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Abstract. We formulate the NP-hardn-dimensional knapsack feasibility problem as an equivalentabsolute
value equation (AVE) in ann-dimensional noninteger real variable space and propose a finite succession of linear
programs for solving the AVE. Exact solutions are obtained for 1880 out of 2000 randomly generated consecutive
knapsack feasibility problems with dimensions between 500 and one million. For the 120 approximately solved
problems the error consists of exactly one noninteger component with value in(0,1), which when replaced by 0,
results in a relative error of less than 0.04%. We also give a necessary and sufficient condition for thesolvability
of the knapsack feasibility problem in terms of minimizing a concave quadratic function on a polyhedral set.
Average time for solving exactly a million-variable knapsackfeasibility problem was less than 14 seconds on a 4
Gigabyte machine.
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1. INTRODUCTION

We consider then-dimensional NP-hard knapsack feasibility problem of finding ann-
dimensional binary integer vectory∈ {0,1}n such that:

aTy = c, (1)

wherea is ann-dimensional column vector of positive integers,c is a positive integer and
the superscriptT denotes the transpose. We reformulate the problem as the following very
simple absolute value equation (AVE) [11, 9, 10] in then-dimensional real variablex:

|x| = a
2,

eTx = eTa−2c
2 ,

(2)

where|x| denotes the component-wise absolute value ofx ande is a column vector of ones.
As we shall establish in Section 2, a solutionx of the AVE (2) yields immediately a solution
y to the knapsack feasibility problem (1) and conversely as follows:

yi =
1
2
−

xi

ai
, xi =

ai

2
−aiyi , i = 1, . . . ,n. (3)
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We shall propose the following quadratic program for solving the AVE (2) wherex is
represented asx = r −s:

min
(r,s)∈R2n

rTs

s.t. r +s = a
2,

eT(r −s) = eTa−2c
2 ,

(r,s) ≥ 0.

(4)

We note immediately that the bilinear objective function of(4) will be zero at its global
minimum solution(r,s) which yields anx = r −s that will generate an exact solutiony to
the knapsack feasibility problem (1) through the (3). We also note that the variables can
be eliminated from the quadratic program (4) through the first constraint as follows:

s=
a
2
− r. (5)

This results in the following simpler concave quadratic program inRn instead ofR2n:

min
r∈Rn

(a/2− r)T r

s.t. eT r = eT a−c
2 ,

r ≤ a
2,

r ≥ 0,

(6)

the solution of which yields:

x = r −s= r − (
a
2
− r) = 2r −

a
2
. (7)

Successive linearization of this simple concave quadraticprogramming problem termi-
nates in a finite number of steps at a stationary vertex which,in our numerical exper-
iments, yielded 1880 exact solutions for 2000 consecutive random knapsack feasibility
problems attempted, and 120 all-integer approximate solutions with a relative error of less
than 0.04%.

We now briefly describe the contents of the paper. In Section 2we present the theory
underlying the conversion of the knapsack feasibility problem to an absolute value equa-
tion and solving the latter via a concave quadratic minimization problem. In Section 3
we describe our algorithm for solving the knapsack feasibility problem by a finite succes-
sion of linear programs and in Section 4 we present our computational results. Section 5
concludes the paper.

A word about our notation now. All vectors will be column vectors unless transposed
to a row vector by a superscriptT. For a vectorx ∈ Rn the notationx j will signify the
j-th component. The scalar (inner) product of two vectorsx andy in the n-dimensional
real spaceRn will be denoted byxTy. For x ∈ Rn, |x| denotes the vector inRn whose
components are the absolute values of the components ofx. The notationA ∈ Rm×n will
signify a realm×n matrix. For such a matrix,AT will denote the transpose ofA andAi will
denote thei-th row. A vector of ones in a real space of arbitrary dimension will be denoted
by e. Thus fore∈ Rn andx∈ Rn the notationeTx will denote the sum of the components
of x. A vector of zeros in a real space of arbitrary dimension willbe denoted by 0. The
abbreviation “s.t.” stands for “subject to”.
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2. The Knapsack Feasibility Problem as a Simple Absolute Value Equation

It is well known that then-dimensional knapsack feasibility problem is equivalent to the
linear complementarity problem [1, 2, 5]

0≤ z ⊥ Mz+q≥ 0, (8)

whereM ∈Rk×k, q∈Rk and⊥ denotes orthogonality, that iszT(Mz+q) = 0, andk = n+2
[1, 5] or k = n+ 3 [2]. It has also been shown in [11] that the linear complementarity
problem is equivalent to the absolute value equation:

Ax−|x| = b, (9)

whereA∈ Rk×k andb∈ Rk. Deriving and simplifying the absolute value equation (9) that
is equivalent to the knapsack feasibility problem (1), through the linear complementarity
(8) equivalence, is somewhat lengthy and tedious. Instead we give now a simple direct
proof of that equivalence.

Proposition 1 Knapsack Feasibility Equivalence to Absolute Value Equation The knap-
sack feasibility problem (1) is equivalent to the absolute value equation (2) through the
relations (3).

Proof: Let y solve the knapsack feasibility problem (1). Definexi =
ai
2 −aiyi , i = 1, . . . ,n,

as in (3). Then fori = 1, . . . ,n:

|xi | = |
ai

2
−aiyi | =

ai

2
, if eitheryi = 0 oryi = 1. (10)

Hence|x| = a
2. It follows from the definition ofx above andaTy = c that:

eTx =
eTa
2

−c =
eTa−2c

2
. (11)

Hence the AVE (2) is satisfied byx as defined in (3).
Conversely, letx solve the AVE (2). Defineyi = 1

2 −
xi
ai

, i = 1, . . . ,n, as in (3). Then we
have that fori = 1, . . . ,n:

yi =
1
2
−

xi

ai
=

〈

0, if xi = ai
2

1, if xi = −ai
2

〉

, (12)

where the second equality follows from (2)|x| = a
2. Thus,yi = 0 or 1 for i = 1, . . . ,n. We

also have from (12) above that:

aTy =
i=n

∑
i=1

aiyi =
i=n

∑
i=1

ai

2
−

i=n

∑
i=1

xi =
eTa
2

−eTx = c, (13)

where the last equality above follows from the second equation of (2). HenceaTy = c and
y solves the knapsack feasibility problem (1).

We are ready now to relate a zero global minimum of the concavequadratic program (6)
to that of the AVE (2) and consequently, by Proposition 1 above, to the knapsack feasibility
problem (1).



4 O. L. MANGASARIAN

Proposition 2 Knapsack Feasibility as a Concave Quadratic Program The knapsack
feasibility problem (1) has a solution y if and only the concave quadratic minimization
problem (6) has a solution r such that:

(
a
2
− r)T r = 0. (14)

Proof:
NecessityLet the knapsack feasibility problem have a solutiony. The by Proposition 1

AVE (2) has a solutionx∈ Rn. Definer as:

r = (x)+. (15)

It follows then that
(x)+ +(−x)+ = |x| =

a
2
, (16)

where the last equality from AVE (2). Hence

a
2
− r =

a
2
− (x)+ = (−x)+ ≥ 0, (17)

where the second equality above follows from (16). Consequently the last two constraints
of the quadratic program (6) are satisfied. Furthermore, by (15) and (17):

x = (x)+ − (−x)+ = r −
a
2

+ r = 2r −
a
2
, (18)

and hence by AVE (2):
eTa−2c

2
= eTx = 2eT r −

eTa
2

, (19)

or equivalently,

2eT r =
2eTa−2c

2
. (20)

Thus the first constraint of the quadratic program (6) is satisfied. Finally the nonnegative
objective function of the quadratic program (6) satisfies:

(
a
2
− r)T r = (−x)T

+(x)+ = 0, (21)

wherex solves the AVE (2). Hence the quadratic program (6) is solvable by r as defined
above and has a global minimum of zero.

SufficiencyAt a zero minimum of the quadratic program (6) define

x = 2r −
a
2

= r − (
a
2
− r). (22)

Then sincerT(a
2 − r) = 0, r ≥ 0 anda

2 − r ≥ 0, it follows that

|x| = r +
a
2
− r =

a
2
, (23)
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which is the first equation of AVE (2). Furthermore,

eTx = 2eT r −
eTa
2

=
2eTa−2c

2
−

eTa
2

=
eTa−2c

2
, (24)

where the second equality follows from the first constraint of the quadratic program (6).
Hence,x solves AVE (2) and by Proposition 1 the knapsack feasibilityproblem is solvable
by yi = 1

2 −
xi
ai

, i = 1, . . . ,n.

Based on the results above we are ready now to specify our algorithm for solving the
knapsack feasibility problem (1).

3. Solving the Knapsack Feasibility Problem by Successive Linear Programming

We shall solve the concave quadratic programming minimization problem (6) by the fol-
lowing finitely terminating successive linearization algorithm.

Algorithm 1 SLA: Successive Linearization Algorithm for the Quadratic Program
(6)

Start with a random r0 ∈ Rn. Given ri ∈ Rn compute ri+1 by solving the following lin-
earization of the quadratic program (6):

min
r∈Rn

(
a
2
−2r i)T r

s.t. eT r = eT a−c
2 ,

r ≤ a
2,

r ≥ 0.

(25)

Stop when:

(
a
2
−2r i)T(r i+1− r i) = 0. (26)

By making use of [6, Theorem 4.2] we have the following result.

Proposition 2 Finite Termination of SLA The successive linearization algorithm 1 gen-
erates a finite sequence of iterates{r1, r2, . . . , r ī} with strictly decreasing objective func-
tion values{(a

2 − r i)T r i} of the quadratic program (6) objective function terminating at rī

that satisfies the following minimum principle necessary optimality condition [4, Theorem
5.2.4]:

(
a
2
−2r ī)T(r − r ī) ≥ 0, ∀ feasibler of (6). (27)

We note immediately that even though the minimum principle necessary optimality con-
dition (27) is not a sufficient optimality condition for the quadratic program (6), points
satisfying (27) have been very effective in solving nonconvex optimization problems such
as those in [8, 7, 6] as well as our quadratic program (6), which will be demonstrated by
the computational results of the next section. Consequently, we now propose the following
algorithm for solving the knapsack feasibility problem (1)that is based on Propositions 1,
2 and 2.
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Algorithm 3 SLA: Successive Linear Program for the Knapsack Feasibility Problem
(1)

(I) Apply Algorithm 1 to the quadratic program (6) until termination at rī and, by (7), set

x = 2r ī − a
2. If r ī T(a− r ī) = 0 then, by (3), yi = 1

2 −
xi
ai

, i = 1, . . . ,n solves the knapsack
feasibility problem (1). Stop.

(II) If r ℓ
T(a− rℓ) > 0 for someℓ, compute xℓ = 2rℓ −

a
2 by (7), yℓ = 1

2 − xℓ/aℓ by (3) and
vℓ = aℓyℓ.

(III) Set yℓ = 0 and find an ai such that ai = vℓ and yi = 0. If no such ai exists, the current y
solves the knapsack feasibility only approximately. Stop.

(IV) Set yi = 1. The vector y so modified solves the knapsack feasibility problem exactly.
Stop.

Remark 4 Note that in the above algorithm we assume that at worst for only one com-
ponentℓ is rℓ(aℓ − rℓ) > 0. This assumption as well as the integrality of vℓ is validated
empirically by every single solution obtained by the SLA Algorithm 1 for a solvable knap-
sack feasibility problem.

Remark 5 We note that a concave quadratic program similar to (6) can begenerated
directly for the knapsack feasibility problem (1) without transforming it into an AVE as
follows:

min
y∈Rn

eT(e−y)

s.t. aTy = c,
y ≤ e,
y ≥ 0.

(28)

A solution to this problem obtained by a successive linearization algorithm similar to Al-
gorithm 1 also leads to a solution y with one noninteger component and n− 1 integer
components because at least n−1 components of the the constraints0≤ y≤ e are satis-
fied as equalities at a vertex solution of the linearization of the concave quadratic program
(28). However, utilizing this quadratic programming formulation instead of the AVE-based
quadratic (6), Algorithm 3 performs very poorly by comparison. For example, testing it
on 100 random consecutive knapsack feasibility problems of dimension n= 10,000, this
approach did not solve a single problem exactly. In contrast, utilizing the AVE-based
quadratic program(6), Algorithm 3 solved99 out of these100problems exactly. We have
no theoretical justification for this poor performance resulting from utilizing the concave
quadratic program (28), instead of the quadratic program (6). One possibility is that the
program (28) obtains such a unique vertex, that it makes it nearly impossible to implement
the first part of Step III of Algorithm 3 in order to generate anexact solution from an ap-
proximate solution that has only one noninteger component.Another possibility is that the
formulation (28) seeks an integer solution y directly, whereas our formulation (6) seeks a
noninteger solution r which might make its task easier.

We turn now to numerical testing of Algorithm 3.
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4. Computational Results

We tested our AVE formulation (2) by solving two sets of 1000 random knapsack feasibility
problems (1). Each problem of the first set was generated and formulated as the concave
quadratic program (6) as follows:

1. Each component of the vectora of (1) was a positive integer picked from a uniform
distribution over the interval[0,100].

2. A solutiony to (1) was picked as a randomn-dimensional binary integer vector from
{0,1}n, with approximately one half of its components being zeros and the other half
being ones. The integerc was then computed asc = aTy.

3. One thousand random knapsack feasibility problems were generatedconsecutivelyin
groups of 100 for each of the following values ofn and solved by the quadratic program
(6):

n = 500,1000,5000,10000,20000,50000,100000,200000,500000,1000000. (29)

4. Of these 1000 consecutive randomly generated knapsack feasibility problems, Algo-
rithm 3 solved 990 problems exactly while 10 were solved approximately as detailed
in the next comment.

5. For each of the 10 approximately-solved knapsack feasibility problemsonly onecom-
ponent ofy was a noninteger in(0,1). However, for this nonintegeryℓ the product
aℓyℓ was an integer and furthermoreaTy was exactly equal toc. This allowed us, as
described in Algorithm 3, to either get an exact or approximate integer solution by set-
ting yℓ = 0. An exact solution was obtained when Algorithm 3 was able tofind anai

with yi = 0 such thatai = aℓyℓ and replacingyi = 0 by yi = 1. Otherwise, an approxi-
mate solution was obtained with a relative percentage errorgiven by 100∗aℓyℓ/c.

6. The maximum average relative error percentage for the 10 approximate solutions, all
with integer entries, was 0.03886%.

More details of the numerical results above are presented inTable 1. Test results for
the second set of 1000 test problems are given in Table 2 for differently generated knap-
sack feasibility problems as follows. In particular, each component of the vectora of
aTy = c is a positive integer picked from a uniform random distribution over the interval
[0,1000] instead of[0,100]. Furthermore a solutiony to aTy = c was picked as a random
n-dimensional binary integer vector from{0,1}n with approximately 25% of its compo-
nents being zeros and 75% being ones instead of 50% each as is the case for problems in
Table 1. The results are similar to those of Table 1 except that for n≤ 5000 the results of
Table 1 are better.

5. Conclusion and Outlook

We have given an equivalent formulation to an integer feasibility problem as an absolute
value equation in ann-dimensional real variable and presented a concave quadratic pro-
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Table 1. Solution by Algorithm 3, utilizing the CPLEX linear programming code [3] within MAT-
LAB [12], of 1000 consecutively generated random solvable knapsack feasibility problemsaTy = c,
with eachai randomly chosen from the set{1,2, . . . ,100} and such that a solutiony exists with ap-
proximately half of its components being zero. The times are fora 4 Gigabyte machine running Red
Hat Enterprise Linux 5. Column 4 gives the number of instances where an exact solution was obtained
at Step I of Algorithm 3, that is a global solution of the concave quadratic program (6) was achieved
directly by the Successive Linearization Algorithm 1.

Problem Size 100-Problem Total No. of No. of Exact Total No. of Avg Relative
n Avg Soln Exact Solns Solns @ Step I Approx Solns Error of

Time Sec Out of 100 Out of 100 Out of 100 Approx Solns

500 0.0389 97 15 3 0.03886%

1,000 0.0453 99 25 1 0.01982%

5,000 0.0779 98 41 2 0.001581%

10,000 0.1167 99 56 1 0.002775%

20,000 0.2166 98 52 2 0.0003928%

50,000 0.4343 99 66 1 0.00007920%

100,000 1.1609 100 65 0 —

200,000 2.0346 100 78 0 —

500,000 5.0359 100 82 0 —

1000,000 7.5911 100 95 0 —

gramming formulation that solves most of the randomly generated test problems. Interest-
ing future work may involve the possibility of formulatingotherNP-hard integer feasibility
or optimization problems as absolute value equations in real variables and coming up with
linear or nonlinear programming formulations for their solution. Another interesting prob-
lem would be to find other efficient solution methods for the very simple absolute value
equation (2).
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Table 2. Solution by Algorithm 3, utilizing the CPLEX linear programming code [3] within MAT-
LAB [12], of 1000 consecutively generated random solvable knapsack feasibility problemsaTy = c,
with eachai randomly chosen from the set{1,2, . . . ,1000} and such that a solutiony exists with ap-
proximately 25% of its components being zero and 75% are ones. The times are for a 4 Gigabyte
machine running Red Hat Enterprise Linux 5. Column 4 gives the number of instances where an ex-
act solution was obtained at Step I of Algorithm 3, that is a global solution of the concave quadratic
program (6) was achieved directly by the Successive Linearization Algorithm 1.

Problem Size 100-Problem Total No. of No. of Exact Total No. of Avg Relative
n Avg Soln Exact Solns Solns @ Step I Approx Solns Error of

Time Sec Out of 100 Out of 100 Out of 100 Approx Solns

500 0.1001 41 6 59 0.01002%

1,000 0.1188 59 6 41 0.003478%

5,000 0.2344 92 8 8 0.0001748%

10,000 0.3570 99 20 1 0.00008090%

20,000 0.6533 99 14 1 0.00003971%

50,000 1.5032 100 26 0 —

100,000 3.3187 100 35 0 —

200,000 7.0661 100 43 0 —

500,000 14.6279 100 60 0 —

1000,000 18.7115 100 81 0 —
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