previous sections hold in order to guarantee the private data A; cannot be
recovered from K (A;, B'). Each entry of B was selected independently from a uniform distribution on
the interval [0,1]. All datasets were normalized so that each feature was between zero and one. This
normalization can be carried out if the entities disclose only the maximum and minimum of each feature
in their datasets. When computing ten-fold cross validation, we first divided the data into folds and
set up the training and testing sets in the usual way. Then each entity’s dataset was formed from the
training set of each fold. The accuracies of all classifiers were computed on the testing set.

4.1 Comparison of our approach to classifiers obtained using only each entity’s examples
We investigate the benefit of using our PPSVM approach instead of using only the examples available
to each entity using seven datasets from the UCI repository [14]. To simulate a situation in which each
entity has only a subset of the available examples, we randomly distribute the examples among the
entities such that each entity receives about the same number of examples. We chose arbitrarily to
perform experiments using however many entities were needed so that each entity received about 25
examples. To save time, we computed results only for three entities, though when sharing we assumed
the entire dataset was shared.

Figure 1 shows results comparing the ten-fold cross validation misclassification error of our linear
kernel PPSVM with the average misclassification error of the 1-norm SVM classifiers learned using only
the examples available to each of three entities. Points below the 45 degree line represent experiments
in which our PPSVM has lower error rate than the average error rate of the classifiers learned with only
each entity’s subset of the examples. This indicates that the entities can expect improved performance
using PPSVM instead of going it alone. The results shown in Figure 1 are detailed in Table 1. We
note that PPSVM obtains classifiers with lower error than the average of the classifiers using only each
entity’s examples in six of the seven experiments. The parameter v was selected from {10%[i = —7,...,7}
for each dataset was selected using ten-fold cross validation on the training set when data was shared,
and leave-one-out cross validation on the training set when data was not shared. We used leave-one-out
cross validation when data was not shared because each entity only had about 25 examples in its training
set.

Figure 2 shows similar results for experiments using Gaussian kernels, with details in Table 2. We
used the same datasets as for the experiments described above. To save time, we used the tuning
strategy described in [7]. In this Nested Uniform Design approach, rather than evaluating a classifier
at each point of a grid in the parameter space, the classifier is evaluated only at a set of points which is
designed to “cover” the original grid to the extent possible. The point from this smaller set on which the
classifier does best is then made the center of a grid which covers a smaller range of parameter space,
and the process is repeated. Huang et al. [7] demonstrate empirically that this approach finds classifiers
with similar misclassification error as a brute-force search through the entire grid. We set the initial
range of log,o v to [—7, 7], and the initial range of log;, v as described in [7]. Note that we set the initial
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Figure 1: Error rate comparison for the seven datasets of Table 1 of a 1-norm linear SVM sharing A; B’
data for each entity versus a 1-norm linear SVM using only the examples A; of each entity. Points below
the diagonal represent situations in which the error rate for sharing is better than the error rate for not
sharing. Results are given for each dataset with examples randomly distributed so that each entity has
about 25 examples.

Dataset No Sharing Error | Sharing Error
Examples x Input Features
Cleveland Heart 0.2349 0.1652
297 x 13
Tonosphere 0.2298 0.1054
351 x 34
WDBC 0.0879 0.0281
569 x 30
Arrhythmia 0.4116 0.2788
452 x 279
Pima Indians 0.3443 0.2303
768 x 8
Bupa Liver 0.4259 0.4263
345 x 6
German Credit 0.3233 0.2380
1000 x 24

Table 1: Comparison of error rates for entities not sharing and sharing their datasets using a 1-norm
linear SVM.
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Figure 2: Error rate comparison for the seven datasets of Table 2 of a 1-norm nonlinear SVM sharing
K(A;, B') data for each entity versus a 1-norm nonlinear SVM using only the examples A; of each entity.
Points below the diagonal represent situations in which the error rate for sharing is better than the error

rate for not sharing.

Dataset No Sharing Error | Sharing Error
Examples x Input Features
Cleveland Heart 0.2418 0.1567
297 x 13
Tonosphere 0.1747 0.0790
351 x 34
WDBC 0.0861 0.0316
569 x 30
Arrhythmia 0.3919 0.2873
452 x 279
Pima Indians 0.3203 0.2599
768 x 8
Bupa Liver 0.4752 0.3832
345 X 6
German Credit 0.3653 0.2473
1000 x 24

Table 2: Comparison of error rates for entities not sharing and sharing their datasets using a 1-norm

nonlinear Gaussian SVM.
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Figure 3: Error rate comparison of 1-norm linear SVMs for random kernel versus full and reduced
kernels. For points below the diagonal, the random kernel has a better error rate. The diagonal line in
each plot marks equal error rates. One result is given for each dataset listed in Table 1.

range of log;y i independently for each entity using only that entity’s examples. We used a Uniform
Design with thirty runs from http://www.math.hkbu.edu.hk/UniformDesign for both nestings, and
used leave-one-out cross validation on the training set to evaluate each (v, ) pair when the entities
did not share and five-fold cross validation on the training set they did. We chose to use leave-one-out
cross validation when not sharing because only about 25 examples were available to each entity in that
situation.

4.2 Comparison of a random kernel to full and reduced kernels To justify the use of a random
kernel we compare the performance of our PPSVM (Algorithms 2.1 and 3.1) with both an ordinary 1-
norm SVM using a full kernel matrix and a 1-norm SVM using a reduced kernel matrix (RSVM) [9].
Figure 3 shows scatterplots comparing the error rates of our PPSVM with 1-norm SVM and PPSVM
with RSVM, all using linear kernels. Note that points close to the 45 degree line represent datasets for
which the classifiers being compared have similar error rates. All of the error rates were obtained using
the procedure described above for linear kernels, and the datasets used are those in Table 1. Figure
4 shows similar results using the Gaussian kernel. All of the error rates were obtained using the same
procedures and datasets as those in Table 2, described above. We note that the misclassification error
for our PPSVM approach is comparable with that of 1-norm SVM and RSVM using both linear and
Gaussian kernels.

5 Conclusion and Outlook

We have proposed a linear and nonlinear privacy-preserving SVM classifier based on a privately
generated and privately held random matrix by each entity. Each entity possesses a different set of
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Figure 4: Error rate comparison of 1-norm nonlinear SVMs for random kernel versus full and reduced
kernels. For points below the diagonal, the random kernel has a better error rate. The diagonal line in
each plot marks equal error rates. One result is given for each dataset listed in Table 2.

examples used collectively to generate the SVM classifier. The proposed approach uses all the privately
held data, yet does not reveal the data. Computational comparisons indicate that the accuracy of our
proposed approach is comparable to full and reduced data classifiers. Furthermore, a the accuracy
obtained by the privacy-preserving SVM is markedly better than the accuracy of SVM classifiers
generated by each entity using only its own data.
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