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Abstract. We consider a system ofi linear equations im variablesAx = d and give necessary and sufficient
conditions for the existence of a unique solution to theaysthat is integerx € {—1,1}". We achieve this by
reformulating the problem as a linear program and derivingessary and sufficient conditions for the integer
solution to be the unique primal optimal solution. We show #stong asnis larger tham/2, then the linear
programming reformulation succeeds for most instances, butsfless tham/2, the reformulation fails on most
instances. We also demonstrate that these predictions niatelipirical performance of the linear programming
formulation to very high accuracy.

Keywords: unique integer solution, linear equations, linear prograngmi

1. INTRODUCTION

We consider the system of linear equations in the real veetidablex:
Ax=d, (1)

whereA is a given real matrix irR™", d € R™ andx € R". We are interested in the
conditions under which this system has a unique solutiorthvis integer, that is

Ax=d, xe {-1,1}". )

This problem, which has also been studied in [12], can beidered a generalization of
the classical knapsack feasibility problem [11, 7, 4] of fimtdan n-dimensional binary
integer vectoy € {0,1}" such that:

a'y=c, (3)

wherea is ann-dimensional column vector of positive integers and a positive integer.
An obvious generalization of this is the following genezall multi-knapsack feasibility
problem where there are no integrality or nonnegativityrieions on them x n real matrix
Aor the real vectob € R™

Ay=b, ye {0,1}". 4)
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Using the transformation:
y:?7xze_2y> (5)

whereeis a column vector of ones, we obtain the absolute value emugt1, 16]:

X = e
Ax = d, (6)
where:
d=Ae-2b. @)

Itis evident then that (6) is equivalent to our original pesh (2).

Unfortunately, even if an integer solution is provided,atatining the uniqueness of a
given integer solution of a problem such as (2) is an NP-haothlpm [17, 15, 14]. To
circumvent this difficulty, we provide necessary and sufiticonditions that (1) has a
unique solution in the hyperculje-1,1]" which in turn is integer. We shall do this in
Section 2 by solving a linear programming problem. In Sec8ave give the probability
that a randomly generated solvable problem (2) will indeseeha unique integer solution.
In particular we show that as long as the number of rows istgrehan half the number
of columns, then for most equations of the form (2) which hamanteger solution, the
corresponding integer solution is unique and can be cordpuige linear programming.
A related probabilistic result is obtained in [3] that wés a face counting technique in
contrast to our simple linear programming uniqueness ambrdiere. In Section 4 we
shall give some numerical examples illustrating our resaittd shall conclude the paper in
Section 5.

A word about our terminology and notation now. When we refeaidnteger solution
x of either the linear equation (1) or the linear program (1€plv, we mean exactly that
x € {—1,1}" and exclude the case when a component &f zero. All vectors will be
column vectors unless transposed to a row vector by a sufrsc For a vectox € R" the
notationx; will signify the j-th componentx| denotes the vector iR" whose components
are the absolute values of the components, @nd||x||, denotes thg-th norm ofx. The
scalar (inner) product of two vectorsandy in the n-dimensional real spad@” will be
denoted by"y. The notatiorA € R™" will signify a realmx n matrix. For such a matrix,
AT will denote the transpose @, A; will denote thei-th row andAjj theijth element. A
vector of ones in a real space of arbitrary dimension will baated bye. Thus fore € R
andx € R" the notatiore” x will denote the sum of the components)ofA vector of zeros
in a real space of arbitrary dimension will be denoted by Oe @hbreviation “s.t.” stands
for “subject to”.

2. Linear Programming Formulation and Uniqueness of Solution that isInteger

Our analysis is based on the observation thagifs integer and is the unique solution
of Ax=d in the hypercubé—1,1]", thenxo is the unique solution if—1,1}" as well.
Finding a solution if—1,1]" can be reduced to linear programming, and, moreover, we
can readily provide necessary and sufficient conditionstti@resulting solution is unique.
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Since the hypercuble-1,1]" is equal to the unit bal|x||. < 1 of the/., norm:
IX]le- = max x|, ®)

we can try to find a solution if-1, 1], by solving the/., norm minimization problem

mXin||x||oo st. Ax=d. 9)

Suppose that there exists &ne {—1,1}" satisfyingAx= d. Under what conditions iz
also the unique optimal solution of (9)?
Note that we can reformulate (9) as the following linear paog

mi6n6 st. Ax=d, —de<x< de. (20)
X,

The dual problem of (10) is given by

LnV%c(dTu st. Alu—v+w=0, e'(v+w)=1, (,w)>0 (11)
Note also that the primal linear program (10) is a convexxatian of the absolute value
equation (6) where we replace the first equality of (6) by tnequalities, and we replace
the right hand side with a variablede which we attempt to minimize. With this reformu-
lation, we can use the necessary and sufficient conditiof®] tj verify thatxp is a unique
solution of the linear program (10):

THEOREM1 [9, Theorem 2(iii)] Letx be a solution of the linear program
mXinth; st. Gx=g, Px>q. (12)

Let Rqdenote the submatrix of P consisting of the rows oPRxfor which Px= g;. Then
X is unigue if and only if there exists no z satisfying

Gz=0, Pez>0, h'z<0, z#£0 (13)

With this in hand, we can state now our principal result.

Proposition 2 Uniqueness of Solution of (1) that is Integer A necessary and sufficient
condition that the linear program (10) has a unique integelugon is that it has a min-
imum value ofl with solution xe {—1,1}" such that for the diagonal matrix D af1's
defined as:

D = diag(x) (14)

the system:
DATr >0, (15)

has a solution = R,

Proof: The constraints of the linear program (10) imply that.. < 6. Hence a necessary
and sufficient condition fox € {—1,1}" to be a solution of (10) is that the corresponding
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minimum value of the objective functiodis 1. It follows from Theorem 1 above that
x € {—1,1}"is a unique solution of (10), if and only if the following halfor the diagonal
matrix of £1's D = diag(x):

As=0, Ds+ed >0, 6<0, has no solution(s,d) # 0. (16)

Define nowz = Ds, and sinceDD = |, we also have that= Dz. Hence condition (16) is
equivalent to:

ADz=0, z+ed>0, <0, has no solutionz d) # 0. (a7)
We can eliminat® by reformulating (17) as follows:
ADz=0, z> 0, has no solutiorz # 0. (18)

To see that (18) is equivalent to (17), observe thaAlifz=0, z+ed >0, 8 < 0 and
(z,0) # 0, thenz> —ed > 0 implying thatz # 0, for otherwised would also equal zero.
Conversely, ifADz= 0, 0+# z > 0, then ford = 0 we have thafz 6) ## 0 andz+ed > 0.
Now, by using Gordan’s theorem of the alternative [10, Theo2.4.5], condition (18)
is equivalent tdATr > 0 having a solutiom, which is the desired condition (15) m

Note that Proposition 2 can be easily implemented by solttreglinear program (10)
and checking that its minimum objective function valuedis 1. Also, if there exists a
dual optimal solution witld'u = & = 1 which has the property that for algitherv; or w; is
strictly positive, then it follows from the complementgritonditions:v' (—x+€) = 0 and
w' (x4 €) = 0 for the primal optimal solutio, thatx € {—1,1}". The search for such a
dual optimal solution can also be accomplished by lineagfmmming.

We also note here that a somewhat different linear programguomiqueness characteriza-
tion [1] can be employed to obtain different uniqueness @@ than those of (14)-(15)
above. However our condition (15), which is equivalent tat thf the columns of the ma-
trix AD lying in the same hemisphere Bf", is key in deriving our probalistic results of
Section 3.

We now proceed to give conditions that the linear progran (&furns a unique integer
solution for problem (2) with a likely probability.

3. Probability that the Linear Program (10) Solvesthe Integer Problem (2)

While the conditions in Proposition 2 are completely detaistic and checkable, we have
not yet shown that there exist matricassatisfying these conditions. In this section, we
show that as long as the ratio/n is greater than A2, then we can solve the integer pro-
gramming problem for “mostA by solving the linear program (10).

The existence of an € R™ satisfyingDATr > 0 is simply equivalent to the columns
of the matrixAD lying in the same hemisphere B". We now quantify a very general
family of random matrices for which we can precisely calteitdne probability that such
an event occurs. We say thatis ageneric random matrixf all sets ofm columns ofA
are linearly independent with probability 1 and that eaclurmm of A is symmetrically
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distributed about the origin. Wendel [18] showed via a siripbuctive argument that the
probability of all of the columns of a generic random matgiing in the same hemisphere

is precisely equal to
e (n-1
Pmn=2" ( . ) (19)
mn i;} |

If Ais a generic random matrix, then soA®, and it follows that the probability that (10)
has a unique integer solution which is recovered by/theorm heuristic isexactly pnn.

It is rather surprising that not only can we can compute ttodability of uniqueness in
closed form for this problem, but that it is equal to the pitoibty that at most m-1 heads
appear in n-1 fair coin tosses. It is easy to check that foredfix pmy, is an increasing
function ofmand that:

1
pLn=2"" pmom= > Pnn =1, (20)
where the last two equalities are easily obtained by eleangmiroperties of binomial
coefficients. Moreover, we can use standard tail bounds ebthomial distribution to
describe asymptotically when (10) has a unique solutiom.irfstance, if we sef = (m—
1)/(n—1), then Hoeffding's inequality [6] states that

Pinn > 1—exp(—2(y—1/2)*(n—1)) y>1/2
Pnn < exp(—2(y—1/2(n—-1))  y<1/2.

That is, for a fixed ratig, the probability that the heuristic yields a unique integ@ution
goes to 1 exponentially with for y > 1/2, and the probability that the heuristic yields
a unique integer solution goes to 0 exponentially witfor y < 1/2. Our computational
results of the next section will support these facts.

As a final note, we can use Wendel's theorem to count the nuaflirgegerxg that can be
recovered vid., minimization. Suppose that all subsetsntolumns of the matriA are
linearly independent. For how mamy € {—1,1}" does it hold thaxg is the unique integer
solution ofAx= Axy? The answer is exactly'Pmnn. We can prove this probabilistically by
letting Xp be sampled uniformly frord—1,1}". By Proposition 2Xg is the unique integer
solution of Ax = Ax if and only if there exists an € R™ with diag(xp)ATr > 0. Since
Adiag(xp) is a generic random matrix, the probability of the existeatsuch arr is pmn
which proves our assertion. This means that for most gemanidom matrice#\, our /e
norm heuristic will succeed for most of the possitlleectors in (2) as long as/n > 1/2.

(21)

4. Computational Results

We tested our linear programming formulation (10) by rumniinon randomly generated
linear integer equations (2). We summarize our computaticesults as follows.

In Table 1 we present average computational results for @8 for each of 9 cases of
solvable integer linear equations (2) solved by the lineaggam (10), utilizing the CPLEX
linear programming code [8] within MATLAB [13]. We generat¢he m x n matrix A
containing pseudorandom values drawn from the standamalatistribution. The right
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Figure 1. Probabilities that the uniqueness of the integer solutidh@system of linear equations (&x= d by

the linear program (10), utilizing the CPLEX linear programgnicode [8] within MATLAB [13]. For eachm, we
selected various values ofand ran 100 experiments. We declare a success if the retuohgtbs equalled the
true integer solution. Empirical rates are plotted herenfer50, 200, and 800. The solid vertical line denotes the

predicted phase transition whergn=1/2.

hand sided of (2) was set equal tdzwhere each component nfvas set to 1 or-1 with
equal probability. The average times in column 3 of Tableelfar a 4 Gigabyte machine
running Red Hat Enterprise Linux 5. Column 4 gives the averagimum over 10 cases
of the minimum value o® of the linear program (10) which indicates a unique integer
solution of (2) when it is equal to 1. Column 5 of Table 1 givies humber of runs out of
10 that the linear program (10) returned an integer solutiofl). We make the following
remarks regarding Table 1.

(i) We note that for all cases for whighnn > 1/2, that is cases for whicin > n/2, the
linear program (10) returned an exact integer solution.

(i) Out of the 30 cases for whicin=n/2, exactly 14 linear programs (10) returned inte-
ger solutions of (2). This is in remarkable agreement withgtobability ofpmom = %
given above in (20).

For a graphic display of solution behavior, we ran numerogzeements for the cases
n =50, 200, and 800. For each pair ofandn, we tested 100 random instances and
declared success if the optimal solution was equal to thergéedz as defined in the
previous paragraph. As depicted in Figure 1, there is a diiartransition between failure
and success of the heuristic as the ratjm increases. This transition is exactly predicted
by the results of Section 3. The solid vertical line in thetidahe predicted phase transition
where the probability of success is computed to i& Asn grows, the shape of this curve
rapidly approaches a step function equal to Onfign < 1/2 and 1 foom/n > 1/2.
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Table 1. Integer solution of the system of linear equationsAR)= d by the linear program (10), utilizing the
CPLEX linear programming code [8] within MATLAB [13]. Each knin the first four columns represents the
average of ten runs. The times are for a 4 Gigabyte machinengrited Hat Enterprise Linux 5. Column 4 gives
the average minimum value of the objective functdoof the linear program (10), which indicates a unique integer
solution of (2) when it is equal to 1.

No. of Rows  No. of Variables  MATLAB Time Sec  Minimum Value of  Nof Runs Out of 10

m n toc o Returning an Integer Solution

250 500 0.4420 0.9953 6

300 500 0.4290 1 10

400 500 0.4340 1 10

500 1,000 6.1820 0.9950 4

600 1,000 5.4240 1 10

800 1,000 4.2810 1 10

750 1,500 37.3870 0.9957 4

900 1,500 47.3180 1 10
1,200 1,500 19.3550 1 10

5. Conclusion and Outlook

We have presented a method to transform an integer prognagnpnoblem into a linear
program, which under appropriate conditions, yields a ueiqteger solution to the integer
program. Using this formulation we have been able to anatgmeom instances of the
integer program and classify which instances are readiiyaste in polynomial time with
high probability.

In some sense, a popular body of work in compressed sendiog/$oa similar trajec-
tory (see, for instance [5, 2]). There, an NP-Hard problerfirafing the sparsest solution
to Ax= b is replaced by a linear program, and a dual certificate isywed to guarantee
uniqueness. The existence of such a certificate is then e by appealing to prob-
abilistic arguments. In the compressed sensing literathre certificate is sufficient, but
not necessary for the linear programming solution to caieavith the sparsest solution.
It would be interesting to extend our linear programminghtéques to provide necessary
and sufficient conditions for optimality in compressive sieg and other NP-HARD opti-
mization problems.
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