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Abstract. We formulate the NP-hard-dimensional knapsack feasibility problem as an equivaddasblute
value equation (AVE) in an-dimensional noninteger real variable space and proposé&dinccession of linear
programs for solving the AVE. Exact solutions are obtainedl880 out of 2000 randomly generated consecutive
knapsack feasibility problems with dimensions between 5@Daare million. For the 120 approximately solved
problems the error consists of exactly one noninteger compiomi¢h value in(0,1), which when replaced by 0,
results in a relative error of less tharD@%. We also give a necessary and sufficient condition fosdheability

of the knapsack feasibility problem in terms of minimizing a cave quadratic function on a polyhedral set.
Average time for solving exactly a million-variable knapsée#sibility problem was less than 14 seconds on a 4
Gigabyte machine.

Keywords: knapsack feasibility, absolute value equations, suceesisiear programming

1. INTRODUCTION

We consider then-dimensional NP-hard knapsack feasibility problem of firgdian n-
dimensional binary integer vectgre {0,1}" such that:

aly=c, 1)

wherea is ann-dimensional column vector of positive integerss a positive integer and
the superscript denotes the transpose. We reformulate the problem as toefioy very
simple absolute value equation (AVE) [11, 9, 10] in thdimensional real variabbe

=z 2
elx = & az—Zc (@)
Y

where|x| denotes the component-wise absolute valueasfdeis a column vector of ones.
As we shall establish in Section 2, a solutioof the AVE (2) yields immediately a solution
y to the knapsack feasibility problem (1) and conversely devs:

1 X% aj

Y=g g XT A i=1...n (3)
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We shall propose the following quadratic program for sadvithe AVE (2) wherex is
represented as=r —s:

min r's
(BSE
st.r+s = 2
2; (4)
T _ —2
e (r—s) _ ea2 c’
(r,s) > 0.

We note immediately that the bilinear objective function(4f will be zero at its global
minimum solution(r,s) which yields arx = r — sthat will generate an exact solutigrto

the knapsack feasibility problem (1) through the (3). Weaiste that the variable can

be eliminated from the quadratic program (4) through the éiesistraint as follows:

s=2-r. (5)

This results in the following simpler concave quadraticgreon inR" instead ofR%":

; T
min (@/2—r)'r

T,_ ela—c
st.er= , (6)
r
r

IV IAN
Or\j\m

the solution of which yields:

a a

X=F—S=r (2 ry=2r 5 (")
Successive linearization of this simple concave quadm@igramming problem termi-
nates in a finite number of steps at a stationary vertex whitlgur numerical exper-
iments, yielded 1880 exact solutions for 2000 consecutwvelom knapsack feasibility
problems attempted, and 120 all-integer approximate isolsitwvith a relative error of less
than 004%.

We now briefly describe the contents of the paper. In Sectiare 2resent the theory
underlying the conversion of the knapsack feasibility peaibto an absolute value equa-
tion and solving the latter via a concave quadratic minitdzaproblem. In Section 3
we describe our algorithm for solving the knapsack feagjbiroblem by a finite succes-
sion of linear programs and in Section 4 we present our coatipmal results. Section 5
concludes the paper.

A word about our notation now. All vectors will be column vext unless transposed
to a row vector by a superscrifit. For a vectorx € R" the notationx; will signify the
j-th component. The scalar (inner) product of two vectoendy in the n-dimensional
real spaceR" will be denoted byx"y. Forx € R", |x| denotes the vector iR" whose
components are the absolute values of the components Tiie notationA € R™" will
signify a realm x n matrix. For such a matriAT will denote the transpose éfandA; will
denote the-th row. A vector of ones in a real space of arbitrary dimensidl be denoted
by e. Thus fore € R” andx € R" the notatione” x will denote the sum of the components
of x. A vector of zeros in a real space of arbitrary dimension Wéldenoted by 0. The
abbreviation “s.t.” stands for “subject to”.
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2. TheKnapsack Feasibility Problem asa Simple Absolute Value Equation

It is well known that then-dimensional knapsack feasibility problem is equivalenthe
linear complementarity problem [1, 2, 5]

0<z 1l Mz+q>0, (8)

whereM e Rk, g e R¢ and L denotes orthogonality, thatis (Mz+q) = 0, andk = n+2
[1, 5] ork=n+3 [2]. It has also been shown in [11] that the linear completaudy
problem is equivalent to the absolute value equation:

Ax— |x| = b, ©)

whereA € Rk andb e R¥. Deriving and simplifying the absolute value equation {gtt
is equivalent to the knapsack feasibility problem (1), thgi the linear complementarity
(8) equivalence, is somewhat lengthy and tedious. Insteagive now a simple direct
proof of that equivalence.

Proposition 1 Knapsack Feasibility Equivalenceto Absolute Value Equation The knap-
sack feasibility problem (1) is equivalent to the absolwtig equation (2) through the
relations (3).

Proof: Letysolve the knapsack feasibility problem (1). Define- % —ayi,i=1,...,n,
asin (3). Thenfor=1,...,n:

Ixi| = |% —aVi| = %, if eithery; =0ory; = 1. (10)
Hencelx| = . It follows from the definition ok above and'y = cthat:
T T
T e'a e'a—2c
= —-——— = . 11
e'x 5 c > (11)

Hence the AVE (2) is satisfied byas defined in (3).
Conversely, lek solve the AVE (2). Defing; = %— g i=1,...,nasin(3). Thenwe
have that foi = 1,...,n:

1 % 0,ifx =%
h=3—2 <1’M:_2 , (12)
where the second equality follows from (&) = §. Thus,yj=0or1fori=1,...,n. We
also have from (12) above that:

a'y i=na.y S i=nx ¢'a e'x=c (13)
i; 52 i; 2

where the last equality above follows from the second equaif (2). Hencea'y = c and
y solves the knapsack feasibility problem (1). [ |

We are ready now to relate a zero global minimum of the conqaaelratic program (6)
to that of the AVE (2) and consequently, by Proposition 1 @&twthe knapsack feasibility
problem (1).
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Proposition 2 Knapsack Feasibility as a Concave Quadratic Program The knapsack
feasibility problem (1) has a solution y if and only the coneajuadratic minimization
problem (6) has a solution r such that:

a

(E—r)Tr =0. (14)

Proof:
Necessity et the knapsack feasibility problem have a solutyorThe by Proposition 1
AVE (2) has a solutiox € R". Definer as:

r= (X)+. (15)
It follows then that a
(X4 +(=X)+ =[x = > (16)
where the last equality from AVE (2). Hence
a a
5> = é—(x)+:(—x)+ >0, 17)

where the second equality above follows from (16). Consetiyéhe last two constraints
of the quadratic program (6) are satisfied. Furthermore 1By &nd (17):

x:(x)+—(—x)+:rf§+r:2r—§, (18)
2 2
and hence by AVE (2):
elfa—2c ; _; e€la
5 =e'x=2e'r - (29)
or equivalently,
T q_

k%:%%7§. (20)

Thus the first constraint of the quadratic program (6) isséeti. Finally the nonnegative
objective function of the quadratic program (6) satisfies:

(5= = (1), =0, (21)

wherex solves the AVE (2). Hence the quadratic program (6) is sdévalp r as defined
above and has a global minimum of zero.
SufficiencyAt a zero minimum of the quadratic program (6) define
a a

x:2r—§:r—(§—r). (22)

Thensince™(§—r)=0,r >0and§ —r >0, it follows that

a a
|x|:r+§—r:
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which is the first equation of AVE (2). Furthermore,

T T T T
T r ea 2'a-2c e'a e'a-2¢
ex=2er > > 5 > (24)
where the second equality follows from the first constrainthe quadratic program (6).
Hence x solves AVE (2) and by Proposition 1 the knapsack feasibiligblem is solvable
byyi:%—g,izl,...,n. ]

Based on the results above we are ready now to specify ourithlgofor solving the
knapsack feasibility problem (1).

3. Solving the Knapsack Feasibility Problem by Successive Linear Programming

We shall solve the concave quadratic programming miniriangbroblem (6) by the fol-
lowing finitely terminating successive linearization aiitfom.

Algorithm 1 SLA: Successive Linearization Algorithm for the Quadratic Program

(6) _ ‘
Start with a random ¢ € R". Given { € R" compute ¥** by solving the following lin-
earization of the quadratic program (6):

min (g —2rTr

reRn .
st dr= ¢3¢ (25)
ro < g
r > 0.
Stop when:
(5 —2rhT(r+l—rh =o. (26)

By making use of [6, Theorem 4.2] we have the following result

Proposition 2 Finite Termination of SLA The successive linearization algorithm 1 gen-
erates a finite sequence of iteratgs,r?,. .., ri} with strictly decreasing objective func-
tion values{( —r")Tr'} of the quadratic program (6) objective function terminatat r
that satisfies the following minimum principle necessarynoglity condition [4, Theorem
5.2.4]:

(g —2r"T(r—r'y >0, Vfeasibler of (6). (27)

We note immediately that even though the minimum princigeassary optimality con-
dition (27) is not a sufficient optimality condition for theiadratic program (6), points
satisfying (27) have been very effective in solving non@angptimization problems such
as those in [8, 7, 6] as well as our quadratic program (6), viaidl be demonstrated by
the computational results of the next section. Conseqyemd now propose the following
algorithm for solving the knapsack feasibility problem that is based on Propositions 1,
2 and 2.
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Algorithm 3 SLA: Successive Linear Program for the K napsack Feasibility Problem
D

(1) Apply Algorithm 1 to the quadratic program (6) until teimation at r"ﬁand, by (7), set

x=2r—8.Ifr" (a—r')=Othen, by (3), y= 3 — &,i=1,...,n solves the knapsack
feasibility problem (1). Stop.

(I 1fr,"T(a—r,) > 0for some/, compute x= 2r, —Sby(7),y= 1 _x,/a, by (3) and
Vi = agyy.

(1) Sety, =0and find an asuch that a= v, and y = 0. If no such aexists, the currenty
solves the knapsack feasibility only approximately. Stop.

(IV) Sety=1. The vector y so modified solves the knapsack feasibilitiyleno exactly.
Stop.

Remark 4 Note that in the above algorithm we assume that at worst foy one com-

ponent? is r;,(a; —ry) > 0. This assumption as well as the integrality ofis validated

empirically by every single solution obtained by the SLAoAtgm 1 for a solvable knap-
sack feasibility problem.

Remark 5 We note that a concave quadratic program similar to (6) cangbaerated
directly for the knapsack feasibility problem (1) withotdrtsforming it into an AVE as
follows:

T
min €' (=)
s.t. aTy = C, (28)
y<e
y >0

A solution to this problem obtained by a successive linaetion algorithm similar to Al-
gorithm 1 also leads to a solution y with one noninteger comgmd and n— 1 integer
components because at least A& components of the the constraifts< y < e are satis-
fied as equalities at a vertex solution of the linearizatibthe concave quadratic program
(28). However, utilizing this quadratic programming fortation instead of the AVE-based
guadratic (6), Algorithm 3 performs very poorly by comparis For example, testing it
on 100 random consecutive knapsack feasibility problems of déoenn= 10,000, this
approach did not solve a single problem exactly. In contrasgilizing the AVE-based
quadratic program(6), Algorithm 3 solve®9 out of thesel00 problems exactly. We have
no theoretical justification for this poor performance résg from utilizing the concave
qguadratic program (28), instead of the quadratic progran. (Bne possibility is that the
program (28) obtains such a unique vertex, that it makesatlgempossible to implement
the first part of Step Il of Algorithm 3 in order to generate exact solution from an ap-
proximate solution that has only one noninteger compon&mbther possibility is that the
formulation (28) seeks an integer solution y directly, vélaer our formulation (6) seeks a
noninteger solution r which might make its task easier.

We turn now to numerical testing of Algorithm 3.
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4. Computational Results

We tested our AVE formulation (2) by solving two sets of 1088dom knapsack feasibility
problems (1). Each problem of the first set was generated @ndufated as the concave
guadratic program (6) as follows:

1. Each component of the vectarof (1) was a positive integer picked from a uniform
distribution over the intervgD, 100 .

2. A solutiony to (1) was picked as a randomdimensional binary integer vector from
{0,1}", with approximately one half of its components being zermd the other half
being ones. The integewas then computed as=a'y.

3. One thousand random knapsack feasibility problems wenemtedonsecutivelyn
groups of 100 for each of the following valuesrodind solved by the quadratic program

(6):
n= 50010005000 10000 2000050000 1000002000005000001000000 (29)

4. Of these 1000 consecutive randomly generated knapsaslofiity problems, Algo-
rithm 3 solved 990 problems exactly while 10 were solved apipnately as detailed
in the next comment.

5. For each of the 10 approximately-solved knapsack fdagiproblemsonly onecom-
ponent ofy was a noninteger if0,1). However, for this nonintegey, the product
asy, was an integer and furthermoady was exactly equal to. This allowed us, as
described in Algorithm 3, to either get an exact or approxemateger solution by set-
ting y, = 0. An exact solution was obtained when Algorithm 3 was abléni ana;
with y; = 0 such thag; = a,y, and replacing; = 0 byy; = 1. Otherwise, an approxi-
mate solution was obtained with a relative percentage given by 100: ayy,/c.

6. The maximum average relative error percentage for theppdoximate solutions, all
with integer entries, was.03886%.

More details of the numerical results above are presentéidlite 1. Test results for
the second set of 1000 test problems are given in Table 2 fi@reltly generated knap-
sack feasibility problems as follows. In particular, eadmponent of the vectoa of
a'y = cis a positive integer picked from a uniform random distribatover the interval
[0,100( instead of[0,100. Furthermore a solutiogito a’y = ¢ was picked as a random
n-dimensional binary integer vector frof®, 1}" with approximately 25% of its compo-
nents being zeros and 75% being ones instead of 50% eachhasdage for problems in
Table 1. The results are similar to those of Table 1 exceptftnan < 5000 the results of
Table 1 are better.

5. Conclusion and Outlook

We have given an equivalent formulation to an integer fektsilproblem as an absolute
value equation in am-dimensional real variable and presented a concave qu@grat
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Table 1. Solution by Algorithm 3, utilizing the CPLEX linear programng code [3] within MAT-
LAB [12], of 1000 consecutively generated random solvaliagsack feasibility problems’y = c,
with eacha; randomly chosen from the s¢ti,2,...,100} and such that a solutiopexists with ap-
proximately half of its components being zero. The times araférGigabyte machine running Red
Hat Enterprise Linux 5. Column 4 gives the number of instandesrezan exact solution was obtained
at Step | of Algorithm 3, that is a global solution of the comeguadratic program (6) was achieved
directly by the Successive Linearization Algorithm 1.

Problem Size| 100-Problem| Total No. of | No. of Exact Total No. of | Avg Relative
n Avg Soln Exact Solns | Solns @ Step || Approx Solns | Error of

Time Sec Out of 100 Out of 100 Out of 100 | Approx Solns
| 500 | 0038 | 97 | 15 \ 3 | 0.03886% |
| 1,000 | 00453 | 99 | 25 \ 1 | 0.01982% |
| 5000 | 00779 | 98 | 41 \ 2 | 0.001581% |
| 10000 | 01167 | 99 | 56 \ 1 | 0.002775% |
| 20000 | 02166 | 98 | 52 \ 2 | 0.0003928% |
| 50000 | 04343 | 99 | 66 \ 1 | 0.00007920%|
| 100000 | 11609 | 100 | 65 \ 0 | — \
| 200,000 | 20346 | 100 | 78 \ 0 | — \
| 500,000 | 50359 | 100 | 82 \ 0 | — \
| 1000000 | 75911 | 100 | 95 \ 0 | — \

gramming formulation that solves most of the randomly gateat test problems. Interest-
ing future work may involve the possibility of formulatirigherNP-hard integer feasibility

or optimization problems as absolute value equations invag@bles and coming up with

linear or nonlinear programming formulations for theirgidn. Another interesting prob-

lem would be to find other efficient solution methods for theyve@mple absolute value

equation (2).
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Table 2. Solution by Algorithm 3, utilizing the CPLEX linear programng code [3] within MAT-
LAB [12], of 1000 consecutively generated random solvaliagsack feasibility problems’y = c,
with eacha randomly chosen from the s¢t,2,...,1000; and such that a solutiopexists with ap-
proximately 25% of its components being zero and 75% are onée. tilnes are for a 4 Gigabyte
machine running Red Hat Enterprise Linux 5. Column 4 gives tiabrer of instances where an ex-
act solution was obtained at Step | of Algorithm 3, that is @bgl solution of the concave quadratic
program (6) was achieved directly by the Successive Limatdn Algorithm 1.

Problem Size| 100-Problem| Total No. of | No. of Exact Total No. of | Avg Relative
n Avg Soln Exact Solns | Solns @ Step || Approx Solns | Error of
Time Sec Out of 100 Out of 100 Out of 100 | Approx Solns
| s00 | o01001 | 41 | 6 \ 59 | 0.01002%
| 1000 | o118 | 59 | 6 \ 4 | 0.003478% |
| 5000 | 02344 | 92 | 8 \ 8 | 0.0001748% |
| 10000 | 03570 | 99 | 20 \ 1 | 0.00008090%|
| 20000 | 06533 | 99 | 14 \ 1 | 0.00003971%|
| 50000 | 15032 | 100 | 26 \ 0 | — \
| 100000 | 33187 | 100 | 35 \ 0 | — \
| 200,000 | 7.0661 | 100 | 43 \ 0 | — \
| 500,000 | 14.6279 | 100 | 60 \ 0 | — \
| 1000,000 | 187115 | 100 | 81 \ 0 | — \
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